
sRDMA — Efficient NIC-based Authentication and Encryption
for Remote Direct Memory Access

Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler
Department of Computer Science, ETH Zurich

Abstract
State-of-the-art remote direct memory access (RDMA) tech-
nologies have shown to be vulnerable against attacks by in-
network adversaries, as they provide only a weak form of
protection by including access tokens in each message. A
network eavesdropper can easily obtain sensitive information
and modify bypassing packets, affecting not only secrecy but
also integrity. Tampering with packets can have drastic con-
sequences. For example, when memory pages with code are
changed remotely, altering packet contents enables remote
code injection. We propose sRDMA, a protocol that provides
efficient authentication and encryption for RDMA to prevent
information leakage and message tampering. sRDMA uses
symmetric cryptography and employs network interface cards
to perform cryptographic operations. Additionally, we pro-
vide an implementation for sRDMA using programmable
network adapters.

1 Introduction

Despite numerous state-of-the-art systems [8, 11, 30] lever-
aging remote direct memory access (RDMA) primitives to
achieve high performance guarantees and resource utilization,
current RDMA technologies lack any form of cryptographic
authentication or encryption. Instead RDMA mechanisms
provide a weak form of protection by including access tokens
in each message. Given that RDMA networks are mainly used
in data-center environments and at large-scale deployments,
detecting bugged wires is seemingly impossible. But not only
in-network adversaries are an issue, also malicious end hosts
can affect the security of an RDMA network. If an adver-
sary is able to obtain control over a machine in an RDMA
network (e.g., by escaping its virtual machine or hypervisor
confinement in a cloud service [42]), it can fabricate and in-
ject arbitrary packets. If the adversary can guess or obtain the
protection domain and memory protection tokens (which are
transmitted in plaintext), it can read and write memory loca-
tions that have been exposed using RDMA on any machine

in the network, leading to a powerful attack vector for lateral
movement in a data center network.

Given these threats, the security of current RDMA data
center networks highly depends on isolation. However, even
isolation cannot defend against in-network attackers. Thus,
RDMA networks require cryptographic authentication and
encryption. Unfortunately, application-level encryption (e.g.,
TLS [34]) is not possible, since RDMA read and write can
operate as purely one-sided communication routines. Further-
more, such an approach requires employing a temporal buffer
for incoming encrypted messages. The message would then
be decrypted by the CPU and copied to the desired location,
which would cause high overhead—negating RDMA’s advan-
tages. Additionally, cryptographic protection using IPSec [10]
does not support RDMA traffic as the protocol is unaware
of the underlying RDMA headers and achieves no source
authentication (see Section 7).

In our work, we introduce a secure RDMA (sRDMA) de-
sign using a secure reliable connection (SRC) queue pair
(QP) that uses symmetric cryptography for source and data au-
thentication and employs Network Interface Cards (NICs) to
perform cryptographic operations. Symmetric cryptography
reduces the computational overhead compared to asymmetric
cryptography by 3–5 orders of magnitude. Thus, it is suitable
for high-performance and low-latency applications based on
RDMA, e.g., [8, 17, 39]. Since symmetric cryptography in-
troduces per-connection memory overhead and memory on
NICs is constrained, we augment our proposed mechanisms
using protection domain level keys and efficient dynamic
key derivation, which eliminates the need for storing QP-level
keys and drastically reduces the memory overhead on RDMA-
capable NICs (RNICs). Additionally, we propose extended
memory protection mechanisms that enable delegation of
memory access to other trusted peers without requiring addi-
tional communication with the accessed host (e.g., an access
control proxy for databases [29]).

In summary, we make the following contributions:
• we design a SRC QP that effectively prevents attacks in

an RDMA network, with minimal changes to the current

InfiniBand Architecture (IBA) standard (Section 4.2);
• we improve our design by introducing PD-level keys to

reduce the memory overhead on the RNIC (Section 4.5),
and augment IBA with extended memory protection that
enables delegation of memory accesses to third parties
without the need of direct communication to the target
entity (Section 4.6);

• we provide an implementation of our design using
modern programmable network adapters equipped with
ARM multi-core processors [7, 40] (Section 5);

• we extensively evaluate our design using artificial and
real-world traces. Additionally, we modified the RDMA-
based key value store, HERD [17], to make use of
sRDMA (Section 6).

2 Remote Direct Memory Access

RDMA is a mechanism allowing one machine to directly
access data in remote machines across the network.

Memory accesses are performed using dedicated hardware
without any CPU intervention or context switches, which de-
creases CPU usage on both the initiator and the target. When
an application performs an RDMA read or write request, the
application data is delivered directly to the network, reducing
latency and enabling fast message transfer. RDMA also ex-
hibits the concept of one-sided operations when the CPU at a
target node is not notified of incoming RDMA requests.

Several network architectures support RDMA: InfiniBand
(IB) [4] , RDMA over Converged Ethernet (RoCE) [5], and in-
ternet Wide Area RDMA Protocol (iWARP) [33]. InfiniBand
is a network architecture fully designed to enable reliable
RDMA with its own hardware and protocol specification.
RoCE is an extension to Ethernet to enable RDMA over an
Ethernet network. Finally, iWARP is a protocol that allows
using RDMA over TCP/IP. In this work, we focus on the
InfiniBand architecture (IBA) and RoCE as they are the most
widely used interconnect for RDMA, but the proposed ideas
can be easily extended to other RDMA architectures.

2.1 InfiniBand Transport
Several transport types are supported by the IBA to communi-
cate between endpoints: reliable connection (RC), unreliable
connection, unreliable datagram, extended reliable connec-
tion, and raw packet. In this paper, we only consider the RC
transport type, since it is the only type that supports both
RDMA read and write requests.

The RC transport type establishes a queue pair (QP) be-
tween the two communicating parties. QPs are bi-directional
message transport engines used to send and receive data in
InfiniBand. Endpoints of a single RC QP can only commu-
nicate with each other but not with any other QP in the same
or any other target adapter. Each QP endpoint has a queue
pair number (QPN) assigned by the RNIC which uniquely
identifies the QP within the RNIC.

The RC transport uses several techniques to ensure reliabil-
ity. The target must respond to each request packet with a pos-
itive acknowledge packet or a negative acknowledge packet.
The acknowledgement-based protocol permits the requester
to verify that all packets are delivered to the target. To ensure
the integrity of a packet, each packet contains two checksums
that are verified by the target node. Finally, the RNIC counts
received and sent packets using a packet sequence number
(PSN), which is included in each packet. Thus, endpoints of
a QP must know the PSN of each other to enforce in-order
delivery and detect duplicate and lost packets.

2.2 IBA Memory Protection
The IBA protection mechanisms provide protection from
unauthorized access to the local memory by network con-
trollers. The local memory can also be protected against pro-
hibited memory accesses. Three mechanisms exist to enforce
memory access restrictions: Memory Regions, Protection Do-
mains (PD), and Memory Windows.

Memory Regions. To get access to host memory, the RNIC
must first allocate a corresponding memory region. This pro-
cess involves copying page table entries of the corresponding
memory to the memory management unit of the RNIC. When
a memory region is created, the RNIC generates keys for local
and remote accesses, namely l_key and r_key. The memory
region can be accessed by any local QP which has the l_key
as long as they are in the same PD, and by their remote QP
endpoints which have the r_key. The endpoints must prove
the possession of this key by including it in every RDMA
request, such as RDMA Write and Read. r_key is not used in
any form of cryptographic computation, but rather is used as
access tokens that are transmitted in plaintext.

Protection Domain. PDs provide protection from unautho-
rized or inadvertent use of memory regions. PDs group IB
resources such as QP connections and memory regions that
can work together: QP connections created in one PD can-
not access memory regions allocated in another PD. In other
words, a memory region can be accessed by any QP from its
PD. All QPs and memory regions must have a PD and can be
a member of one PD only.

