
spcl.inf.ethz.ch

@spcl_eth

Data-Centric Parallel Programming
Torsten Hoefler, Keynote at AsHES @ IPDPS’19, Rio, Brazil

Alexandros Ziogas, Tal Ben-Nun, Guillermo Indalecio, Timo Schneider, Mathieu Luisier, and Johannes de Fine Licht
and the whole DAPP team @ SPCL

https://eurompi19.inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

2

Changing hardware constraints and the physics of computing

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary
[2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012

130nm

90nm

65nm

45nm

32nm

22nm
14nm

10nm

0.9 V [1]

32-bit FP ADD: 0.9 pJ
32-bit FP MUL: 3.2 pJ

2x32 bit from L1 (8 kiB): 10 pJ
2x32 bit from L2 (1 MiB): 100 pJ
2x32 bit from DRAM: 1.3 nJ

…

Three Ls of modern computing:

How to address locality challenges on standard architectures and programming?

D. Unat et al.: “Trends in Data Locality Abstractions for HPC Systems”

IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol 28, Nr. 10, IEEE, Oct. 2017

spcl.inf.ethz.ch

@spcl_eth

3

Control in Load-store vs. Dataflow

Memory

Cache

RegistersControl

x=a+b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y=(a+b)*(c+d)

a b

+

x

a b c d

a+b c+d

y

Turing Award 1977 (Backus): "Surely there must be a less primitive
way of making big changes in the store than pushing vast numbers

of words back and forth through the von Neumann bottleneck."

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non von Neumann”)

Very Low High

spcl.inf.ethz.ch

@spcl_eth

Still Lower
Control Locality

4

Single Instruction Multiple Data/Threads (SIMD - Vector CPU, SIMT - GPU)

Memory

Cache

RegistersControl

ALUALU

ALUALU

ALUALU

ALUALU

ALUALU
45nm, 0.9 V [1]

Random Access SRAM:

8 kiB: 10 pJ
32 kiB: 20 pJ
1 MiB: 100 pJ

Memory

+

c d ya b

+

x

a b c d

45nm, 0.9 V [1]

Single R/W registers:

32 bit: 0.1 pJ

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary

High Performance Computing really
became a data management challenge

spcl.inf.ethz.ch

@spcl_eth

5

Data movement will dominate everything!

Source: Fatollahi-Fard et al.

▪ “In future microprocessors, the energy expended for data movement will have a critical effect on
achievable performance.”

▪ “… movement consumes almost 58 watts with hardly any energy budget left for computation.”
▪ “…the cost of data movement starts to dominate.”
▪ “…data movement over these networks must be limited to conserve energy…”
▪ the phrase “data movement” appears 18 times on 11 pages (usually in concerning contexts)!
▪ “Efficient data orchestration will increasingly be critical, evolving to more efficient memory

hierarchies and new types of interconnect tailored for locality and that depend on
sophisticated software to place computation and data so as to minimize data movement.”

Source: NVIDIA

Source: Kogge, Shalf

spcl.inf.ethz.ch

@spcl_eth

▪ Well, to a good approximation how we programmed yesterday

▪ Or last year?

▪ Or four decades ago?

▪ Control-centric programming

▪ Worry about operation counts (flop/s is the metric, isn’t it?)

▪ Data movement is at best implicit (or invisible/ignored)

▪ Legion [1] is taking a good direction towards data-centric

▪ Tasking relies on data placement but not really dependencies (not visible to tool-chain)

▪ But it is still control-centric in the tasks – not (performance) portable between devices!

▪ Let’s go a step further towards an explicitly data-centric viewpoint

▪ For performance engineers at least!

6

“Sophisticated software”: How do we program today?

Backus ‘77: “The assignment statement
is the von Neumann bottleneck of programming

languages and keeps us thinking in word-at-a-time
terms in much the same way the computer’s

bottleneck does.”

