
The Convergence of Sparsified Gradient Methods

Dan Alistarh∗
IST Austria

dan.alistarh@ist.ac.at

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

Mikael Johansson
KTH

mikaelj@kth.se

Sarit Khirirat
KTH

sarit@kth.se

Nikola Konstantinov
IST Austria

nikola.konstantinov@ist.ac.at

Cédric Renggli
ETH Zurich

cedric.renggli@inf.ethz.ch

Abstract

Distributed training of massive machine learning models, in particular deep neural
networks, via Stochastic Gradient Descent (SGD) is becoming commonplace.
Several families of communication-reduction methods, such as quantization, large-
batch methods, and gradient sparsification, have been proposed. To date, gradient
sparsification methods–where each node sorts gradients by magnitude, and only
communicates a subset of the components, accumulating the rest locally–are known
to yield some of the largest practical gains. Such methods can reduce the amount of
communication per step by up to three orders of magnitude, while preserving model
accuracy. Yet, this family of methods currently has no theoretical justification.
This is the question we address in this paper. We prove that, under analytic
assumptions, sparsifying gradients by magnitude with local error correction pro-
vides convergence guarantees, for both convex and non-convex smooth objectives,
for data-parallel SGD. The main insight is that sparsification methods implicitly
maintain bounds on the maximum impact of stale updates, thanks to selection by
magnitude. Our analysis and empirical validation also reveal that these methods do
require analytical conditions to converge well, justifying existing heuristics.

1 Introduction

The proliferation of massive datasets has led to renewed focus on distributed machine learning
computation. In this context, tremendous effort has been dedicated to scaling the classic stochastic
gradient descent (SGD) algorithm, the tool of choice for training neural networks, but also in
fundamental data processing methods such as regression. In a nutshell, SGD works as follows. Given
a function f : Rn → R to minimize and given access to stochastic gradients G̃ of this function, we
apply the iteration

xt+1 = xt − αG̃(xt), (1)
where xt is our current set of parameters, and α is the step size.

The standard way to scale SGD to multiple nodes is via data-parallelism: given a set of P nodes,
we split the dataset into P partitions. Nodes process samples in parallel, but each node maintains
a globally consistent copy of the parameter vector xt. In each iteration, each node computes a
new stochastic gradient with respect to this parameter vector, based on its local data. Nodes then
aggregate all of these gradients locally, and update their iterate to xt+1. Ideally, this procedure
would enable us to process P times more samples per unit of time, equating to linear scalability.
However, in practice scaling is limited by the fact that nodes have to exchange full gradients upon

∗Authors ordered alphabetically

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

every iteration. To illustrate, when training a deep neural network such as AlexNet, each iteration
takes a few milliseconds, upon which nodes need to communicate gradients in the order of 200 MB
each, in an all-to-all fashion. This communication step can easily become the system bottleneck [4].

A tremendous amount of work has been dedicated to addressing this scalability problem, largely
focusing on the data-parallel training of neural networks. One can classify proposed solutions into
a) lossless, either based on factorization [29, 6] or on executing SGD with extremely large batches,
e.g., [10], b) quantization-based, which reduce the precision of the gradients before communication,
e.g., [20, 7, 4, 27], and c) sparsification-based, which reduce communication by only selecting an
“important” sparse subset of the gradient components to broadcast at each step, and accumulating the
rest locally, e.g., [22, 8, 2, 24, 15, 23].

While methods from the first two categories are efficient and provide theoretical guarantees, e.g., [29,
4], some of the largest benefits in practical settings are provided by structured sparsification methods.
For instance, recent work [2, 15] shows empirically that the amount of communication per node can
be reduced by up to 600× through sparsification without loss of accuracy in the context of large-scale
neural networks.2

Contribution. We prove that, under analytic assumptions, gradient sparsification methods in fact
provide convergence guarantees for SGD. We formally show this claim for both convex and non-
convex smooth objectives, and derive non-trivial upper bounds on the convergence rate of these
techniques in both settings. From the technical perspective, our analysis highlights connections
between gradient sparsification methods and asynchronous gradient descent, and suggests that some
of the heuristics developed to ensure good practical performance for these methods, such as learning
rate tuning and gradient clipping, might in fact be necessary for convergence.

Sparsification methods generally work as follows. Given standard data-parallel SGD, in each iteration
t, each node computes a local gradient G̃, based on its current view of the model. The node then
truncates this gradient to its top K components, sorted in decreasing order of magnitude, and
accumulates the error resulting from this truncation locally in a vector ε. This error is always added to
the current gradient before truncation. The top K components selected by each node in this iteration
are then exchanged among all nodes, and applied to generate the next version of the model.

Sparsification methods are reminiscent of asynchronous SGD algorithms, e.g., [18, 9, 7], as updates
are not discarded, but delayed. A critical difference is that sparsification does not ensure that every
update is eventually applied: a “small” update may in theory be delayed forever, since it is never
selected due to its magnitude. Critically, this precludes the direct application of existing techniques
for the analysis of asynchronous SGD, as they require bounds on the maximum delay, which may
now be infinite. At the same time, sparsification could intuitively make better progress than an
arbitrarily-delayed asynchronous method, since it applies K “large” updates in every iteration, as
opposed to an arbitrary subset in the case of asynchronous methods.

We resolve these conflicting intuitions, and show that in fact sparsification methods converge relatively
fast. Our key finding is that this algorithm, which we call TopK SGD, behaves similarly to a variant
of asynchronous SGD with “implicit” bounds on staleness, maintained seamlessly by the magnitude
selection process: a gradient update is either salient, in which case it will be applied quickly,
or is eventually rendered insignificant by the error accumulation process, in which case it need
not have been applied in the first place. This intuition holds for both convex and non-convex
objectives, although the technical details are different. Our analysis yields new insight into this
popular communication-reduction method, giving it a solid theoretical foundation, and suggests that
prioritizing updates by magnitude might be a useful tactic in other forms of delayed SGD as well.
Related Work. There has been a recent surge of interest in distributed machine learning, e.g., [1, 31,
5]; due to space limits, we focus on communication-reduction techniques that are closely related.
Lossless Methods. One way of doing lossless communication-reduction is through factorization [6,
29], which is effective in deep neural networks with large fully-connected layers, whose gradients
can be decomposed as outer vector products. This method is not generally applicable, and in
particular may not be efficient in networks with large convolutional layers, e.g., [11, 25]. A second
lossless method is executing extremely large batches, hiding communication cost behind increased
computation [10, 30]. Although promising, these methods currently require careful per-instance

2We note however that these methods do require additional hyperparameter optimization to preserve accuracy,
an aspect which we will discuss in detail in later sections.