Memory Windows. Memory windows extend protection of
memory regions by allowing remote QPs to have different
access rights within a memory region and grant access to only
a slice of the memory region.

3 Problem Definition

This section describes the adversary model we consider, out-
lines different types of attacks, and the security properties we
strive to achieve.

3.1 Desired Security Properties
The current IBA protection mechanisms do not suffice to
ensure secure communication between endpoints, allowing

adversaries numerous attacks. Thus, the primary goal of our
work is to secure RDMA protocols against attacks by provid-
ing source and data authentication along with data secrecy
and data freshness. Source authentication denotes the verifi-
cation of the source address of a host that sends a packet and
is designed to determine whether a packet originated from the
claimed source. Data authentication ensures that the packet
content has not been modified. Data secrecy ensures that the
data remains hidden from a network eavesdropper. Data fresh-
ness ensures that data has not been recorded and replayed by
a network attacker. Additionally, our proposal should require
minimal changes to the protocol, and introduce only a minor
performance overhead. This does not only include latency
and processing overhead for RDMA requests but also memory
state overhead on the RNIC.

3.2 Adversary Model

In our adversary model we consider end hosts that are
equipped with RNICs and interact with each other through
RDMA, and an adversary with the following parameters.

Location. We assume that the adversary can reside at arbi-
trary locations within the network. Thus, we consider both
network-based adversaries (e.g., rogue cloud provider, rogue
administrator, malicious bump-in-the-wire device) and adver-
saries located at end hosts (e.g., compromise of an end host).
This includes compromise of the machines of communicat-
ing parties. However, we assume that RNICs are trusted by
their host. This could be achieved using remote attestation,
whereby a trusted party checks the internal state of a poten-
tially compromised network device. We further assume that
the internal bus is trusted, such that the CPU can securely
communicate with the RNIC.

Capabilities. A network-based adversary can passively
eavesdrop on messages, but also actively tamper with the
communication. Since RDMA communication is performed
in plaintext, an adversary that is located on the path between
communicating parties can obtain any information in all IB
and Ethernet headers. Furthermore, he can also alter any of
these values, as this only requires recalculation of packet
checksums, whose algorithms and seeds are known and spec-
ified by the IBA.

Given these capabilities, the adversary can also fabricate
packets and send them towards a destination of its choice
using spoofed QP numbers, r_keys, and PSNs (e.g., to mod-
ify a memory region without authorization to influence the
behavior of applications running on the remote host).

Cryptography. The adversary has no efficient way of break-
ing cryptographic primitives. For pseudorandom function
families, this means that no efficient algorithm can distin-
guish between an output of a function chosen randomly from
the pseudorandom function family (PRF) and a random value.

Table 1: Notation used in this paper.

‖ Bitstring concatenation
PRFK(·) Pseudorandom function using key K

MACK(·) Message authentication code using key K
A, B Endpoints uniquely identified by the combination of

the adapter port address (APA) and Queue Pair Num-
bers (QPN)

KA,B Symmetric key shared between node A and B
nonceA→B cryptographic nonce used for communication in the

direction from node A to node B
KPD, KMR,

KSR

Symmetric key used for protection domain, memory
region, or sub memory region

4 Secure RDMA System Design

We propose a new transport type for reliable communication
based on the IBA. We introduce a secure reliable connec-
tion (SRC) QP that uses symmetric cryptography for source
and data authentication, and thus provides guarantees for the
origin of a packet, data authenticity and payload secrecy.

To require minimal changes to the current IBA specifica-
tion, our proposed design of the SRC QP consists of two main
changes: 1) we add symmetric key initialization for QPs, and
2) we propose a new packet header called secure transport
header (STH) which contains a message authentication code
(MAC) providing integrity of the packet content. The STH
must be included in all requests and response packets corre-
sponding to RDMA reads and writes.

Besides basic QP-channel protection, we also propose PD
level protection eliminating the need for storing cryptographic
keys for each QP, which drastically reduces the memory over-
head on RNICs. Additionally, it enables extended memory
protection that provides memory access control based on en-
cryption and the ability of delegating memory access to other
trusted entities without additional communication to the ac-
cessed host. All QPs and memory regions created in a secure
PD will be inherently secured by it.

Table 1 lists the security-related notation used in this paper.

4.1 Assumptions
Trust in RNIC. We assume that the RNIC is trusted by its host.
It can not only perform authentication of outgoing packets,
but is also trusted to perform en-/decryption of the packet
payload. We further assume that the internal bus is trusted,
such that the CPU can securely communicate with the RNIC.

QP-level Key Establishment. Our system enables the estab-
lishment of a QP-level symmetric key. To guarantee interop-
erability, our design is agnostic of this underlying mechanism.
IBA could use for instance a (D)TLS [34] or QUIC [15] hand-
shake as a mechanism to obtain a QP-level symmetric key.

Key Validity. As the validity period of a QP-level symmet-
ric key is bound to the lifetime of a QP, key rollover can be
performed by closing and reopening a QP between the com-
municating entities. Thus, key lifetime can be managed on
the application level.

Size (bits) 0 96 128 160 224 256 384 512

Value 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

Table 2: Possible sizes of STH, depending on the 3 bit value
indicated in the Base Transport Header of an IB packet.

4.2 Secure Reliable Connection Queue Pair
We propose new transport type—Secure Reliable Connec-
tion (SRC) QP—that uses symmetric cryptography for source
and data authentication. The introduction of SRC requires
minimal changes to the current specification. Specifically, the
QP initialization requires specifying a protection algorithm
and a symmetric key. This allows us to bootstrap secrecy and
authentication for QP-based communication.

Secure Transport Header. Secure Transport Header (STH)
consists of MAC to provide header and packet authentication.
The STH must be included in all request and response packets
of sRDMA. Depending on the authentication mode installed
to the secure QP, the MAC either authenticates only the packet
header or the entire packet. To specify the length of the STH,
we use 3 (out of 7) reserved invariant bits in the Base Trans-
port Header. Based on the 3 bit value (see Table 2), the size of
the MAC changes: minimum 96 bits, and maximum 512 bits.
If the reserved 3 bits are all zero, then the STH is not present
in the packet, thereby enabling support of both classical and
secure QP connections.

Reusing PSN as a Per-Packet Nonce. sRDMA prevents
replay attacks by including a unique nonce in the MAC com-
putation of each packet (Section 4.3). Nonces are used as
initialization vectors for ciphers to ensure that every packet is
unique. They must only be used once, but their choice can be
predictable and they can be transmitted in clear [19, 37]. In
case a nonce is reused, the cryptographic properties of a cipher
are affected (e.g., “sudden death” property of Poly1305 [6]).

A naive solution is to transmit a nonce as cleartext with
each packet (e.g., as in TLS up to version 1.2 [36]). However,
this would incur an additional transmission overhead of at
least 64 bits, and additional 64 bits memory overhead on
RNICs memory to store the nonce.

To avoid the overhead of transmitting the nonce, our proto-
col takes advantage of the sequential nature of IB packets. It
uses the sequence number as nonces as they are tracked by end
points and can never be reused. The approach resembles how
TLS 1.3 [35] exploits the packet number as a nonce; however,
the size of the PSN in the IB packet is only 24 bits, which
would cause a reuse of a nonce after 80 ms assuming that an
RNIC is able to send 200 million packets per second [28].

sRDMA extends the local PSN counters for inbound and
outbound packets on the RNIC to 64 bits each, and reuse them
as a per-packet nonce, thereby introducing only 40 bits over-
head for each nonce. However, the size of the PSN transmitted
on the wire remains unchanged (24 bits) and contains the least
significant bits of the 64 bit counter. sRDMA is able to infer

Table 3: Overheads of sRDMA for N RC QP connections with
AES-128 cipher in 4 different protection modes. Here, pd-
prot and ext-mem stand for PD-level protection and extended
memory protection, and are described in Section 4.5 and 4.6.