[1]: Bauer et al.: “Legion: expressing locality and independence with logical regions”, SC12, 2012

spcl.inf.ethz.ch

@spcl_eth

7

Performance Portability with DataCentric (DaCe) Parallel Programming

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

SystemDomain Scientist Performance Engineer

High-Level Program

Data-Centric Intermediate

Representation (SDFG, §3)

𝜕𝑢

𝜕𝑡
− 𝛼𝛻2𝑢 = 0

Problem Formulation

FPGA Modules

CPU Binary

R
u
n
ti
m

e

Hardware

Information

Graph Transformations

(API, Interactive, §4)

SDFG Compiler
Transformed

Dataflow

Performance

Results

Thin Runtime

Infrastructure

GPU Binary

Python /

NumPy

𝑳 𝑹
*

*

*

*

*

*

TensorFlow

DSLs

MATLAB

SDFG Builder API

spcl.inf.ethz.ch

@spcl_eth

8

DAPP – Data Centric Programming Concepts

• Store volatile (buffers, queues, RAM) and
nonvolatile (files, I/O) information

• Can be sources or sinks of data

• Stateless functions that perform computations at
any granularity

• Data access only through ports

• Data flowing between containers and tasklets/ports
• Implemented as access, copies, streaming, …

• Map scopes provide parallelism
• States constrain parallelism outside of datatflow

Data Containers Computation

Data Movement / Dependencies Parallelism and States

spcl.inf.ethz.ch

@spcl_eth

9

A first example in DaCe Python

spcl.inf.ethz.ch

@spcl_eth

DIODE User Interface

10

Source Code Transformations
SDFG

(malleable)

SDFGGenerated Code Performance

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

11

Performance for matrix multiplication on x86

SDFG

Naïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

12

Performance for matrix multiplication on x86

SDFG

MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

13

Performance for matrix multiplication on x86

SDFG

LoopReorder
MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

14

Performance for matrix multiplication on x86

SDFG

BlockTiling
LoopReorder
MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

15

Performance for matrix multiplication on x86

RegisterTiling

BlockTiling
LoopReorder
MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

16

Performance for matrix multiplication on x86

LocalStorage

RegisterTiling

BlockTiling
LoopReorder
MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

17

Performance for matrix multiplication on x86

PromoteTransient

LocalStorage

RegisterTiling

BlockTiling
LoopReorder
MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
18

Performance for matrix multiplication on x86

Intel MKL

OpenBLAS

25% difference

DAPP

With more tuning: 98.6% of MKLBut do we really care about MMM on x86 CPUs?

spcl.inf.ethz.ch

@spcl_eth

Hardware Mapping: Load/Store Architectures

▪ Recursive code generation (C++, CUDA)
▪ Control flow: Construct detection and gotos

▪ Parallelism
▪ Multi-core CPU: OpenMP, atomics, and threads

▪ GPU: CUDA kernels and streams

▪ Connected components run concurrently

▪ Memory and interaction with accelerators
▪ Array-array edges create intra-/inter-device copies

▪ Memory access validation on compilation

▪ Automatic CPU SDFG to GPU transformation

▪ Tasklet code immutable

19

spcl.inf.ethz.ch

@spcl_eth

Hardware Mapping: Pipelined Architectures

▪ Module generation with HDL and HLS
▪ Integration with Xilinx SDAccel

▪ Nested SDFGs become FPGA state machines

▪ Parallelism
▪ Exploiting temporal locality: Pipelines

▪ Exploiting spatial locality: Vectorization, replication

▪ Replication
▪ Enables parametric systolic array generation

▪ Memory access
▪ Burst memory access, vectorization

▪ Streams for inter-PE communication

20

spcl.inf.ethz.ch

@spcl_eth

Performance (Portability) Evaluation

▪ Three platforms:
▪ Intel Xeon E5-2650 v4 CPU (2.20 GHz, no HT)