2

parameter tuning, and do not eliminate communication costs. Asynchronous methods, e.g., [18] can
also be seen as a way of performing communication-reduction, by overlapping communication and
computation, but are also known to require careful parameter tuning [32].
Quantization. Seide et al. [21] and Strom [23] were among the first to propose quantization to reduce
the bandwidth costs of training deep networks. The technique, called one-bit SGD, combines per-
component deterministic quantization and error accumulation; it has good practical performance in
some settings, but has also been observed to diverge [21]. Alistarh et al. [4] introduced a theoretically-
justified stochastic quantization technique called Quantized SGD (QSGD), which allows the user to
trade off compression and convergence rate. This technique was significantly refined for the case of
two-bit gradient precision by [28]. Alistarh et al. [4] make the observation that stochastic quantization
can inherently induce sparsity; recent work [26] capitalizes on this observation, phrasing the problem
of selecting a sparse, low-variance unbiased gradient estimator as a linear planning problem. We note
that this approach differs from the algorithms we analyze, as it ensures unbiasedness of the estimators
in every iteration. By contrast, error accumulation inherently biases the applied updates, and we
therefore have to use different analysis techniques, but appears to have better convergence in practice.
Sparsification. Strom [23], Dryden et al. [8] and Aji and Heafield [2] considered sparsifying the
gradient updates by only applying the top K components, taken at at every node, in every iteration,
for K corresponding to < 1% of the dimension, and accumulating the error. Shokri [22] and Sun
et al. [24] independently considered similar algorithms, but for privacy and regularization purposes,
respectively. Lin et al. [15] performed an in-depth empirical exploration of this space in the context of
training neural networks, showing that extremely high gradient sparsity–in the order of 1/1, 000 of the
dimension–can be supported by convolutional and recurrent networks, without any loss of accuracy,
assuming that enough care is given to hyperparameter tuning, as well as additional heuristics.
Analytic Techniques. The first reference to approach the analysis of quantization techniques is
Buckwild! [7], in the context of asynchronous training of generalized linear models. Our analysis in
the case of convex SGD uses similar notions of convergence, and a similar general approach. There
are key distinctions in our analysis: 1) the algorithm we analyze is different; 2) we do not assume the
existence of a bound τ on the delay with which a component may be applied; 3) we do not make
sparsity assumptions on the original stochastic gradients. In the non-convex case, we use a different
approach.

2 Preliminaries

Background and Assumptions. Please recall our modeling of the basic SGD process in Equation (1).
Fix n to be the dimension of the problems we consider; unless otherwise stated ‖·‖ will denote
the 2-norm. We begin by considering a general setting where SGD is used to minimize a function
f : Rn → R, which can be either convex or non-convex, using unbiased stochastic gradient samples
G̃(·), i.e., E[G̃(xt)] = ∇f(xt).

We assume throughout the paper that the second moment of the average of P stochastic gradients
with respect to any choice of parameter values is bounded, i.e.:

E[‖ 1

P

P∑
p=1

G̃p(x)‖2] ≤M2,∀x ∈ Rn (2)

where G̃1(x), . . . , G̃P (x) are P independent stochastic gradients (at each node). We also give the
following definitions:

Definition 1. For any differentiable function f : Rd → R,

• f is c-strongly convex if ∀x, y ∈ Rd, it satisfies f(y) ≥ f(x) + 〈∇f(x), y − x〉+ c
2‖x− y‖

2.
• f is L-Lipschitz smooth (or L-smooth for short) if ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖≤ L‖x− y‖.

We consider both c-strongly convex and L-Lipschitz smooth (non-convex) objectives. Let x∗ be the
optimum parameter set minimizing Equation (1). For ε > 0, the “success region” to which we want
to converge is the set of parameters S = {x | ‖x− x∗‖2≤ ε}.
Rate Supermartingales. In the convex case, we phrase convergence of SGD in terms of rate
supermartingales; we will follow the presentation of De et al. [7] for background. A supermartingale
is a stochastic process Wt with the property that that E[Wt+1|Wt] ≤Wt. A martingale-based proof

3

of convergence will construct a supermartingale Wt(xt, xt−1, . . . , x0) that is a function of time and
the current and previous iterates; it intuitively represents how far the algorithm is from convergence.
Definition 2. Given a stochastic algorithm such as the iteration in Equation (1), a non-negative
process Wt : Rn×t → R is a rate supermartingale with horizon B if the following conditions are
true. First, it must be a supermartingale: for any sequence xt, . . . , x0 and any t ≤ B,

E[Wt+1(xt − αG̃t(xt), xt, . . . , x0)] ≤Wt(xt, xt−1, . . . , x0). (3)

Second, for all times T ≤ B and for any sequence xT , . . . , x0, if the algorithm has not succeeded in
entering the success region S by time T , it must hold that

WT (xT , xT−1, . . . , x0) ≥ T. (4)

Convergence. Assuming the existence of a rate supermartingale, one can bound the convergence
rate of the corresponding stochastic process.
Statement 1. Assume that we run a stochastic algorithm, for which W is a rate supermartingale. For
T ≤ B, the probability that the algorithm does not complete by time T is

Pr(FT) ≤ E[W0(x0)]

T
.

The proof of this general fact is given by De Sa et al. [7], among others. A rate supermartingale for
sequential SGD is:
Statement 2 ([7]). There exists a Wt where, if the algorithm has not succeeded by timestep t,

Wt(xt, . . . , x0) =
ε

2αcε− α2M̃2
log
(
e ‖xt − x∗‖2 ε−1

)
+ t,

where M̃ is a bound on the second moment of the stochastic gradients for the sequential SGD process.
Further, Wt is a rate submartingale for sequential SGD with horizon B =∞. It is also H-Lipschitz
in the first coordinate, with H = 2

√
ε
(
2αcε− α2M2

)−1
, that is for any t, u, v and any sequence

xt−1, . . . , x0 : ‖Wt (u, xt−1, . . . , x0)−Wt (v, xt−1, . . . , x0) ‖≤ H‖u− v‖.