AES-128 protection Key overhead Nonce Header

basic 16B * N 10B * N 16B
pd-prot 16B 10B * N 16B
ext-mem 16B * N + 16B 10B * N 16B
pd-prot + ext-mem 16B + 16B 10B * N 16B

the 64 bit nonce used to secure the packet using only the 24
bit PSN specified in the header. Under the same assumption
on the packet rate, the reuse of nonce occurs after 3,000 years.

To ensure that the nonce never gets reused by both end-
points, we use the most significant bit to identify the direction
of communication between the entities A and B using their
endpoint identifiers: the combination of adapter port address
and Queue Pair Number (QPN).

4.3 Header Authentication
To perform header authentication, sRDMA uses the estab-
lished symmetric keys and calculates a MAC for each packet:

machdr = MACKA,B(nonceA→B ‖ RH ‖ BTH)

Here, RH denotes the routing header, which defines the
adapter port address, and BT H the base transport header,
which includes destination QPN. Note that these headers
uniquely identify the sender and receiver RNIC, and limit the
input size of the MAC computation (only the packet header in-
stead of the entire packet with arbitrary payload length). Thus,
assuming an block-cipher-based MAC is used, a fixed number
invocations of the block-cipher are required to calculate a
MAC.

The RNIC of the receiving node will recompute the MAC
for each packet and compare it to the MAC appended in the
STH. Fields that are modified during the packet’s transmission
are replaced with ones during the MAC computation (same
as for invariant checksum).

Header authentication prevents not only source-address-
spoofing attacks, but also unauthorized access to memory
regions by augmenting the existing IBA memory-protection
mechanisms (i.e., r_key and memory windows).

4.4 Packet Authentication and Encryption
For packet authentication and payload encryption, we assume
that the RNIC is trusted. Thus, the host is allowed to offload
all cryptographic operations to the RNIC. We use authenti-
cated encryption with associated data (AEAD), to simultane-
ously obtain secrecy and authenticity for the payload. The
authentication tag is transmitted using the MAC field in the
STH.

4.5 PD-level Protection
Introducing QP-level keys requires storing a 16 byte key per
QP (see Table 3). As an RNIC might have a large number
of QPs simultaneously, this can lead to a significant memory
overhead on the RNIC. Memory on RNICs is a constrained
resource, and a large part is consumed by IB connection con-
texts and page-table entries for registered memory. Multiple
works report significant performance degradation of RDMA
operations when the amount of memory registered or the
number of QPs is increased [11, 18]. This is due to the RNIC
running out of memory for storing page-table entries and start-
ing to fetch them from system memory across the PCI bus.
For instance, Dragojevic et al. [11] observe ~4x throughput
drop in their evaluation when 4,096 memory pages are regis-
tered within the RNIC compared to a single-page experiment.
Thus, we aim to mitigate the memory overheads introduced
by QP-level keys.

To reduce the memory overhead and eliminate the need
of storing a symmetric key per QP, we introduce PD-level
protection. In this mechanism, we assign a symmetric key KPD
to each protection domain PD and use this key to derive QP-
level keys using efficient key derivation [14]. PD-level keys
are exchanged using the same mechanism as QP-level keys
(see Section 4.1). The derivation process works as follows:

KA,B = PRFKPD(APAA ‖ QPNA ‖ APAA ‖ QPNB)

PRF denotes a pseudorandom function with a PD-level key
KPD and a pair of unique end point identifiers (i.e., adapter
port address (APA) and queue pair number (QPN)) as input.
When an RDMA request targets a QP that is located within
a protection domain PD, the RNIC uses the corresponding
symmetric key KPD to derive the QP-level key on-the-fly.
The QP-level key is then used to perform authentication and
encryption. Thus, instead of storing a symmetric key per QP,
the RNIC is only required to store a key per PD. To minimize
the processing overhead, the RNIC can cache the derived
QP-level keys (e.g., after the first packet of a message arrives).
KPD is initialized upon creation of the PD and thus the lifetime
of KPD is bound to the lifetime of the PD. In order to perform
a key rollover, a new protection domain must be created.

4.6 Extended Memory Protection
Using encryption of memory regions enables an even stronger
mechanism for access control, as only entities in possession
of the required key are able to read the content of a memory
region. For this purpose, we use PD-level memory protection
and derive memory level keys from KPD for memory regions
that are created within the protection domain. The derivation
process works as follows:

KMR = PRFKPD(STARTMR ‖ ENDMR ‖ r_keyMR)

Alternatively, the KMR can be provided by the application
to protect memory from unauthorized accesses.

KMR

KSR1

KSR2

KSR3

m m+8m+4
SR 2

SR 3SR 1

Figure 1: Access Sub-Delegation with one-way tree.

When remote parties want to access a subregion (SR) of
the region MR, they need to prove the possession of the KMR
by computing a key to the SR:

KSR = PRFKMR(STARTSR ‖ ENDSR) (1)

Nonce for Key Derivation. To avoid replay attacks, our
system must use a separate nonce for each memory region.
However, it is not possible to use a memory access counter as
nonce, as multiple QPs can access the same memory region.
Therefore, this would require the RNIC to include a random
nonce in each packet, which must be unique among all nonces
used to access the memory region. Given that multiple parties
have access to the region, this property is hard to achieve.
Additionally, we want to avoid transferring a separate MAC
for memory access in the packet header. Thus, we suggest to
reuse the MAC of the header by overwriting it as follows:

machdr = MACKA,B(KSR||machdr)

Such design allows sRDMA to reuse the per-packet nonce
used in computation of machdr and ensure the possession of
KMR to access memory. This construction is secure since the
key is unknown to an adversary.

4.7 Sub-Delegation of Access to Memory
To allow sub-delegation of access to memory regions, we
further extend the proposed extended memory protection with
a binary one-way function tree [26]. The one-way function
tree is built top-down where the memory region key KMR is
represented by the root of the binary tree and all child nodes
are generated by applying the PRF:

KMRchild = PRFKMRparent
(STARTMRchild ‖ ENDMRchild)

Each memory block represents a leaf of the binary one-way
tree (see Figure 1). Thus, the height of the tree depends on
the size of the region and on the memory block size. Dele-
gating access to a subregion works by sending the key of an
intermediate node to a remote party. Given the key for a mem-
ory region, the subregion offset and subregion size uniquely
identify which inner node is required for delegation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8
9

10

La
te

n
cy

 (
s)

Latency and throughput of memory key derivation

Tree depth

0K

400K

800K

1200K

1600K

2000K

2400K

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

latencythroughput

Figure 2: Performance of KMR derivation for different tree
depths. The derivation is performed sequentially, thus latency
grows linearly and the throughput decreases exponentially.

An example of the delegation process is illustrated in Fig-
ure 1. To obtain a key for subregion 3, the entity must derive
an intermediate key first, which can then be used to derive
KSR3 . To delegate access for subregion 2 to another host, a
host in possession of KSR1 derives KSR2 and then shares this
key with the delegated host. This allows access to subregion
2, but not to any other part of the memory region.

Only logarithmically many derivations are needed to obtain
a key for memory access. For example, a key for accessing a 1
MiB subregion of a 16 MiB memory region can be obtained in
at most 4 steps, which takes 2 µs on our RNIC (see Figure 2).
Additionally, to prevent long key derivation chains, sRDMA
allows users to limit the number of steps in the key derivation
process. The sub-delegation is optional and can be disabled
by restricting the tree depth to zero. In this case, the key
derivation works as in Equation 1.

Advantages. This approach offers multiple advantages: 1)
It trivially enables sub-delegation, as the delegated party can
also calculate inner nodes of the subtree that is rooted at the
subregion key. 2) The block size and thus the tree size is
variable and can be adjusted for each memory region, e.g.,
depending on window size, depth of sub-delegation, or com-
putational power of the corresponding nodes. This also allows
limiting the depth of the tree to restrict the computational
overhead. 3) The RNIC is required to compute only a single
branch of the tree to verify. 4) The larger the delegate memory
space, the smaller is the computational overhead on the RNIC.
5) The packet size remains constant as accessing a memory
subregion requires only the start and size of the region, the
offset and the size of subregion, and a MAC computed using
the appropriate key.