▪ Tesla P100 GPU

▪ Xilinx VCU1525 hosting an XCVU9P FPGA

▪ Compilers and frameworks:
▪ Compilers:

GCC 8.2.0

Clang 6.0

icc 18.0.3

▪ Polyhedral optimizing compilers:

Polly 6.0

Pluto 0.11.4

PPCG 0.8

▪ GPU and FPGA compilers:

CUDA nvcc 9.2

Xilinx SDAccel 2018.2

▪ Frameworks and optimized libraries:

HPX

Halide

Intel MKL

NVIDIA CUBLAS, CUSPARSE, CUTLASS

NVIDIA CUB
21

spcl.inf.ethz.ch

@spcl_eth

Performance Evaluation: Fundamental Kernels (CPU)

▪ Database Query: roughly 50% of a 67,108,864 column

▪ Matrix Multiplication (MM): 2048x2048x2048

▪ Histogram: 8192x8192

▪ Jacobi stencil: 2048x2048 for T=1024

▪ Sparse Matrix-Vector Multiplication (SpMV): 8192x8192 CSR matrix (nnz=33,554,432)

22

99.9% of MKL8.12x faster 98.6% of MKL 2.5x faster 82.7% of Halide

spcl.inf.ethz.ch

@spcl_eth

Performance Evaluation: Fundamental Kernels (GPU, FPGA)

23

GPU

FPGA 309,000x

19.5x of Spatial

90% of CUTLASS

spcl.inf.ethz.ch

@spcl_eth

Performance Evaluation: Polybench (CPU)

▪ Polyhedral benchmark with 30 applications

▪ Without any transformations, achieves 1.43x (geometric mean) over
general-purpose compilers

24

spcl.inf.ethz.ch

@spcl_eth

Performance Evaluation: Polybench (GPU, FPGA)

▪ Automatically transformed from CPU code

25

GPU
(1.12x geomean speedup)

FPGA
The first full set of placed-and-routed Polybench

11.8x

spcl.inf.ethz.ch

@spcl_eth

Case Study: Parallel Breadth-First Search

▪ Compared with Galois and Gluon
▪ State-of-the-art graph processing frameworks on CPU

▪ Graphs:
▪ Road maps: USA, OSM-Europe

▪ Social networks: Twitter, LiveJournal

▪ Synthetic: Kronecker Graphs

26

Performance portability – fine, but who cares about microbenchmarks?

spcl.inf.ethz.ch

@spcl_eth

27

Remember the promise of DAPP – on to a real application!

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

SystemDomain Scientist Performance Engineer

High-Level Program

Data-Centric Intermediate

Representation (SDFG, §3)

𝜕𝑢

𝜕𝑡
− 𝛼𝛻2𝑢 = 0

Problem Formulation

FPGA Modules

CPU Binary

R
u
n
ti
m

e

Hardware

Information

Graph Transformations

(API, Interactive, §4)

SDFG Compiler
Transformed

Dataflow

Performance

Results

Thin Runtime

Infrastructure

GPU Binary

Python /

NumPy

𝑳 𝑹
*

*

*

*

*

*

TensorFlow

DSLs

MATLAB

SDFG Builder API

spcl.inf.ethz.ch

@spcl_eth

28

Next-Generation Transistors need to be cooler – addressing self-heating

spcl.inf.ethz.ch

@spcl_eth

▪ OMEN Code (Luisier et al., Gordon Bell award finalist 2011 and 2015)