3 The TopK SGD Algorithm

Algorithm Description. In the following, we will consider a variant of distributed SGD where, in
each iteration t, each node computes a local gradient based on its current view of the model, which
we denote by vt, which is consistent across nodes (see Algorithm 1 for pseudocode). The node adds
its local error vector from the previous iteration (defined below) into the gradient, and then truncates
this sum to its top K components, sorted in decreasing order of (absolute) magnitude. Each node
accumulates the components which were not selected locally into the error vector εt, which is added
to the current gradient before the truncation procedure. The selected top K components are then
broadcast to all other nodes. (We assume that broadcast happens point-to-point, but in practice it
could be intermediated by a parameter server, or via a more complex reduction procedure.) Each
node collects all messages from its peers, and applies their average to the local model. This update is
the same across all nodes, and therefore vt is consistent across nodes at every iteration.

Variants of this pattern are implemented in [2, 8, 15, 23, 24]. When training networks, this pattern is
used in conjunction with heuristics such as momentum tuning and gradient clipping [15].

Analysis Preliminaries. Define G̃t(vt) = 1
P

∑P
p=1 G̃

p
t (vt). In the following, it will be useful to

track the following auxiliary random variable at each global step t:

xt+1 = xt −
1

P

P∑
p=1

αG̃pt (vt) = xt − αG̃t(vt), (5)

where x0 = 0n. Intuitively, xt tracks all the gradients generated so far, without truncation. One of
our first objectives will be to bound the difference between xt and vt at each time step t. Define:

εt =
1

P

P∑
p=1

εpt . (6)

4

Algorithm 1 Parallel TopK SGD at a node p.

Input: Stochastic Gradient Oracle G̃p(·) at node p
Input: value K, learning rate α
Initialize v0 = εp0 = ~0
for each step t ≥ 1 do
accpt ← εpt−1 + αG̃pt (vt−1) {accumulate error into a locally generated gradient}
εpt ← accpt − TopK(accpt) {update the error}
Broadcast(TopK(accpt),SUM) { broadcast to all nodes and receive from all nodes }
gt ← 1

P

∑P
q=1 TopK(accqt) { average the received (sparse) gradients }

vt ← vt−1 − gt { apply the update }
end for

The variable xt is set up such that, by induction on t, one can prove that, for any time t ≥ 0,

vt − xt = εt. (7)

Convergence. A reasonable question is whether we wish to show convergence with respect to the
auxiliary variable xt, which aggregates gradients, or with respect to the variable vt, which measures
convergence in the view which only accumulates truncated gradients. Our analysis will in fact show
that the TopK algorithm converges in both these measures, albeit at slightly different rates. So, in
particular, nodes will be able to observe convergence by directly observing the “shared” parameter vt.

3.1 An Analytic Assumption.

The update to the parameter vt+1 at each step is

1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
.

The intention is to apply the top K components of the sum of updates across all nodes, that is,

1

P
TopK

(
P∑
p=1

(
αG̃pt (vt) + εpt

))
.

However, it may well happen that these two terms are different: one could have a fixed component j
of αG̃pt + εpt with the large absolute values, but opposite signs, at two distinct nodes, and value 0 at all
other nodes. This component would be selected at these two nodes (since it has high absolute value
locally), whereas it would not be part of the top K taken over the total sum, since its contribution
to the sum would be close to 0. Obviously, if this were to happen on all components, the algorithm
would make very little progress in such a step.

In the following, we will assume that such overlaps can only cause the algorithm to lose a small
amount of information at each step, with respect to the norm of “true” gradient G̃t. Specifically:
Assumption 1. There exists a (small) constant ξ such that, for every iteration t ≥ 0, we have:∥∥∥∥∥TopK

(
1

P

P∑
p=1

(
αG̃pt (vt) + εpt

))
−

P∑
p=1

1

P
TopK

(
αG̃pt (vt) + εpt

)∥∥∥∥∥ ≤ ξ‖αG̃t(vt)‖. (8)

Discussion. We validate Assumption 1 experimentally on a number of different learning tasks in
Section 6 (see also Figure 1). In addition, we emphasize the following points:

• As per our later analysis, in both the convex and non-convex cases, the influence of ξ on
convergence is dampened linearly by the number of nodes P . Unless ξ grows linearly with
P , which is very unlikely, its value will become irrelevant as parallelism is increased.

• Assumption 1 is necessary for a general, worst-case analysis. Its role is to bound the gap
between the top-K of the gradient sum (which would be applied at each step in a “sequential”

5

version of the process), and the sum of top-Ks (which is applied in the distributed version).
If the number of nodes P is 1, the assumption trivially holds.
To further illustrate necessity, consider a dummy instance with two nodes, dimension 2, and
K = 1. Assume that at a step node 1 has gradient vector (−1001, 500), and node 2 has
gradient vector (1001, 500). Selecting the top-1 (max abs) of the sum of the two gradients
would result in the gradient (0, 1000). Applying the sum of top-1’s taken locally results in
the gradient (0, 0), since we select (1001, 0) and (−1001, 0), respectively. This is clearly
not desirable, but in theory possible. The assumption states that this worst-case scenario is
unlikely, by bounding the norm difference between the two terms.

• The intuitive cause for the example above is the high variability of the local gradients at
the nodes. One can therefore view Assumption 1 as a bound on the variance of the local
gradients (at the nodes) with respect to the global variance (aggregated over all nodes).

Due to space constraints, the complete proofs are deferred to the appendix.

4 Analysis in the Convex Case

We now focus on the convergence of Algorithm 1 with respect to the parameter vt. We assume that
the function f is c-strongly convex and that the bound (2) holds.
Technical Preliminaries. We begin by noting that for any vector x ∈ Rn, it holds that

‖x− TopK (x) ‖1≤
n−K
n
‖x‖1, and ‖x− TopK (x) ‖2≤ n−K

n
‖x‖2.