Restrictions. We restrict delegation to powers of two to
ensure that a single key is sufficient to delegate access to any
sub-region. Alternatively, a solution based on segment trees
would overcome this limitation, but require the exchange of
multiple keys.

5 Implementation

Towards our goal of supporting secure QP connections, this
section describes how we implement the sRDMA protocol
using modern programmable network adapters equipped with

ARM multi-core processors [7, 40]. sRDMA core primitives
are implemented in 3,500 lines of C++ code and rely on var-
ious libraries: libibverbs, an implementation of the RDMA
verbs; librdmacm, an implementation of the RDMA connec-
tion manager; Openssl 1.1.1a, a general-purpose cryptography
library; and libev, a high-performance event loop. Our im-
plementation supports more than 20 different cryptographic
algorithms, such as the AES cipher and SHA hash families,
to enable authentication and data secrecy for secure QPs. The
implementation, all tests, and benchmark scripts are available
in the open-source release.*

5.1 Notation and Experimental Setup
In the rest of the paper, we refer to a programmable network
adapter as a SmartNIC. Our SmartNIC is capable of running
a full Linux stack, supports RDMA over RoCEv2 and has
crypto acceleration enabled. When RDMA requests are ini-
tiated on the SmartNIC and target the local host we refer to
them as DMA requests as they only pass across the PCIe bus.

Our implementation is bi-directional, i.e., sRDMA writes
and reads can be sent in both directions passing through both
SmartNICs of the initiator and the target. Therefore, we dis-
tinguish between three roles as depicted in Figure 4: Initiator,
SmartNIC, and Target, and the initiator always communicates
with the target via two SmartNICs. Such a design allows full
offloading of cryptographic computations from the initiator
and the target to their respective SmartNICs.

5.2 Implementation of the Secure QP
We provide a library that models a secure QP connection
between an initiator and a target as three standard RC QPs:
one DMA connection between the SmartNIC and the host on
each endpoint, and one connection between the SmartNICs.

Connection Establishment. Our secure QP library encapsu-
lates connection establishment, which is performed in three
stages as for a classical RC QP. When an application wants to
establish a secure QP, it first creates a local QP in the INIT
state. In this state, the connection between the host and the
SmartNIC is created, and all necessary symmetric keys are
copied to the SmartNIC. Then the QP must be transitioned to
the RTR state by passing information about the target such as
the QPN, the LID, and the PSN. To perform this transition we
establish an RC QP connection between the two SmartNICs
and create a special connection context on each SmartNIC.
Finally, to send messages we transit the secure QP to the RTS
state by passing the local send PSN. The application workers
on the SmartNIC are responsible for packet counting, key
derivation, and cryptographic algorithms.

Memory Registration. When a memory region should be
secured with extended memory protection, the library inter-
cepts a memory registration request and sends memory region
information to a thread on the local SmartNIC.

*https://spcl.inf.ethz.ch/Research/Security/sRDMA/

https://spcl.inf.ethz.ch/Research/Security/sRDMA/

yes yes
no

yes

yes

no
no

Incoming
packet

Drop
packet

Forward
packet

Key derivation
required?

Is payload
protected?yes

Calculate memory region
key from PD’s memory key

and append it to AEAD

no
decrypt
payload

Append payload
to AEAD

1. Create AEAD context with the key
2. Append nonce to AEAD input
3. Append header to AEAD input

Is payload
encrypted?

yes
no

no
Do MACs
match?

Derive key
from PD key

Is extended memory
protection enabled?

Take QP key

Is QP
secure?

Figure 3: RNIC packet processing on receive.

Secure QP communication. The initiator uses IB Send to
deliver packets for both sRDMA reads and writes to its Smart-
NIC. The SmartNIC uses IB Receive to receive incoming
packets from DMA connections and from remote SmartNICs.
The SmartNIC secures all incoming packets from a DMA
connection according to the cryptographic mechanism agreed
on with the target. To secure a packet, the SmartNIC appends
the IB transport and RDMA headers along with the generated
MAC to the packet header. In our implementation, we use IB
scatter/gather entries to attach an additional header before the
main payload provided by the initiator. Scatter/gather entries
allow building up an outgoing message from multiple buffers.
After that, the packets are forwarded to the SmartNIC of the
target QP. The target’s SmartNIC verifies the security header
as depicted in Figure 3, and decides on initiating an RDMA
Read or RDMA write depending on the type of the request to-
wards the target’s host. The replies from the target are secured
by its SmartNIC and forwarded back to the initiator.

sRDMA request completion. If the initiator expects an ac-
knowledgment for a signaled request, the SmartNIC is respon-
sible for acknowledging the initiator about the completion
of the request. We use IB requests with immediate data to
generate completion events on the host. The secure QP library
is able to intercept completion events to distinguish between
classical IB completions and sRDMA completions. The in-
tercepted sRDMA completions are modified to inform the
initiator about the sRDMA completion instead of the classical
IB completion.

Packet security. The whole process of packet verification
and key generation is shown in Figure 3. The SmartNIC per-
forms header authentication, packet authentication, or payload
encryption depending on which security protocol has been set
up for the QP and which packet is processed. The SmartNIC
will derive the QP’s key if the QP is initialized in a secure PD,
and also verify extended memory protection if the registered
memory region has extended memory protection set up. On
receiving, the SmartNIC also checks whether the QP is indeed
a secure QP, as our implementation also supports classical
insecure RC QPs. For insecure RC QPs, packets do not carry
a MAC and are always trusted by SmartNICs.

5.3 sRDMA requests
Figure 4(a) depicts the implementation of an sRDMA write.
The initiator ¶ sends a packet to the local SmartNIC con-
taining the payload and the remote memory address. The
local SmartNIC · appends the IB header and the STH and

Zero
Write

with IMM

Target server

SmartNIC Host

 Send
5) Write

6) Signal

4) Packet
validation

7) Packet
protection

Initiator server

SmartNICHost

 Packet
protection

9) Packet
validation

 Send

 Send

❿

❶ ❷ ❸ ❹ ❺

❻❼❽❾

(a) sRDMA writes

1 0) Write
(with IMM)

Target server

SmartNIC Host

1) Send
5) Read

6) Signal

4) Packet
validation

7) Packet
protection

Initiator server

SmartNICHost

2) Packet
protection

9) Packet
validation

3) Send

8) Send

❶ ❷ ❸ ❹ ❺

❻❼❽❾❿

(b) sRDMA reads

Figure 4: Implementation of RDMA operations.

¸ sends the secured packet to the remote SmartNIC. The
remote SmartNIC ¹ processes the header and º initiates
a signaled DMA write to the host memory specified in the
header. Upon » the completion of the DMA write, the Smart-
NIC, depending on whether the sRDMA write is signaled,
¼½ sends an authenticated Ack packet to the initiator’s Smart-
NIC. The SmartNIC of the initiator then ¾ verifies the packet
and ¿ performs an empty RDMA write with immediate data
to its host, which consumes one posted receive at the host
application. Finally, the secure QP interface intercepts such
completions and modifies them to notify the application about
the secure request completion.

sRDMA also implements secure Send operations which are
similar to sRDMA writes, but they always generate the com-
pletion on the target and do not require knowing destination
buffers. Since a Send request does not contain the header with
destination buffer, it does not support memory protection.

sRDMA read has a similar structure as an sRDMA write as
depicted in Figure 4(b) but there are some subtle differences.
The initiator ¶ sends the message containing remote and local
memory addresses and their r_keys to the local SmartNIC.
The initiator’s SmartNIC creates a special local read comple-
tion context with the initiator’s memory address where the
remote data must be copied to. Then the local SmartNIC ·¸
sends the authenticated read request to the remote SmartNIC,
which ¹ verifies the request and º initiates a signaled DMA
read from the target host memory to one of the SmartNIC’s
buffers. When » the completion of a DMA read is generated,

the SmartNIC ¼½ sends an authenticated read response with
read data to the initiator’s SmartNIC. The initiator’s Smart-
NIC ¾ verifies the MAC of response packets and decides
whether to ¿ write their content to the memory address spec-
ified in the matched local read completion context using a
DMA write request. The DMA write will be with immediate
data if the sRDMA read is signaled.

