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Abstract—A common simplification made when modeling the
performance of a parallel program is the assumption that the
performance behavior of all processes or threads is largely
uniform. Empirical performance-modeling tools such as Extra-P
exploit this common pattern to make their modeling process more
noise resilient, mitigating the effect of outliers by summarizing
performance measurements of individual functions across all
processes. While the underlying assumption does not equally
hold for all applications, knowing the qualitative differences in
how the performance of individual processes changes as execu-
tion parameters are varied can reveal important performance
bottlenecks such as malicious patterns of load imbalance. A
challenge for empirical modeling tools, however, arises from
the fact that the behavioral class of a process may depend on
the process configuration, letting process ranks migrate between
classes as the number of processes grows. In this paper, we
introduce a novel approach to the problem of modeling of
spatially diverging performance based on a certain type of process
clustering. We apply our technique to identify a previously
unknown performance bottleneck in the BoSSS fluid-dynamics
code. Removing it made the code regions in question running up
to 20 times and the application as a whole run up to 4.5 times
faster.

Index Terms—Parallel programming, performance modeling,
fluid dynamics

I. INTRODUCTION

Whether it is climate change, artificial intelligence, or quan-

tum physics, scientific progress today requires ever increasing

computational power. New, powerful supercomputers are be-

ing continuously designed to fulfill the practically boundless
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demand for high performance computing. Given the costs

involved and the scarcity of these resources, it is important that

scientific applications are efficient and potential bottlenecks

are easily identified and eliminated.

A powerful instrument to understand application behavior

is performance modeling, an approach that describes the

performance of either entire applications or regions of code in

terms of a purely analytical expression. A target metric m (e.g.,

execution time, energy, or number of floating-point operations)

is represented as a function m = f(x1, ..., xn) of one or

more parameters xi (e.g., number of cores or the size of the

input problem), similar to how the complexity of algorithms is

defined. Extra-P [1] is an automatic empirical modeling tool

capable of leveraging performance measurements to generate

performance models, replacing human expertise with a set of

experiments where various configuration parameters are varied

in order to measure how their change impacts runtime or other

metrics of interest.

While Extra-P has proven useful in understanding the be-

havior of many applications, one of its current limitations is

that it can only be applied to programs with spatially uniform

performance behavior, that is, whose parallel processes per-

form largely the same type of operations at the same time.

Although this assumption is true for many HPC applications,

Extra-P struggles to accurately model unstructured codes or

simulations with complex boundary conditions. Furthermore

even codes whose behavior should be spatially uniform in

theory can exhibit wait states that let the performance of

different processes diverge.

In this paper, we expand the performance modeling ap-

proach underlying Extra-P, now allowing it to model parallel

programs that exhibit multiple behaviors across processes.

Using a specialized clustering algorithm originally developed

to quantify external interference in parallel applications shar-

ing a network environment, we identify and bundle together



different performance regimes, even if their absolute values

differ by orders of magnitude and are affected by noise. We

discuss different configuration options to allow developers to

properly configure their own experiments and therefore obtain

the best possible results.

The key contributions of the paper are:

• An empirical performance modeling workflow that lever-

ages clustering to automatically detect and create differ-

entiated models if the application exhibits spatially non-

uniform performance behavior

• A case study in which we apply our new approach to

BoSSS, a Discontinuous Galerkin (DG) solver, and shows

how it helps identify and remove a serious performance

bottleneck, resulting in an overall speed up of up to 4.5.

The paper is organized as follows. We first describe Extra-P

in Section II and discuss its limitations, before we introduce

spatial clustering into its workflow in Section III. We then

present BoSSS and the insights we gained after modeling

its performance in Section IV and quantify the performance

increase achieved by removing the bottlenecks in Section V.

Finally, we discuss the broader field of performance modeling

in Section VI, and summarize our results in Section VII.

II. EXTRA-P

Extra-P [1] is a tool capable of creating human-readable

performance models out of empirical measurements. These

measurements are usually gathered using Score-P [2], an

instrumentation framework that gathers performance data at

the level of individual function call paths. The core assumption

of Extra-P is that the complexity of most function calls

can be expressed using the performance model normal form

(PMNF) 1, that is, effectively with up to n terms composed

of a combination of polynomial and logarithmic terms:

f(x) =

n∑

k=1

ck · xik · logjk
2
(x) (1)

The PMNF models the effect of parameters x on a response

variable of interest f(x). The sets I, J ⊂ Q from which the

exponents ik and jk are chosen and the number of terms n

define the discrete model search space.