Thus, if γ =
√

n−K
n , we have that ‖x− TopK (x) ‖≤ γ‖x‖. In practice, the last inequality may be

satisfied by a much smaller value of γ, since the gradient values are very unlikely to be uniform.
We now bound the difference between vt and xt using Assumption 1. We have the following:

Lemma 1. With the processes xt and vt defined as above:

‖vt − xt‖ =

∥∥∥∥∥ 1

P

P∑
p=1

(
αG̃pt−1(vt−1) + εpt−1

)
− 1

P

P∑
p=1

TopK
(
αG̃pt−1(vt−1) + εpt−1

)∥∥∥∥∥
≤
(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖.

(9)

We now use the previous result to bound a quantity that represents the difference between the updates
based on the TopK procedure and those based on full gradients.

Lemma 2. Under the assumptions above, taking expectation with respect to gradients at time t:

E

[∥∥∥∥∥ 1

P

P∑
p=1

(
αG̃pt (vt)

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)∥∥∥∥∥
]

≤ (γ + 1)

(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖+
(
γ +

ξ

P

)
αM.

(10)

Before we move on, we must introduce some notation. Set constants

C = (γ + 1)

(
γ +

ξ

P

) ∞∑
k=1

γk−1 =
1 + γ

1− γ

(
γ +

ξ

P

)
,

and

C ′ = C +

(
γ +

ξ

P

)
=

(
γ +

ξ

P

)
2

1− γ
.

The Convergence Bound. Our main result in this section is the following:

6

Theorem 1. Assume that W is a rate supermartingale with horizon B for the sequential SGD
algorithm and that W is H-Lipschitz in the first coordinate. Assume further that αHMC ′ < 1. Then
for any T ≤ B, the probability that vs 6∈ S for all s ≤ T is:

Pr [FT] ≤ E [W0 (v0)]

(1− αHMC ′)T
. (11)

The proof proceeds by defining a carefully-designed random process with respect to the iterate vt,
and proving that it is a rate supermartingale assuming the existence of W . We now apply this result
with the martingale Wt for the sequential SGD process that uses the average of P stochastic gradients
as an update (so that M̃ = M in Statement 2). We obtain:
Corollary 1. Assume that we run Algorithm 1 for minimizing a convex function f satisfying the listed
assumptions. Suppose that the learning rate is set to α, with:

α < min

{
2cε

M2
,

2 (cε−
√
εMC ′)

M2

}
.

Then for any T > 0 the probability that vi 6∈ S for all i ≤ T is:

Pr (FT) ≤ ε

(2αcε− α2M2 − α2
√
εMC ′)T

log

(
e‖v0 − x∗‖2

ε

)
. (12)

Note that, compared to the sequential case (Statement 2), the convergence rate for the TopK algorithm
features a slowdown of α2

√
εMC ′. Assuming that P is constant with respect to n/K,

C ′ =

(√
n−K
n

+
ξ

P

)
2

1−
√

n−K
n

= 2
n

K

(√
n−K
n

+
ξ

P

)(
1 +

√
n−K
n

)
= O

(n
K

)
.

Hence, the slowdown is linear in n/K and ξ/P . In particular, the effect of ξ is dampened by the
number of nodes.

5 Analysis for the Non-Convex Case

We now consider the more general case when SGD is minimizing a (not necessarily convex) function
f , using SGD with (decreasing) step sizes αt. Again, we assume that the bound (2) holds. We also
assume that f is L-Lipschitz smooth.

As is standard in non-convex settings [16], we settle for a weaker notion of convergence, namely:

min
t∈{1,...,T}

E
[
‖∇f (vt) ‖2

] T→∞−→ 0,

that is, the algorithm converges ergodically to a point where gradients are 0. Our strategy will be
to leverage the bound on the difference between the “real” model xt and the view vt observed at
iteration t to bound the expected value of f(vt), which in turn will allow us to bound

1∑T
t=1 αt

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
,

where the parameters αt are appropriately chosen decreasing learning rate parameters. We start from:

Lemma 3. For any time t ≥ 1: ‖vt − xt‖2≤
(

1 + ξ
Pγ

)2∑t
k=1

(
2γ2
)k ‖xt−k+1 − xt−k‖2.

We will leverage this bound on the gap to prove the following general bound:
Theorem 2. Consider the TopK algorithm for minimising a function f that satisfies the assumptions
in this section. Suppose that the learning rate sequence and K are chosen so that for any time t > 0:

t∑
k=1

(
2γ2
)k α2

t−k
αt
≤ D (13)

7

(a) Empirical ξ logistic/RCV1. (b) Empirical ξ synthetic. (c) Empirical ξ ResNet110.

Figure 1: Validating Assumption 1 on various models and datasets.

for some constant D > 0. Then, after running Algorithm 1 for T steps:

1∑T
t=1 αt

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (f (x0)− f (x∗))∑T

t=1 αt

+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)∑T
t=1 α

2
t∑T

t=1 αt
.

(14)

Note that once again the effect of ξ in the bound is dampened by P . One can show that inequality
(13) holds whenever K = cn for some constant c > 1

2 and the step sizes are chosen so that αt = t−θ

for a constant θ > 0. When K = cn with c > 1
2 , a constant learning rate depending on the number

of iterations T can also be used to ensure ergodic convergence. We refer the reader to Appendix B
for a complete derivation.