6 Evaluation

We conduct a series of benchmarks to thoroughly profile our
system. To evaluate the overall sRDMA performance and
the impact of cryptographic operations, we first evaluate the
performance of each cryptographic algorithm. Secondly, we
evaluate the latency and bandwidth of sRDMA writes and
reads to assess the overheads of secure QPs over insecure
QPs. Subsequently, we study the impact of bulk sRDMA op-
erations by measuring the achievable bandwidth for different
read/write ratios. Later, we evaluate the performance of the
HERD key-value store [17] to examine the impact of sRDMA.

Test settings. The experiments are conducted on two servers
directly connected to each other using the RoCEv2 proto-
col. These servers run Ubuntu 18.04.1 LTS with a 4.15.0-43-
generic Linux kernel. Each server is equipped with a Broad-
com PS225 25 Gbit/s programmable network controller. Both
network adapters have eight-core 64-bit ARM Cortex-A72 3.0
GHz processors and 8 GiB of dual-channel DDR4 DRAM.

6.1 Authentication performance
We first study the performance of the cryptographic engine
installed in the SmartNICs. We evaluate 7 different cryp-
tographic algorithms of the openssl 1.1.1a library for mes-
sage authentication: aes-128, aes-192, aes-256, chacha20-
poly1305, sha1-160, sha2-256, sha2-512.

Figure 5 depicts the achievable throughput in Gbit/s of
those algorithms for different numbers of threads and block
sizes. The line rate of the tested RNIC over the RoCEv2
protocol is 20.6 Gbit/s, which is goodput of 25 Gbit/s link.
AES algorithms are the fastest for small blocks and achieve
8 Gbit/s for 64 byte blocks using single thread. Thus, our
sRDMA library uses the AES128 algorithm as the PRF func-
tion needed for key derivation. For larger blocks hash-based
methods perform almost as fast as cipher-based algorithms.
We observe that chacha20-poly1305 is ~4x slower on average
than the AES algorithms. The data also reveals that we cannot
achieve the line rate for packet authentication with SHA512.

For varying key sizes of AES algorithms, we have not
noticed significant differences in performance and hereafter
report results exclusively for the AES128 algorithm. As
SHA1-based authentication provides similar performance as
SHA256 in all tests, we omit its data in all plots. Additionally,
we label chacha20-poly1305 in Figures as poly1305.

1
2
4
8
16
32
64
128 64 bytes block line rate 20.6 Gbit/s

1
2
4
8
16
32
64
128 1024 bytes block

1 2 3 4 5 6 7 8
of threads

1
2
4
8
16
32
64
128 2048 bytes block

Gbit/s

aes128 aes192 aes256 poly1305 sha1 sha256 sha512

Figure 5: Authentication performance using openssl.

6.2 Evaluation modes
All evaluations have been performed with no security enabled
(NO security) and in four protection modes:

No security. In No security mode RDMA reads and writes
are performed as described in Section 5.3 but with skipping
packet protection and validation (·¹¼¾ in Figure 4).

Basic mode. In basic mode the key is attached to the secure
QP connection directly, so the key is in the RNIC’s cache
when an incoming packet must be processed.

Pd-prot mode. The secure QP is created without an individ-
ual key, but in the secure PD (pd-prot) with a key derivation
algorithm. We consider the case when the RNIC does not
cache derived keys, and therefore, every time a packet arrives,
the RNIC must derive the QP key from the PD key. In these
experiments we want to show the performance of the system
with constant cache misses. Using the cache we expect the
same performance as in basic mode without key derivation.

Ext-mem mode. In this mode, the QP is created with an in-
dividual key and with extended memory protection (ext-mem)
enabled. Extended memory protection requires derivation of
memory level keys from a PD-level key. In this case, when a
packet arrives, the RNIC must generate a key to access mem-
ory specified in the RDMA header from the PD-level key and
include the generated key in MAC calculation. For this test
we also consider that the initiator has the primary memory key
which grants access to whole memory region, so the memory
key can be derived in one step (depth 0 in Figure 1).

Pd-prot + ext-mem mode. The last mode combines our two
protection methods: secure PD and extended memory protec-
tion (pd-prot + ext-mem). Therefore, the RNIC is responsible
for generating both keys when a packet should be processed.

6.3 Latency
To evaluate the overall sRDMA performance and the impact
of cryptographic operations, we split latency tests in two cate-

sha256
sha512

aes128
poly1305

0

5

10

15

20

25

30

Write latency (RTT/2)us

NO Security

sha256
sha512

aes128
poly1305

Read latency (RTT)

basic pd-prot ext-mem pd-prot+ext-mem

Figure 6: Source authentication latency of reads
and writes carrying 32 Bytes payload.

32
128

512
2048

0
5

10
15
20
25
30
35
40

PCK sha256us

32
128

512
2048

PCK sha512

32
128

512
2048

PCK aes128

32
128

512
2048

PCK poly1305

32
128

512
2048

AEAD aes128

32
128

512
2048

AEAD poly1305

basic write

basic read

write+pd-prot

read+pd-prot

write+ext-mem

read+ext-mem

write+pd-prot+ext-mem

read+pd-prot+ext-mem

Figure 7: Latency of packet authentication (PCK) and encryption (AEAD)
as a function of payload sizes.

gories: header authentication only and full packet security.
Header authentication. Figure 6 presents the median la-

tency of sRDMA reads and writes in all four protection modes
for header authentication. The figure reports the median only
as for all measurements deviation from the median is less than
0.4 µs. All measurements are done for packets carrying the
payload of 32 bytes. sRDMA write latency is measured for
a half round trip, whereas sRDMA reads are for a full round
trip. The latency of sRDMA writes without security is 9.55
µs and of sRDMA reads is 18.2 µs which build the baseline
for our experiments.

Figure 6 shows that all tested security algorithms in the
first mode add about 0.9 µs for sRDMA writes which is ap-
proximately 9% more than the insecure version. Another
interesting observation is that the QP key derivation is more
expensive than memory key derivation. The difference stems
from the fact that a key-derivation process involves reinitial-
ization of cryptographic contexts and different algorithms
have different reinitialization performance (e.g., AES gen-
erates round keys [9]). The same phenomenon occurs for
sRDMA reads. As expected, the highest latency is achieved
for sRDMA operations with both key derivation and extended
memory protection.

Packet security. We evaluate the latency of packet authenti-
cation (PCK) and packet encryption (AEAD) for different pay-
load sizes and in four protection modes. Figure 7 illustrates
the median latency of sRDMA reads and writes for SHA256,
SHA512, AES128, and POLY1305. In each subplot, the top
four lines illustrate sRDMA read round-trip latency, and the
bottom four lines half-round-trip latency of sRDMA writes.

Figure 7 highlights that payload authentication is more
expensive than header authentication. It takes 15 µs to write
and secure 2 KiB payload in the first mode in comparison
to header authentication of the same packet with the median
of 12 µs. The graph also illustrates that latency increases for
both reads and writes with payload size as more data must
be authenticated. For AEAD, latency goes up even faster
with respect to payload size since more data is en-/decrypted.
As anticipated, SHA512 has the highest latency as the most
expensive algorithm. We observe that for smaller payload
sizes payload authentication and payload encryption achieves

approximately the same performance in terms of latency.