This expression can be expanded to allow the impact of

multiple configuration parameters such as problem size and

process count to be modeled at the same time. This is critical,

as understanding how such parameters interact is vital in un-

derstanding performance bottlenecks. The difference between

additive and multiplicative interaction can translate to orders

of magnitude more core hours being required to run a program.

f(x1, . . . , xm) =

n∑

k=1

ck ·
m∏

l=1

x
ikl

l · log
jkl

2
(xl) (2)

At its core, the method uses one data point for each

execution configuration as an input, determining coefficients

for each potential model using linear regression and cross-

validation. Each data point may possibly average several

void compute(float A[Rows][Columns], int myRank) {

if (position(myRank)==TOP_EDGE)

computeTopBoundary(A,myRank);

if (position(myRank)==BOTTOM_EDGE)

computeBottomBoundary(A,myRank);

if (position(myRank)==LEFT_EDGE)

computeLeftBoundary(A,myRank);

if (position(myRank)==RIGHT_EDGE)

computeRightBoundary(A,myRank);

computeInnerValues(A,myRank);

}

Listing 1: Simplified code example for a two-dimensional

simulation with boundary conditions.

repeated executions to counter noise. In this work, we leverage

a recent enhancement of Extra-P, a heuristic [3] that gives users

more freedom in the configuration of the measurement space

when modeling multiple parameters simultaneously. Previous

versions of the tool required all combinations of all values

for each parameter to be considered, which, depending on

the application, can be difficult. With the help of a method

derived using machine learning, models are generated from

a smaller subset of measurements, often reducing the cost of

measurements by one or two orders of magnitude while at the

same time lessening the constraints placed on the experiment

design.

While this particular improvement was necessary in our

analysis of BoSSS, over the years many other refinements were

made and several applications beyond simple performance

modeling were discovered. However, one basic assumption

remained: the performance behavior of the target program

must be spatially uniform, that is, each process is expected to

adhere to the same global performance model. The reason for

this constraint is that Extra-P must reduce the measurements

to just one data point (for each function call path) in each

configuration, while the instrumentation provides one data

point for each MPI process or thread. The measurements

such as those for runtime taken from individual threads or

processes metrics are either averaged or added, depending on

the modeling objective—wall time or core hours. Although

further statistical tools such as confidence intervals and stan-

dard deviation are available, the approach does not support

more than one behavior type to be differentiated and modeled,

for reasons that will become apparent in the next section.

Therefore, if different subsets of processes behave differently,

their behaviors are collated, leading to potentially incorrect

models.

III. CLUSTERING EMPIRICAL PERFORMANCE MODELS

In this section, we introduce our clustering approach for

empirical performance modeling by first providing a simple

example highlighting the challenges of clustering performance



behavior and then showing how our chosen approach can

overcome these challenges.

A. Challenges of clustering

The code in Listing 1 shows a simple two-dimensional sim-

ulation whose rectangular domain is divided into rectangular

blocks, each assigned to a parallel process. For simplicity,

we assume that the number of processes is such that the

domain can be divided in exactly equal sub-domains across

all processes. As will be explained in Section IV, evaluating

boundary cells is more expensive in comparison to inner cells.

Therefore, we can subdivide the domain in three areas of

different cost: all processes will do some baseline computation

on their values, however all processes assigned blocks at the

edge of the domain must do some additional work for each

such edge they contain. This effectively means that processes

at the corner will have two such additional computations to

perform, the remaining edge processes will have one additional

computation to perform while processes assigned inner parts

of the domain will only need to perform the baseline compu-

tation. By itself, this already defines three different types of

behavior.

If the area each process covers is rectangular rather than a

perfect square, there will be more boundary cells on either the

top and bottom edges or the left and right edges, depending on

the orientation of the rectangle. This will lead to these types of

boundaries to exhibit different behaviors, but can be avoided

if the area is a square. However, even in this case, considering

a computational domain mapped as a simple two dimensional

array, accessing arrays by row or column can have significant

differences in performance, forcing us to consider the ”top”

and ”bottom” boundary computations as potentially different

to the ”left” and ”right” boundary computations, leading to

a total of four behavior types. Although this application is

not a coupled simulation with different models running on

different partitions of the available system, different subsets

of the processes clearly show different performance behavior.