6 Discussion and Experimental Validation

The Analytic Assumption. We start by empirically validating Assumption 1 in Figure 1 on two
regression tasks (a synthetic linear regression task of dimension 1,024, and logistic regression for text
categorization on RCV1 [13]), as well as ResNet110 [11] on CIFAR-10 [12]. Exact descriptions of
the experimental setup are given in Appendix C. Specifically, we sample gradients at different epochs
during the training process, and bound the constant ξ by comparing the left and right-hand sides of
Equation (8). The assumption appears to hold with relatively low, stable values of the constant ξ.
We note that RCV1 is relatively sparse (average density ' 10%), while gradients in the other two
settings are fully dense.
Learning Rate and Variance. In the convex case, the choice of learning rate must ensure both

2αcε− α2M2 > 0 and αHMC ′ < 1, implying α < min

{
2cε

M2
,

2 (cε−
√
εMC ′)

M2

}
. (15)

Note that this requires the second term to be positive, that is ε >
(
MC′

c

)2
. Hence, if we aim for

convergence within a small region around the optimum, we may need to ensure that gradient variance
is bounded, either by minibatching or, empirically, by gradient clipping [15].
The Impact of the Parameter K and Gradient “Shape.” In the convex case, the dependence on
the convergence with respect to K and n is encapsulated by the parameter C ′ = O(n/K) assuming
P is constant. Throughout the analysis, we only used worst-case bounds on the norm gap between the
gradient and its top K components. These bounds are tight in the (unlikely) case where the gradient
values are uniformly distributed; however, there is empirical evidence showing that this is not the
case in practice [17], suggesting that this gap should be smaller. The algorithm may implicitly exploit
this narrower gap for improved convergence. Please see Figure 2 for empirical validation of this
claim, confirming that the gradient norm is concentrated towards the top elements.

In the non-convex case, the condition K = cn with c > 1/2 is quite restrictive. Again, the condition
is required since we are assuming the worst-case configuration (uniform values) for the gradients,
in which case the bound in Lemma 4 is tight. However, we argue that in practice gradients are

8

(a) TopK norm RCV1. (b) TopK norm synthetic. (c) TopK norm ResNet110.

Figure 2: Examining the value of ‖G̃− TopK(G̃)‖/‖G̃‖ versus K on various datasets/tasks.

unlikely to be uniformly distributed; in fact, empirical studies [17] have noticed that usually gradient
components are normally distributed, which should enable us to improve this lower bound on c.
Comparison with SGD Variants. We first focus on the convex case. We note that, when K is a
constant fraction of n, the convergence of the TopK algorithm is essentially dictated by the Lipschitz
constant of the supermartingale W , and by the second-moment bound M , and will be similar to
sequential SGD. Please see Figure 3 for an empirical validation of this fact.

0 10 20 30 40 50
Epoch

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Er
ro

r

TopK [K=0.1%] TopK [K=1.0%] TopK [K=10.0%] Baseline

(a) RCV1 convergence.

0 10 20 30 40 50
Epoch

50

75

100

125

150

175

200

225

Er
ro

r

TopK [K=0.1%] TopK [K=1.0%] TopK [K=10.0%] Baseline

(b) Linear regression. (c) ResNet110 on CIFAR10.

Figure 3: Examining convergence versus value of K on various datasets and tasks.

Compared to asynchronous SGD, the convergence rate of the TopK algorithm is basically that of an
asynchronous algorithm with maximum delay τ = O(

√
n/K). That is because an asynchronous

algorithm with dense updates and max delay τ has a convergence slowdown of Θ(τ
√
n) [7, 14, 3].

We note that, for large sparsity (0.1%—1%), there is a noticeable convergence slowdown, as predicted
by the theory.

The worst-case convergence of TopK is similar to SGD with stochastic quantization, e.g., [4, 26]:
for instance, for K =

√
n, the worst-case convergence slowdown is O(

√
n), which is the same as

QSGD [4]. The TopK procedure is arguably simpler to implement than the parametrized quantization
and encoding techniques required to make stochastic quantization behave well [4]. In our experiments,
TopK had superior convergence rate when compared to stochastic quantization / sparsification [4, 26]
given the same communication budget per node.

7 Conclusions

We provide the first theoretical analysis of the popular “TopK” sparsification-based communica-
tion reduction technique. We believe that our general approach extends to methods combining
sparsification with quantization by reduced precision [2, 23] and methods using approximate quan-
tiles [2, 15]. The practical scalability potential of TopK SGD (while preserving model accuracy) has
been exhaustively validated in previous work; therefore, we did not reiterate such experiments. Our
work provides a theoretical foundation for empirical results shown with large-scale experiments on
recurrent neural networks on production-scale speech and neural machine translation tasks [23, 2],
respectively, and for image classification on MNIST, CIFAR-10, and ImageNet using convolutional
neural networks [8, 15].

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for

9

large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

[3] Dan Alistarh, Christopher De Sa, and Nikola Konstantinov. The convergence of stochastic
gradient descent in asynchronous shared memory. arXiv preprint arXiv:1803.08841, 2018.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Random-
ized quantization for communication-efficient stochastic gradient descent. In Proceedings of
NIPS 2017, 2017.

[5] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[6] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project
adam: Building an efficient and scalable deep learning training system. In OSDI, volume 14,
pages 571–582, 2014.

[7] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified
analysis of Hogwild. Style Algorithms. In NIPS, 2015.

[8] Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In Proceedings of the Workshop on Machine
Learning in High Performance Computing Environments, pages 1–8. IEEE Press, 2016.

[9] John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex
optimization. arXiv preprint arXiv:1508.00882, 2015.

[10] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[12] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[13] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

[14] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In Advances in Neural Information Processing Systems, pages
2737–2745, 2015.

[15] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient com-
pression: Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

[16] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[17] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using
binary convolutional neural networks. In European Conference on Computer Vision, 2016.

[18] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[19] Cèdric Renggli, Dan Alistarh, and Torsten Hoefler. Sparcml: High-performance sparse commu-
nication for machine learning. arXiv preprint arXiv:1802.08021, 2018.

[20] F. Seide, H. Fu, L. G. Jasha, and D. Yu. 1-bit stochastic gradient descent and application to
data-parallel distributed training of speech dnns. Interspeech, 2014.

[21] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit Stochastic Gradient Descent
and its Application to Data-parallel Distributed Training of Speech DNNs. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

10

[22] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the
22nd ACM SIGSAC conference on computer and communications security, pages 1310–1321.
ACM, 2015.

[23] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In
Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[24] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propaga-
tion for accelerated deep learning with reduced overfitting. arXiv preprint arXiv:1706.06197,
2017.

[25] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, pages 4278–4284,
2017.

[26] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization. arXiv preprint arXiv:1710.09854, 2017.

[27] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pages 1508–1518, 2017.

[28] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pages 1508–1518, 2017.

[29] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,
Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed
machine learning on big data. IEEE Transactions on Big Data, 1(2):49–67, 2015.