▪ 90k SLOC, C, C++, CUDA, MPI, OpenMP, …

29

Quantum Transport Simulations with OMEN

Electrons 𝑮 𝑬, 𝒌𝒛 Phonons 𝑫 𝝎, 𝒒𝒛

GF

SSE

SSE

Σ 𝐺 𝐸 + ℏ𝜔, 𝑘𝑧 − 𝑞𝑧 𝐷 𝜔, 𝑞𝑧 𝐸, 𝑘𝑧

Π 𝐺 𝐸, 𝑘𝑧 𝐺 𝐸 + ℏ𝜔, 𝑘𝑧 + 𝑞𝑧 𝜔, 𝑞𝑧

𝐸 ⋅ 𝑆 − 𝐻 − Σ𝑅 ⋅ 𝐺𝑅 = 𝐼
𝐺< = 𝐺𝑅 ⋅ Σ< ⋅ 𝐺𝐴

𝜔2 −Φ− Π𝑅 ⋅ 𝐷𝑅 = 𝐼
𝐷< = 𝐷𝑅 ⋅ Π< ⋅ 𝐷𝐴

NEGF

spcl.inf.ethz.ch

@spcl_eth

30

All of OMEN (90k SLOC) in a single SDFG – (collapsed) tasklets contain more SDFGs

𝐻

𝑘𝑧, 𝐸

RGF

Σ≷

convergence

𝐺≷

Φ

𝑞𝑧 , 𝜔

RGF

Π≷

𝐷≷

𝑏

𝛻𝐻

𝑘𝑧, 𝐸, 𝑞𝑧 , 𝜔, 𝑎, 𝑏

SSE

Π≷

G≷

Σ≷

D≷

Not 𝑏

𝑏

GF
SSE

𝑖++𝑖=0 𝑞𝑧 , 𝜔𝑘𝑧, 𝐸

𝐻[0:𝑁𝑘𝑧] Φ[0:𝑁𝑞𝑧]Σ≷[0:𝑁𝑘𝑧,0:𝑁𝐸]

𝐼𝑒 𝐼𝜙

Π≷[0:𝑁𝑞𝑧,

1:𝑁𝜔]

𝐻[𝑘𝑧] Φ[𝑞𝑧]Σ≷[𝑘𝑧,E] Π≷[𝑞𝑧,𝜔]

𝐺≷[𝑘𝑧,E] 𝐷≷[𝑞𝑧,𝜔]𝐼Φ (CR: Sum)

𝐼Φ (CR: Sum)𝐼e (CR: Sum)

𝐼e (CR: Sum)

𝐷≷[0:N𝑞𝑧,

1:N𝜔]
G≷[0:𝑁𝑘𝑧,0:𝑁𝐸]

𝛻𝐻 G≷ D≷

Π≷ (CR: Sum)Σ≷ (CR: Sum)

Σ≷[…]

(CR: Sum)

Π≷[…]

(CR: Sum)

𝛻𝐻[…] G≷[…] D≷[…]

𝑘𝑧, 𝐸, 𝑞𝑧, 𝜔, 𝑎, 𝑏

𝐼e 𝐼Φ

𝑏

spcl.inf.ethz.ch

@spcl_eth

31

Zooming into SSE (large share of the runtime)

DaCe

Transform

Between 100-250x less communication at scale! (from PB to TB)

spcl.inf.ethz.ch

@spcl_eth

32

Additional interesting performance insights
Python is slow! Ok, we knew that – but compiled can be fast!

Piz Daint single node (P100)

cuBLAS can be very inefficient (well, unless you floptimize)

Basic operation in SSE (many very small MMMs)

5k atoms

Piz Daint Summit

spcl.inf.ethz.ch

@spcl_eth

33

10,240 atoms on 27,360 V100 GPUs (full-scale Summit)

- 56 Pflop/s with I/O (28% peak)

Already ~100x speedup on 25%
of Summit – the original OMEN

does not scale further!

Communication time reduced
by 417x on Piz Daint!

Volume on full-scale Summit
from 12 PB/iter → 87 TB/iter

spcl.inf.ethz.ch

@spcl_eth

34

An example of fine-grained data-centric optimization (i.e., how to vectorize)

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs

spcl.inf.ethz.ch

@spcl_eth

35

Overview and wrap-up

This project has received funding from the European Research Council (ERC) under grant agreement "DAPP (PI: T. Hoefler)".