To understand application performance, this divergence must

be taken into account or issues might remain undetected.

The number of processes exhibiting a class of behavior

does not necessarily remain constant across different parameter

configurations, as shown in Figure 1, further increasing the

difficulty of classifying these behaviors unless the rules for

classification are already known. In the example, as long as

at least four processes are used, there will always be four and

only four corner processes regardless of the total number of

MPI ranks.

The number of processes with one boundary computation

to perform will grow with the square root of the process count

for a two-dimensional domain, like in our example, or with

the cubic root of the process count for a three-dimensional

one. The exact rate depends on the shape of the rectangular

domain, but can grow linearly if the domain is effectively one-

dimensional rather than two-dimensional. Because the latter is

an atypical and rather simple corner case, we choose to focus

on a two-dimensional domain in the following analysis.

(a) Topology with 16 processes.

(b) Topology with 64 processes.

Fig. 1: A two-dimensional simulation domain composed of

a very high number of individual cells (not pictured), divided

among 16 and 64 processes, respectively. Black lines delineate

the sub-domain assigned to each process. The color of a sub-

domain reflects its computational effort, ranging from green

for low to dark orange for high effort.

Finally, the inner processes will grow linearly with the

number of processes, and will account for the vast majority of

behaviors as the program is scaled up. However as such appli-

cations usually require communication after the computation

step having the vast majority of processes finish faster will not

improve performance as the application as a whole will still

need to wait for the slower corner processes to finish.

The capability of generating differentiated models rep-

resenting these behaviors can help developers target their

optimization efforts and ensure that performance across the

entire application does not suffer because fast processes have

to wait for slower ones. Clustering is a natural approach toward

differentiating such behaviors. However, developers cannot

be expected to know in advance how many behaviors their

application exhibits in practice.

Furthermore, the number of behaviors might not even be

constant across all parameter configurations. In our example,

if we only have 4 processes available, then all will exhibit the

same type of behavior, that of a corner process. Therefore,

we must automatically decide how many clusters we wish to

create only from measurement data.
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(a) Per process runtime of the density flux routine in the BoSSS application
for 16 processes and problem size 25,600.
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(b) Per process runtime of the density flux routine in the BoSSS application
for 64 processes and problem size 409,600.

Fig. 2: Comparison of runtime histograms for different rou-

tines in the BoSSS application. Data points with the same

shape and color are clustered together using our default

relative-distance clustering algorithm.

Measurement data is usually affected by noise. The effects

of noise on data can be absolute, adding a random overhead

to the runtime with a maximum and usually small amplitude,

or relative, increasing the runtime by a percentage. Many

clustering approaches define an absolute distance to classify

data into different clusters. This can be a tremendous difficulty

given that the noise affecting larger behavior classes might be

more than the difference between smaller behavioral classes.

If alongside runtime information hardware counter measure-

ments are available such as the number of instructions or cache

misses, these can be used to support the clustering method and

improve results.

B. Clustering with relative distance

Figure 2 shows two examples of runtime sets for two

different function in the BoSSS application. Clustering would

be simple for the first function, as there is little noise affecting

the measurements and the differences between clusters is

obvious. The second function is more difficult to analyze. The

difference between the two largest values is much larger than

any difference between the vast majority of values, effectively

placing these values in different clusters.

We therefore adopt the clustering approach with relative

distance introduced by Shah et al. [4], which takes into account

the values of the measurements when considering distances

between them and allows accurate clustering even in the

presence of noise.

This algorithm performs a single pass on all measurements

and only requires that the data clustered to have a total order,

which both integers and floating point numbers representing

counters and runtime measurements have. It defines the rel-

ative distance between two points as their distance divided

by the smaller of the distances of the two points from the

origin. The algorithm sorts all data and starts with the smallest

value in an initial cluster. It then compares the relative distance

between each two adjacent points in the sorted list iteratively

with a fixed threshold. If the relative distance is below the

threshold no new cluster is formed, otherwise a new cluster

is formed containing the last point. In either case, the process

continues until all points have been assigned to clusters. In our

work we set the threshold at 10%. However, too much noise

can still be a challenge, which is detailed in Section V.

Summarizing the discussion above, we now explain how

the clustering of measurements is integrated into Extra-P’s

performance modeling process. Figure 3 provides an overview,

and below we detail each individual step.