[30] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 2017.

[31] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian Guenter, Oleksii
Kuchaiev, Yu Zhang, Frank Seide, Huaming Wang, et al. An introduction to computational
networks and the computational network toolkit. Microsoft Technical Report MSR-TR-2014–112,
2014.

[32] Jian Zhang, Ioannis Mitliagkas, and Christopher Ré. Yellowfin and the art of momentum tuning.
arXiv preprint arXiv:1706.03471, 2017.

11

A Analysis for the Convex Case

Lemma 1. With the processes xt and vt defined as above:

‖vt − xt‖ = ‖ 1

P

P∑
p=1

(
αG̃pt−1(vt−1) + εpt−1

)
− 1

P

P∑
p=1

TopK
(
αG̃pt−1(vt−1) + εpt−1

)
‖

≤
(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖.

(16)

Proof. First, we obtain a recursive relation of the form:

‖vt+1 − xt+1‖ =

∥∥∥∥∥vt − xt +
1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− εt −

1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)∥∥∥∥∥
(7)
=

∥∥∥∥∥ 1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)∥∥∥∥∥
=‖ 1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− 1

P
TopK

(
P∑
p=1

(
αG̃pt (vt) + εpt

))
+

+
1

P
TopK

(
P∑
p=1

(
αG̃pt (vt) + εpt

))
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

≤ γ
P
‖
P∑
p=1

(
αG̃pt (vt) + εpt

)
‖+ ξ

P
‖αG̃t(vt)‖

=γ‖αG̃t(vt) + vt − xt‖+
ξ

P
‖αG̃t(vt)‖

≤γ‖vt − xt‖+
(
γ +

ξ

P

)
‖xt+1 − xt‖

Iterating this downwards yields the result.

Next, we use the previous result to bound a quantity that represents the difference between the updates
based on the TopK procedure and those based on full gradients.

Lemma 2. Under the assumptions above and with expectation taken with respect to the gradients at
time t:

E

[
‖ 1

P

P∑
p=1

(
αG̃pt (vt)

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

]
≤ (γ + 1)

(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖

+

(
γ +

ξ

P

)
αM

(17)

12

Proof. Using the result from Lemma 1:

E

[
‖ 1

P

P∑
p=1

(
αG̃pt (vt)

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

]

≤ E [‖εt‖] + E

[
‖ 1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

]

≤ ‖εt‖+γ‖vt − xt‖+
(
γ +

ξ

P

)
E
[
‖αG̃ (vt) ‖

]
≤ (γ + 1) ‖vt − xt‖+

(
γ +

ξ

P

)
αM

≤ (γ + 1)

(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖+
(
γ +

ξ

P

)
αM.

Finally, we introduce some notation. Set

C = (γ + 1)

(
γ +

ξ

P

) ∞∑
k=1

γk−1 =
1 + γ

1− γ

(
γ +

ξ

P

)
,

and

C ′ = C +

(
γ +

ξ

P

)
=

(
γ +

ξ

P

)
2

1− γ
.

Note that

C ′ =

(√
n−K
n

+
ξ

P

)
2

1−
√

n−K
n

= 2
n

K

(√
n−K
n

+
ξ

P

)(
1 +

√
n−K
n

)
= O

(n
K

)

A.1 The Main Result

We have the following:

Theorem 1. Assume that W is a rate supermartingale with horizon B for the sequential SGD
algorithm and that W is H-Lipschitz in the first coordinate. Assume further that αHMC ′ < 1. Then
for any T ≤ B, the probability that vs 6∈ S for all s ≤ T is:

Pr [FT] ≤ E [W0 (v0)]

(1− αHMC ′)T
. (18)

Proof. Consider the process, defined by:

Vt (vt, . . . , v0) = Wt (vt, . . . , v0)− αHMCt+H

(
(γ + 1)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

γm−1

−
(
γ +

ξ

P

)
αMt

)
,

if the algorithm has not succeeded by time t (i.e. xs 6∈ S for all s ≤ T) and by Vt = Vu−1 otherwise,
where u is the minimal index, such that xu ∈ S.

13

In the case when the algorithm has not succeeded at time t, using W ’s Lipschitz property:

Vt+1 (vt+1, vt, . . . , v0) = Wt+1

(
vt −

1

P

P∑
p=1

TopK
(
εpt + αG̃p (vt)

)
, vt, . . . , v0

)
− αHMC (t+ 1)

+H

(
(γ + 1)

(
γ +

ξ

P

) t+1∑
k=1

‖xt−k+2 − xt−k+1‖
∞∑
m=k

γm−1 −
(
γ +

ξ

P

)
αM (t+ 1)

)

≤Wt+1

(
vt −

1

P

P∑
p=1

αG̃p (vt) , vt, . . . , v0

)

+H‖ 1

P

P∑
p=1

αG̃p (vt)−
1

P

P∑
p=1

TopK
(
εpt + αG̃p (vt)

)
‖

− αHMC (t+ 1) +H (1 + γ)

(
γ +

ξ

P

)
‖xt+1 − xt‖

∞∑
m=1

γm−1

+H

(
(1 + γ)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

γm−1 −
(
γ +

ξ

P

)
αM (t+ 1)

)
Now we take expectation with respect to the randomness at time t and conditional on the past. Note
that the average of i.i.d. stochastic gradients is also a stochastic gradient. Using the supermartingale
property of W , the bound on the expected norm of the gradient and (17):

E [Vt+1] ≤Wt (vt, . . . , v0)− αHMCt+H

(
(1 + γ)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

γm−1

−
(
γ +

ξ

P

)
αMt

)
+

(
HE

[
‖αG̃ (vt) ‖

]
(1 + γ)

(
γ +

ξ

P

) ∞∑
m=1

γm−1 − αHMC

)

+H

(
E

[
‖ 1

P

P∑
p=1

αG̃p (vt)−
1

P

P∑
p=1

TopK
(
εpt + αG̃p (vt)

)
‖

]

− (1 + γ)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖γk−1 −
(
γ +

ξ

P

)
αM

)
≤ Vt.

The inequality also holds trivially in the case when the algorithm has succeeded at time t. Hence, Vt
is a supermartingale for the TopK process.