6.4 Bandwidth
We measure performance separately for sRDMA reads and
writes. As for latency benchmarks, all evaluations are per-
formed in four protection modes. Our implementation is multi-
threaded where each thread can process requests from a single
secure QP. The number of threads represents the number of
connections between endpoints. For n threads, each host es-
tablishes n secure connections with its SmartNIC, and Smart-
NICs establish n connections between each other. Thread
workers on a SmartNIC do not share any resources and are
pinned to distinct cores. In all evaluations the initiator issues
requests continuously to the target, but with a limited number
of outstanding requests (96 per connection). Once the initiator
receives the signal for an sRDMA request completion it posts
new requests to maintain 96 outstanding requests. The pay-
load size is 2,048 bytes and bandwidth is measured in Gbit/s
of goodput. We also assume the worst case scenario for the
secure PD mode (pd-prot): the RNIC derives the QP key from
the PD key for each packet. In other words, we consider the
case when the RNIC does not cache derived keys. The main
reason for that is that pd-prot mode with caching has the same
performance as basic mode.

Figure 8 depicts communication bandwidth for sRDMA
writes with different cryptographic algorithms. The black line
(NO) in the header column stands for sRDMA writes with no
security enabled. We observe that the single-threaded test with
no security achieves only 8 Gbit/s while the highest RDMA
goodput bandwidth achievable on our interconnect is 20.6
Gbit/s. The slowdown is caused by processing and parsing
headers of messages by the general purpose ARM CPUs of
the SmartNICs. Even if no security is enabled, a thread worker
reads and parses headers of incoming packets and, depending
on the operation code, initiates RDMA requests according to
our implementation described in Section 5.3. In our tests we
treat performance of secure operations with no security as the
baseline. The highest achievable goodput bandwidth with no
security is 20.5 Gbit/s which is line rate.

Figure 8 illustrates that sRDMA writes with header authen-
tication can achieve line rate in all four protection modes

5
10
15
20

Header AuthGbit/s Packet Auth AEAD

b
a
si

c

5
10
15
20

p
d

-p
ro

t

5
10
15
20

ex
t-

m
em

1 2 3 4 5 6 7 8
of threads

0
5

10
15
20

1 2 3 4 5 6 7 8
of threads

1 2 3 4 5 6 7 8
of threads

ex
t-

m
em

p
d

-p
ro

t

NO sha256 sha512 aes128 poly1305

Figure 8: Bandwidth of sRDMA Writes in four different pro-
tection modes, and with NO security enabled.

if we use all 8 threads. The slowest header authentication
is observed for SHA512 due to hashing performance. For
full packet authentication SHA512 reaches only a goodput
of 13 Gbit/s which is even slower than AEAD algorithms. In
the payload encryption mode, our implementation can also
achieve line rate for the SHA256 and POLY1305 algorithms.
AES128 based authentication achieves 19.6 Gbit/s which is
95% of the line rate. The data also demonstrates that key
derivation algorithms slow down sRDMA writes by 2 Gbit/s
on average. However, in header authentication mode all algo-
rithms can achieve 20 Gbit/s without performance loss when
all 8 threads are used. Another interesting observation is that
POLY1305 is faster than AES128 in packet-authentication
mode, but slower in packet-encryption one. In AEAD mode,
the highest write bandwidth of 19 Gbit/s is observed for the
AES128 algorithm.

We have performed a similar benchmark for sRDMA reads
in various protection modes. Results of our evaluations are
depicted in Figure 9. Again, the black line (NO) stands for
no security installed and represents the baseline for sRDMA
reads. sRDMA reads are more expensive than writes despite
the fact that they transfer the same amount of protected bytes
as signaled sRDMA writes. Both sRDMA operations require
six hops for a full round trip, and they both transfer the same
payload size but in different directions. For writes, data is sent
from the initiator to the target, and for reads from the target
to the initiator. The differences in performance stem from the
fact that an sRDMA read is a more complex operation than
an sRDMA write and requires to create a special read context
and matching it at initiator’s SmartNIC (see Section 5.3). In
addition, receive buffers on SmartNICs for reads and writes
have different lifetimes. For example, a receive buffer can
be released on the target SmartNIC once the completion of
the RDMA write is received (» in Figure 4(a)), however, for
reads the buffer on the target SmartNIC can be released once

5
10
15
20

Header AuthGbit/s Packet Auth AEAD

b
a
si

c

5
10
15
20

p
d

-p
ro

t

5
10
15
20

ex
t-

m
em

1 2 3 4 5 6 7 8
of threads

0
5

10
15
20

1 2 3 4 5 6 7 8
of threads

1 2 3 4 5 6 7 8
of threads

ex
t-

m
em

p
d

-p
ro

t

NO sha256 sha512 aes128 poly1305

Figure 9: Bandwidth of sRDMA Reads in four different pro-
tection modes, and with NO security enabled.

the completion of ½ is received from Figure 4(b). According
to the data, the highest achievable sRDMA read bandwidth
is 16.71 GBit/s for 8 threads and about 4.7 Gbit/s for single-
threaded test. Overall, our measurements indicate that reads
are 16% slower than writes for all tests due to the complexity
of sRDMA reads.

CPU Usage in Bandwidth Experiments. In our experiments,
sRDMA introduces no overhead on the host CPU usage as
packet processing is fully offloaded to the SmartNIC. The
host application only needs to submit an RDMA request to the
SmartNIC, which performs all cryptographic computations
as described in Section 5.3. The SmartNIC, on the other hand,
has full CPU usage in almost all experiments, which can be
observed in the inability of the majority of security schemes
to achieve line rate. The main reason for that is the SmartNIC
needs to load the incoming packets from its DRAM to the L1
cache of its CPU cores in order to process the packets depend-
ing on the installed security level. Thus, all protection levels
which require the CPU to read the whole packet have 800%
CPU usage for 8 worker threads, even though in authentica-
tion performance experiment (see Figure 5) all authentication
algorithms achieves the line rate for 2 KiB blocks. It comes
from the fact that the packet authentication and AEAD are
memory-bound problems, and, therefore, CPU works at full
capacity to copy the data to its caches.

Header authentication requires reading only the header
to authenticate the packet. Thus, header authentication algo-
rithms could achieve 100% of line-rate, although, the perfor-
mance still suffers from cache misses. The lowest CPU usage
is observed for AES128 authentication scheme, which is 440%
CPU usage for the bandwidth experiment with sRDMA Write
requests. The sRDMA reads, on other hand, consume almost
750% on the target SmartNIC.

30K
60K
90K

120K
150K basic

req/sec

30K
60K
90K

120K
150K pd-prot

req/sec

30K
60K
90K

120K
150K ext-mem

req/sec

NO

HDR sha256

HDR sha512

HDR aes128

HDR poly1305

PCK sha256

PCK sha512

PCK aes128

PCK poly1305

AEAD aes128

AEAD poly1305

30K
60K
90K

120K
150K pd-prot + ext-mem

req/sec

0%/100% 5%/95% 50%/50% 95%/5% 100%/0%

Figure 10: Throughput of mixed read/write benchmark.

6.5 Mixed write/read workload
The results of Figure 8 and Figure 9 are valid for either
read-only or write-only workloads, which are uncommon for
read-world applications. Therefore, we measure the through-
put of sRDMA in a more realistic scenario as used in key-
value stores that exploit one-sided RDMA operations. Fig-
ure 10 shows the throughput for workloads with different
(read/write) ratios, including write only (0%/100%), write
mostly (5%/95%), equal-shares (50%/50%), read-mostly
(95%/5%) and read-only (100%/0%). The read-heavy work-
load is representative for applications such as photo tagging.
The update-heavy workload is typical for applications such as
an advertisement log that records recent user activities. In this
benchmark the payload size is 2,048 bytes, and sRDMA is
deployed with all 8 workers. We also consider the worst case
scenario for the secure PD mode (pd-prot), when the RNIC
derives the QP key for each packet. The pd-prot mode with
QP key caching has the same performance as basic mode.