First, the user must select which configuration parameters

should be varied, and the values the individual parameters

should take. In the overwhelming majority of cases, these

parameters will be a measure of the degree of parallelism

such as the number of MPI ranks or the number of parallel

threads and the size of the problem the program is attempting

to solve. In practice, five values for each parameter ensure

good model quality. Recent developments of Extra-P [3]

allow accurate models to be generated by providing as few

as ten measurements when two parameters are considered.

Once the users have completed the experiment design, they

collect measurements by running an instrumented version of

the application in the selected configurations.

Then, the clustering is introduced as an automatic pre-

processing step before the actual modeling takes place. If a

single cluster is detected, the modeling can proceed as before.

If multiple clusters are detected, we provide this information

to the user as it is already a valuable insight. It is important

to note that we can provide this information without requiring

any additional input from the user beyond what the established

empirical performance modeling method uses.

We provide additional insights to the user beyond whether

clusters exist on a best effort basis: we first analyze if the

number of clusters is the same in all measurements. If it is

possible to match clusters across all measurement, by default

we assume that clusters should be matched in ascending order

of the values they contain. If users can supply additional infor-

mation, we can feed their rules into the matching process, such

as changing the threshold used to create new clusters or even

place specific processes into clusters. Generating differentiated

models for each cluster can help users decide where to direct

optimizations efforts, as having parts of the application scaling

differently is likely to lead to load imbalance and/or waiting

times.

Our tool needs a way to match the clusters across all



Redesign experiments if measurements have different number of clusters

Tune clustering           
process (optional)

Performance models for
each cluster identified

Instrumentation 
and   
measurement 

Clustered 
performance 
measurements

Identify scaling   
bottlenecks

Application Performance 
measurements

Design experiments

Optimize code

Cluster results

List of 
bottlenecks

Model data

Extra-P

Fig. 3: Workflow for modeling spatially diverging performance. The person symbol in a step indicates that it is manual. A cog

wheel represents an automatic step. The addition of the clustering step provides additional value at no extra cost for the user.

measurements to create differentiated models for each class

of behavior. If the number of clusters differs across measure-

ments, then this is impossible as we cannot decide which

clusters belong together and the users need to redesign their

experiments and provide a set of measurements from which

the same number of clusters is generated. Alternatively, if

sufficient measurements are available where the number of

clusters is the same we can create performance models only

using that subset. However, even the information of how

clusters appear and evolve across measurements can provide

many insights to developers, as we will discuss in Section IV.

In conclusion, our clustering can in some cases provide

additional information at no additional cost to the user, and can

provide even more information if the user provides additional

knowledge about what type of behaviors can be found in the

code.

IV. BOSSS

We showcase our clustering algorithm by analyzing the

performance of a computational fluid-dynamics simulation

framework, BoSSS (Bounded Support Spectral Solver). While

BoSSS is designed to support arbitrary systems of conserva-

tion laws, the present paper is concerned with the Navier-

Stokes equations for compressible flows. The employed Dis-

continuous Galerkin (DG) methods for hyperbolic conserva-

tion laws started to gain popularity in the late 1980’s and

1990’s, through contributions of Cockburn and Shu [5], [6],

although its origins can be traced back to the 1970’s [7].

A. DG methods for compressible flows

The compressible Navier-Stokes equations can be written in

the form

∂tU +∇ · F (U,∇U) = 0. (3)

Here, U denotes the vector of dependent variables, that is,

density, momentum, and energy. F is the flux of each of

these conserved properties, e.g., the mass flux in the continuity

equation.

Like most numerical methods, DG requires a discretization

of the flow domain Ω into a numerical mesh with tetrahedrons

and/or cubes, labeled herein after as cells K0, . . . ,KJ−1.

In each of the cells, a field property like the density ρ is

approximated by a weighted sum over predefined polynomials:

ρ(t, ~x) ≈ ρh(t, ~x) :=

J−1∑

j=0

Nk−1∑

n=0

φjn(~x)ρ̃jn(t) (4)

Here, φjn(~x) denotes multivariate polynomials, which form

a complete basis of the polynomial space of a certain, user-

defined degree k. The numbers ρ̃jn are called the DG coef-

ficients; index j corresponds to a cell, index n is commonly

known as a mode index. The support of φjn is limited to

cell Kj , that is, φjn = 0 outside of Kj . Therefore, in

the implementation, the sum over j in Eq. 4 can usually



be omitted. Note that the number of polynomials per cell

(number Nk) is small, usually below 100, while the number

of cells (index j) can be several millions, depending on the

discretization and resolution used in the simulation.