Now if the algorithm has not succeeded at time T , WT ≥ T , so VT ≥ WT − αHMC ′T ≥ 0. It
follows that VT ≥ 0 for all T . Therefore,

E [W0 (v0)] = E [V0 (v0)]

≥ E [VT]

= E [VT |FT] Pr [FT] + E [VT |¬FT] Pr [¬FT]

≥ E [VT |FT] Pr [FT]

= E

[
WT (vT , ..., v0)− αHMCT +H

(
(1 + γ)

(
γ +

ξ

P

) T∑
k=1

‖xT−k+1 − xT−k‖
∞∑
m=k

γm−1

−
(
γ +

ξ

P

)
αMT

)
|FT
]

Pr [FT]

≥
(
E [WT (vT , ..., v0)|FT]− αHM

(
C +

(
γ +

ξ

P

))
T

)
Pr [FT]

≥ (T − αHMC ′T) Pr [FT] ,

14

where we have used the fact that W is a rate supermartingale. Hence we obtain:

Pr [FT] ≤ E [W0 (x0)]

(1− αHMC ′)T
.

We now apply this result with a specific supermartingale W for the sequential SGD process. Note
that W must be a supermartingale for the process that applies an average of P updates, multiplied by
the learning rate α.
We use the following result from [7]:

Lemma 3 ([7]). Define the piecewise logarithm function to be

log(x) =

{
log(ex) : x ≥ 1
x : x ≤ 1

Define the process Wt by:

Wt(xt, . . . , x0) =
ε

2αcε− α2M2
log
(
‖xt − x∗‖2ε−1

)
+ t,

if the algorithm has not succeeded by timestep t (i.e. xi 6∈ S for all i ≤ t) and by Wt = Wu−1
whenever xi ∈ S for some i ≤ t and u is the minimal index with this property. Then Wt is a
rate supermartingale for sequential SGD with horizon B = ∞. It is also H-Lipschitz in the first
coordinate, with H = 2

√
ε
(
2αcε− α2M2

)−1
, that is for any t, u, v and any sequence xt−1, . . . , x0:

‖Wt (u, xt−1, . . . , x0)−Wt (v, xt−1, . . . , x0) ‖≤ H‖u− v‖.

Applying this particular martingale, we obtain:

Corollary 1. Assume that we run Algorithm 1 for minimizing a convex function f satisfying the listed
assumptions. Suppose that the learning rate is set to α, with:

α < min

{
2cε

M2
,

2 (cε−
√
εMC ′)

M2

}
Then for any T > 0 the probability that vi 6∈ S for all i ≤ T is:

P (FT) ≤ ε

(2αcε− α2M2 − α2
√
εMC ′)T

log

(
e‖v0 − x∗‖2

ε

)
. (19)

Proof. Substituting and using the result from [7] that

E (W0 (v0)) ≤ ε

2αcε− α2M2
log

(
e‖v0 − x∗‖2

ε

)
we obtain that:

P (FT) ≤ E (W0)

(1− αHMC ′)T

≤ ε

2αcε− α2M2
log

(
e‖v0 − x∗‖2

ε

)((
1− α 2

√
ε

2αcε− α2M2
MC ′

)
T

)−1
≤ ε

(2αcε− α2M2 − α2
√
εMC ′)T

log

(
e‖v0 − x∗‖2

ε

)

15

B Analysis for the Non-Convex Case

Setup. We now consider the more general case when SGD is minimizing a (not necessarily convex)
function f , using SGD with (decreasing) step sizes αt. Again, we assume that the second moment
of the stochastic gradients is bounded in expectation (inequality (2)). Assume also that ∇f is
L-Lipschitz (not only in expectation); that is, for all x, y:

‖∇f(x)−∇f(y)‖≤ L‖x− y‖. (20)

As is standard in non-convex settings [16], will settle for a weaker notion of convergence, namely
showing that

min
t∈{1,...,T}

E
[
‖∇f (vt) ‖2

] T→∞−→ 0,

that is, the algorithm converges ergodically to a local minimum of the function f . Our strategy will be
to leverage our ability to bound the difference between the “real” model xt and the view vt observed
at iteration t to bound the evolution of the expected value of f(vt), which in turn will allow us to
bound the sum

1∑T
t=1 αk

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
,

where the parameters αt are appropriately chosen decreasing learning rate parameters. This will
enable us to show that the norm of the gradients converges towards zero in expectation.

We have the following:
Lemma 4. For any time t ≥ 1:

‖vt − xt‖2≤
(

1 +
ξ

Pγ

)2 t∑
k=1

(
2γ2
)k ‖xt−k+1 − xt−k‖2 (21)

Proof. We had:

‖vt+1 − xt+1‖ ≤ γ‖vt − xt‖+
(
γ +

ξ

P

)
‖xt+1 − xt‖

Hence,

‖vt+1 − xt+1‖2 ≤
(
γ‖vt − xt‖+

(
γ +

ξ

P

)
‖xt+1 − xt‖

)2

≤ 2γ2‖vt − xt‖2+2

(
γ +

ξ

P

)2

‖xt+1 − xt‖2

Iterating this gives:

‖vt − xt‖2 ≤ 2

(
γ +

ξ

P

)2 t∑
k=1

(
2γ2
)k−1 ‖xt−k+1 − xt−k‖2

=

(
1 +

ξ

Pγ

)2 t∑
k=1

(
2γ2
)k ‖xt−k+1 − xt−k‖2

Theorem 2. Consider the TopK algorithm for minimising a function f that satisfies the above
assumptions. Suppose that the learning rate sequence and K are chosen so that for any time t > 0:

t∑
k=1

(
2γ2
)k α2

t−k
αt
≤ D (22)

for some constant D > 0. Then, after running Algorithm 1 for T steps:

1∑T
t=1 αt

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (f (x0)− f (x∗))∑T

t=1 αt

+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)∑T
t=1 α

2
t∑T

t=1 αt

(23)

16

Proof of Theorem 2. We begin by bounding the difference between the consecutive steps of the
algorithm. By the Lipschitzness assumption, for any time t:

f (xt+1)− f (xt) ≤ 〈∇f (xt) , xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= −〈∇f (xt) , αtG̃t (vt)〉+
L