Figure 10 illustrates that (5%/95%) workload performs
better than (0%/100%) one. The reason for that is better uti-
lization of the bi-directional connection between endpoints
since sRDMA writes send data from the initiator to the target,
whereas sRDMA reads from the target to the initiator. There-
fore, in that case we achieve a better utilization of the connec-
tion in the direction of the initiator. In theory, a (50%/50%)
ratio would lead to the highest throughput as both links would
be loaded evenly; however the lower performance of sRDMA
reads overwhelms benefits of the network utilization. For the
same reason, the throughput decreases for higher read ratios.

6.6 Key-value store workload
HERD [17] is an RDMA-accelerated key-value store which
uses a mix of RDMA write and IB send verbs. HERD uses
MICA’s [25] algorithm for both GETs and PUTs: each GET
requires up to two random memory lookups, and each PUT

get get
pd-prot

get
ext-mem

get
pd-prot
ext-mem

put put
pd-prot

put
ext-mem

put
pd-prot
ext-mem

50K

150K

250K

350K

450K
req/sec

tree depth ≈ 21

NO: 475K
NO: 492K

tree depth ≈ 20

HDR PCK AEAD

Figure 11: Throughput of the HERD kvs over sRDMA.

requires one. In HERD, clients transmit their request to the
server’s memory using RDMA writes, and get responses via
unreliable datagram QPs. To comply with our sRDMA design,
we made some changes to the original HERD implementa-
tion. First of all, we replace all unreliable datagram QPs with
RC QPs as they are not reliable and not point-to-point and
thus incompatible with sRDMA. That is, the server replies to
clients via RC QPs, but still uses IB Send verbs. For that, we
also implement secure SEND operations which are similar
to sRDMA writes, but they always generate the completion
on the target and do not require knowing destination buffers.
Since an IB Send request does not contain the header with
destination buffer, it does not support extended memory pro-
tection. The second change is that clients send requests via
reliable sRDMA writes instead of unreliable writes.

Key-value-store (KVS) experiments use one server ma-
chine and one client machine. The server machine has only
one worker process when the client machine has 8 processes.
Each client process establishes an sRDMA connection to
the server. The key size is 16 bytes and the value size is 32
bytes. Therefore, clients send and receive small messages of
less than 40 bytes. The KVS contains 8,388,608 keys and
occupies 1 GiB of memory. Figure 11 depicts the through-
put for puts and gets in different protections modes based on
the AES128 cipher. We also measure HERD’s throughput
with NO protection which is 475K req/sec for gets and 492K
req/sec for puts. Puts are faster than gets because they cause
fewer lookups in internal memory structures.

According to the data in Figure 11, basic packet authen-
tication without key-derivation algorithms achieves almost
the same throughput as the unprotected version. Interestingly,
even the AEAD mode decreases the throughput by 7.3%. In
the setting with a secure PD when the key must be generated
for each request, we observe a 21% slow down in both puts
and gets. It is worth mentioning that we intentionally derive
the QP keys for each request in the secure PD mode (pd-prot)
to see the effect of constant misses in QP keys. In real settings,
an RNIC would have a cache with generated keys to reduce
computation. In such case, the pd-prot mode has the same
performance as basic mode.

A drastic decrease in performance can be observed for
evaluations with enabled extended memory protection. The
reason for this is that HERD’s clients WRITE their GET

Table 4: Comp. of sRDMA to IPSec and TLS over RoCE.

Protocol
Sec.
comm.

IBA
supp.

One-sided
comm.

Hdr
overhead.

RDMA 7 3 3 -
IPSec 3 7 7 50-80 B
(d)TLS 3 7 7 25-40 B
[23, 24] 7 7 3 12-16 B
sRDMA 3 3 3 12-64 B

requests of 17 bytes and PUT requests of 40 bytes to the
contiguous memory region of 16 MiB on the server machine.
Therefore, it takes on average 20 steps for PUTs and 21 steps
for GETs to derive the memory MAC using our binary tree
approach, which causes such significant drop in performance.
To alleviate the problem, the depth of the tree can be limited to
0, and then the ext-mem would achieve the same performance
as the pd-prot case.

7 Related Work on Securing IBA

RFC 5042 [32] analyzes the security issues around uses of
RDMA protocols. It reviews various attacks against resources
including spoofing, tampering, information disclosure, and
DoS. As a countermeasure the authors suggest to employ
IPsec authentication and encryption [10]. However, IPSec cur-
rently does not support RDMA traffic, because it is unaware
of the encapsulated RDMA headers and thus cannot distin-
guish QP endpoints. A naive application of IPSec to RoCE
packets would not achieve source authentication as all RoCE
traffic is destined to the same UDP port (and not the QPN).
Thus, the use of IPsec would incur changes in the packet for-
mat, whereas sRDMA is supported by native IBA and RoCE.
Additionally, the complexity of IPsec and its high processing
overheads [31] make it ill-suited for high-performance and
low-latency applications and would introduce a header over-
head of 50-80 bytes [21]. While the IPsec-enabled Cavium
LiquidIO II [2] and Mellanox Innova [3] NICs support RoCE,
they do not support IPsec-based protection of RoCE packets.

Lee et al. [23,24] discuss security vulnerabilities in IBA and
show that they could be exploited by an adversary with mod-
erate overhead. The authors suggest to replace the Invariant
CRC field with a MAC to achieve packet authentication. Un-
fortunately, this might lead to routers dropping packets with
invalid ICRC, making the proposed solution incompatible
with legacy routers. Additionally, they discuss how IBA could
reduce its key exposure risk by introducing partition- and
queue-level key distributions. However, modifying partition-
level keys can lead to packets being dropped as they might be
used by routers and switches to enforce partitioning. Further-
more, their design uses the 24 bit PSN as a nonce which cause
a reuse of a PSN after 80 ms on modern RNICs [28]. Finally,

the authors provide no implementation of their system, but
rather simulate the performance of symmetric ciphers to show
that they are suitable for high performance networking.

RDMA Side-Channel Attack. Kurth et al. [22] have shown
that the Intel DDIO [1] and RDMA features facilitate a side-
channel attack named NetCAT. Intel DDIO technology allows
RDMA reads and writes access not only the pinned memory
region but also parts of the last level cache of the CPU. Net-
CAT remotely measures cache activity caused by a victim
SSH connection to perform a keystroke timing analysis. An
attacker can make use of the attack to recover words typed by
a victim client in the SSH session from another computer.

Tsai et al. [41] implemented a set of RDMA-based remote
sidechannel attacks that allow an attacker on one client ma-
chine to learn how victims on other client machines access
data. They further extend their work by building side-channel
attacks on Crail [38].

Using sRDMA a large attack surface could be removed by
permitting only trusted entities to initiate RDMA requests.

8 Conclusion

Using NIC-based authentication and encryption enables se-
cure communication for systems that require high perfor-
mance guarantees such as RDMA mechanisms. sRDMA pro-
vides strong authenticity and secrecy, and prevents several
forms of DoS attacks. Thus, safety- and security-critical ap-
plications that rely on RDMA must use sRDMA to prevent
attacks by malicious entities within the same network.

Our software implementation on the SmartNIC causes a
high load due to data movement overheads. The datapath
could be optimized with a different architecture using special-
ized programmable packet processing units [13, 20]. Further-
more, sRDMA could also be hardened into fixed logic as the
area and power consumption overhead are marginal compared
to regular input/output processing [12, 16, 27]. Additionally,
sRDMA minimizes memory consumption on the RNIC using
PD-level protection.

Acknowledgment

We thank our shepherd, Heming Cui, and the anonymous
reviewers for their helpful feedback. We thank Broadcom Inc.,
especially Fazil Osman, for the donation of two SmartNICs
as well as continuous support. We gratefully acknowledge
support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC). Furthermore, we thank
for Microsoft Swiss Joint Research Centre for support.