2
‖αtG̃t (vt) ‖2

Taking expectation with respect to the randomness at time t and conditional on the past (denoted by
Et|.):

Et|. [f (xt+1)]− f (xt) ≤ −αt〈∇f (xt) ,∇f (vt)〉+
L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
= −αt

2

(
‖∇f (xt) ‖2+‖∇f (vt) ‖2−‖∇f (xt)−∇f (vt) ‖2

)
+
L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
= −αt

2
‖∇f (xt) ‖2−

αt
2
‖∇f (vt) ‖2+

αt
2
‖∇f (xt)−∇f (vt) ‖2

+
L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
≤ −αt

2
‖∇f (xt) ‖2+

αt
2
L2‖vt − xt‖2+

L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
≤ −αt

2

(
‖∇f (xt) ‖2+L2‖vt − xt‖2

)
+
L

2
α2
tM

2 + αtL
2‖vt − xt‖2

Taking expectation with respect to the remaining gradients (before time t):

E [f (xt+1)]−E [f (xt)] ≤ −
αt
2
E
[
‖∇f (xt) ‖2+L2‖vt − xt‖2

]
+
L

2
α2
tM

2+αtL
2E
[
‖vt − xt‖2

]
(24)

But, using Lemma 4:

E
[
‖vt − xt‖2

]
≤
(

1 +
ξ

Pγ

)2 t∑
k=1

(
2γ2
)k

E
[
‖xt−k+1 − xt−k‖2

]
≤M2

(
1 +

ξ

Pγ

)2

αt

t∑
k=1

(
2γ2
)k α2

t−k
αt

Now since for all t:
t∑

k=1

(
2γ2
)k α2

t−k
αt
≤ D

for some constant D, we have that:

E
[
‖vt − xt‖2

]
≤M2

(
1 +

ξ

Pγ

)2

αtD.

Therefore, we obtain:

E [f (xt+1)]−E [f (xt)] ≤ −
αt
2
E
[
‖∇f (xt) ‖2+L2‖vt − xt‖2

]
+
L

2
α2
tM

2+L2M2

(
1 +

ξ

Pγ

)2

α2
tD

Rearranging gives:

αtE
[
‖∇f (xt) ‖2+L2‖vt − xt‖2

]
≤ 2 (E [f (xt)]−E [f (xt+1)])

+

(
LM2 + 2L2M2

(
1 +

ξ

Pγ

)2

D

)
α2
t

(25)

Note that, using the Lipschitness of the gradient:

‖∇f (vt) ‖2= ‖(∇f (vt)−∇f (xt)) +∇f (xt) ‖2 ≤ 2‖∇f (vt)−∇f (xt) ‖2+2‖∇f (xt) ‖2

≤ 2L2‖vt − xt‖2+2‖∇f (xt) ‖2

17

Applying this to the left-hand side of (25):

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (E [f (xt)]−E [f (xt+1)])

+

(
2LM2 + 4L2M2

(
1 +

ξ

Pγ

)2

D

)
α2
t

(26)

Now for any time T , summing over the bound in (26) and dividing by the sum of the learning rates:

1∑T
t=1 αt

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (f (x0)− f (x∗))∑T

t=1 αt

+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)∑T
t=1 α

2
t∑T

t=1 αt

(27)

Therefore, it suffices to choose the learning rate sequence so that the term
∑T
t=1 αt dominates∑T

t=1 α
2
t asymptotically and so that the condition (22) holds. In particular, one can set αt = t−θ,

where θ > 0, and K = cn for some constant c > 1
2 . In this case

∑T
t=1 αt dominates

∑T
t=1 α

2
t and

for any t:

t∑
k=1

(
2γ2
)k α2

t−k
αt
≤

t∑
k=1

(
2

(
1− K

n

))k α2
t−k
αt

=

t∑
k=1

(2− 2c)
k tθ

(t− k)
2θ

Since powers dominate polynomials, this sum converges in the limit as t→∞, so the condition in
(22) is guaranteed to hold.

In the case when K = cn with c > 1
2 , one can also set a fixed learning rate:

α =

√√√√√ f (x0)− f (x∗)

T

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

) . (28)

Then we obtain:

min
t∈{1,...,T}

E
[
‖∇f (vt) ‖2

]
≤ 1

T

T∑
t=1

E
[
‖∇f (vt) ‖2

]

≤ 4 (f (x0)− f (x∗))

Tα
+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)
Tα2

Tα

≤ 5

√√√√√ (f (x0)− f (x∗))

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)
T

.

C Experimental Details

Datasets and models. We evaluated the algorithm on two machine learning tasks, namely classifi-
cation and linear regression. We train ResNet110 [11] on CIFAR-10 [12] for image classification.
We train a linear classifier on the RCV1 corpus [13] using logistic regression and perform linear
regression to train a model on a synthetic dataset containing 10K samples with 1024 features randomly
generated with some Gaussian noise added.
Setup. We conduct experiments by implementing the algorithm into the two frameworks CNTK [31]
and MPI-OPT [19]. The latter is a framework developed to run distributed optimization algorithms
such as SGD or SCD on multiple compute nodes communicating via any MPI library with minimal

18

overhead. We make use of SparCML [19] as the communication layer to efficiently aggregate
the sparse gradients. Implementation details can be found in [19]. For image classification, we
use standard batch sizes and default hyper-parameters form the full accuracy convergence in all
our experiments, which we define to be our baseline. These values are given in the open-source
CNTK 2.0 repository. The image classification, experiments are conducted on 4 nodes. We tune
the hyper-parameters such as batch-size, initial learning rate and decay factor for logistic and linear
regression in order to achieve best possible convergence on the full accuracy baseline setting. We
set those values for performing experiments with various values for K and perform the experiments
using 8 nodes.

19

	Introduction
	Preliminaries
	The TopK SGD Algorithm
	An Analytic Assumption.

	Analysis in the Convex Case
	Analysis for the Non-Convex Case
	Discussion and Experimental Validation
	Conclusions
	Analysis for the Convex Case
	The Main Result

	Analysis for the Non-Convex Case
	Experimental Details