References

[1] Intel® Data Direct I/O Technology Overview.
https : / / www . intel . co . jp / content / dam /

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf

www/public/us/en/documents/white-papers/
data-direct-i-o-technology-overview-paper .
pdf, 2019. [Accessed 15-May-2020].

[2] LiquidIO®II 10/25G Smart NIC Family.
https : / / www . marvell . com / documents /
08icqisgkbtn6kstgzh4/, 2019. [Accessed 15-
May-2020].

[3] Mellanox Innova-2 Flex Open Programmable SmartNIC.
https://www.mellanox.com/related-docs/prod_
adapter_cards/PB_Innova-2_Flex.pdf, 2019. [Ac-
cessed 15-May-2020].

[4] InfiniBand Trade Association et al. The InfiniBand
architecture specification. 2000.

[5] Infiniband Trade Association et al. Supplement to Infini-
Band Architecture Specification Volume 1, Release 1.2.
annex A16: RDMA over Converged Ethernet (RoCE),
2010.

[6] Daniel J Bernstein. The Poly1305-AES message-
authentication code. In International Workshop on Fast
Software Encryption, pages 32–49. Springer, 2005.

[7] Broadcom. Stingray 2x25Gb High-Performance Data
Center Smart NIC. https://www.broadcom.com/
products / ethernet-connectivity / smartnic /
ps225, 2019. [Accessed 15-May-2020].

[8] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with rdma and caching. Proc.
VLDB Endow., 11(11):1604–1617, July 2018.

[9] Joan Daemen and Vincent Rijmen. AES proposal: Rijn-
dael. 1999.

[10] Naganand Doraswamy and Dan Harkins. IPSec: the
new security standard for the Internet, intranets, and
virtual private networks. Prentice Hall Professional,
2003.

[11] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote memory.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation, NSDI, pages 401–
414, 2014.

[12] Kris Gaj and Pawel Chodowiec. FPGA and ASIC im-
plementations of AES. In Cryptographic engineering,
pages 235–294. Springer, 2009.

[13] Torsten Hoefler, Salvatore Di Girolamo, Konstantin
Taranov, Ryan E Grant, and Ron Brightwell. spin: High-
performance streaming processing in the network. In

Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–16, 2017.

[14] Russell Impagliazzo, Leonid A Levin, and Michael Luby.
Pseudo-random generation from one-way functions. In
Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 12–24. ACM, 1989.

[15] Jana Iyengar and Martin Thomson. QUIC: A UDP-
Based Multiplexed and Secure Transport. Internet-Draft
draft-ietf-quic-transport-17, Internet Engineering Task
Force, December 2018. Work in Progress.

[16] Hyun-Wook Jin, Pavan Balaji, Chuck Yoo, Jin-Young
Choi, and Dhabaleswar K Panda. Exploiting nic ar-
chitectural support for enhancing ip-based protocols on
high-performance networks. Journal of Parallel and
Distributed Computing, 65(11):1348–1365, 2005.

[17] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using rdma efficiently for key-value services. In
Proceedings of ACM SIGCOMM, pages 295–306, 2014.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of the USENIX Annual Technical Con-
ference, ATC, pages 437–450, 2016.

[19] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot,
and Scott A Vanstone. Handbook of applied cryptogra-
phy. CRC press, 1996.

[20] Antoine Kaufmann, Simon Peter, Naveen Kr Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with flexnic. In Proceed-
ings of the Twenty-First International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 67–81, 2016.

[21] Stephen Kent. IP authentication header. Technical
report, 2005.

[22] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In S&P,
May 2020. Intel Bounty Reward.

[23] Manhee Lee and Eun Jung Kim. A comprehensive
framework for enhancing security in InfiniBand archi-
tecture. IEEE Transactions on Parallel and Distributed
Systems, 18(10), 2007.

[24] Manhee Lee, Eun Jung Kim, and Mazin Yousif. Security
enhancement in InfiniBand architecture. In Parallel and
Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 10–pp. IEEE, 2005.

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.marvell.com/documents/08icqisgkbtn6kstgzh4/
https://www.marvell.com/documents/08icqisgkbtn6kstgzh4/
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225

[25] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast in-
memory key-value storage. In Proceedings of USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI, pages 429–444, 2014.

[26] Chu-Hsing Lin. Dynamic key management schemes for
access control in a hierarchy. Computer communica-
tions, 20(15):1381–1385, 1997.

[27] Bin Liu and Bevan M Baas. Parallel AES encryption
engines for many-core processor arrays. IEEE transac-
tions on computers, 62(3):536–547, 2013.

[28] Mellanox. ConnectX-6 EN Single/Dual-Port
Adapter. https://www.mellanox.com/products/
infiniband-adapters/connectx-6, 2019. [Ac-
cessed 15-May-2020].

[29] B Clifford Neuman. Proxy-based authorization and
accounting for distributed systems. In Proceedings of
IEEE International Conference on Distributed Comput-
ing Systems-ICDCS, pages 283–291. IEEE, 1993.

[30] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, August 2015.

[31] Jungho Park, Wookeun Jung, Gangwon Jo, Ilkoo Lee,
and Jaejin Lee. Pipsea: A practical ipsec gateway on
embedded apus. In Proceedings of ACM Conference on
Computer and Communications Security, CCS, pages
1255–1267, 2016.

[32] J. Pinkerton and E. Deleganes. Direct Data Placement
Protocol (DDP) / Remote Direct Memory Access Proto-
col (RDMAP) Security. RFC 5042, October 2007.

[33] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hil-
land, and Dave Garcia. A remote direct memory access
protocol specification. Technical report, 2007.

[34] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347, January 2012.

[35] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

[36] Eric Rescorla and Tim Dierks. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, August
2008.

[37] Phillip Rogaway. Nonce-based symmetric encryption.
In International Workshop on Fast Software Encryption,
pages 348–358. Springer, 2004.

[38] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu
Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance I/O architecture
for distributed data processing. IEEE Data Eng. Bull.,
40(1):38–49, 2017.

[39] Konstantin Taranov, Gustavo Alonso, and Torsten Hoe-
fler. Fast and strongly-consistent per-item resilience in
key-value stores. In Proceedings of EuroSys Conference,
EuroSys, pages 39:1–39:14, 2018.

[40] Mellanox Technologies. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/
prod_adapter_cards/PB_BlueField_Smart_NIC.
pdf, 2019. [Accessed 15-May-2020].

[41] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: remote oracles for the masses. In 28th USENIX
Security Symposium (USENIX Security 19), pages 693–
710, 2019.

[42] VMWare. ESXi VM and Hypervisor Escape Advisory.
https://blogs.vmware.com/security/2018/11/
vmware-and-the-geekpwn2018-event.html, 2019.
[Accessed 15-May-2020].

https://www.mellanox.com/products/infiniband-adapters/connectx-6
https://www.mellanox.com/products/infiniband-adapters/connectx-6
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://blogs.vmware.com/security/2018/11/vmware-and-the-geekpwn2018-event.html
https://blogs.vmware.com/security/2018/11/vmware-and-the-geekpwn2018-event.html

	Introduction
	Remote Direct Memory Access
	InfiniBand Transport
	IBA Memory Protection

	Problem Definition
	Desired Security Properties
	Adversary Model

	Secure RDMA System Design
	Assumptions
	Secure Reliable Connection Queue Pair
	Header Authentication
	Packet Authentication and Encryption
	PD-level Protection
	Extended Memory Protection
	Sub-Delegation of Access to Memory

	Implementation
	Notation and Experimental Setup
	Implementation of the Secure QP
	sRDMA requests

	Evaluation
	Authentication performance
	Evaluation modes
	Latency
	Bandwidth
	Mixed write/read workload
	Key-value store workload

	Related Work on Securing IBA
	Conclusion