The physical setup of the simulation, the so-called double

Mach reflection is shown in Figure 4. A DG scheme is obtained

by inserting the Ansatz (4) into the conservation law (3),

applying integration-by-parts and the introduction of so-called

numerical flux functions aka. Riemann solvers [8]. To update

a specific degree-of-freedom such as ρ̃jn an explicit scheme

of the form

ρ̃jn(t
1) = ρ̃jn(t

0)−∆t







−

∫

Kj

F · ∇φjndV

︸ ︷︷ ︸

=:Fvol

+

∮

∂Kj\∂Ω

F̂intφjndS

︸ ︷︷ ︸

=:Fint

+

∮

∂Kj∩∂Ω

F̂bndφjndS

︸ ︷︷ ︸

=:Fbnd








(5)

is used. For the sake of simplicity, we present here only an

explicit Euler scheme in order to update from the known state

ρ̃jn(t
0) at time t0 to the new state ρ̃jn(t

1) at time t1. In

practice, usually a Runge-Kutta scheme of higher temporal

accuracy is used. The integrals on the right-hand-side of Eq.

5 are evaluated numerically using a Gauss quadrature rule

of at least order 3k. The updates can be split up into three

parts: First we determine the volume contribution Fvol, which

employs the local flux F (cf. Eq. (3)). It only depends on data

associated with cell Kj and produces a uniform computational

load across all cells. Second we determine the flux on interior

cell boundaries Fint and third we determine the flux on domain

boundaries Fbnd, which depend on the respective Riemann

solvers F̂int and F̂bnd. F̂int ensures numerical coupling of the

individual cells and therefore depends on data associated with

two adjacent cells. F̂bnd incorporates the boundary condition:

to ensure numerical stability first a ‘virtual’ exterior state

is computed and then the flux at the boundary via F̂bnd

[9]. Therefore, the computation of F̂bnd is significantly more

expensive than F̂int.

Considering again Figure 1, it becomes obvious that this

causes in-homogeneous computational load per cell: For inte-

rior cells, where the intersection of cell and domain boundary

is empty, that is, ∂Kj ∩ ∂Ω = ∅, the boundary flux Fbnd has

no impact. For cells located at the edges, resp. the corners of

the domain Ω, the more expensive boundary Riemann solver

F̂bnd is invoked at 25 % resp. 50 % of the quadrature nodes

at the cell boundary.

B. C# for High Performance Computing

C# was chosen as the main language for developing

BoSSS, as C# is almost as versatile and simple as Python, but

can deliver, if used carefully, performance closer to C. Several

of the compute-intensive functions such as the evaluation of

the flux F as well as the Riemann solvers F̂int and F̂bnd are

implemented in C#. Optimized BLAS subroutines are used

to accelerate certain computations: For example, the sum in

Eq. (4) has to be evaluated in all cells, for the same sets of

nodes in each cell. This can be rewritten as a matrix-matrix

operation, enabling the use of the general dense matrix-matrix

multiply (DGEMM).

The execution environment of C# provides many of the

commonly used functionalities, including data structures, file

system, and networking. Also, the virtual machine provides a

just-in-time compiler to generate efficient code when executing

applications written in C#. Moreover, the language provides

a layer to link to and call native libraries.

Unlike languages that are compiled to native code immedi-

ately, C# is first translated into an abstract machine model,

the so-called byte code, sometimes also referred to as bit

code. This abstract machine model provides binary platform

independence with a minimum of platform-specific execution

branches, and allows the transfer of executables between

different operating systems and even hardware architectures.

At runtime, the byte code is executed by a virtual machine.

To enable multi-million cell simulations, BoSSS is fully

MPI-parallelized, exploiting the aggregate memory of many

dedicated compute nodes. The required MPI routines, typically

highly-optimized native-code libraries, are linked to C# via

P/Invoke directives. Binary compatibility with both major

MPI families, MPICH (with its variants Microsoft MPI and

MVAPICH2) and Open MPI, is achieved using the Fortran

bindings of MPI. This is necessary because certain implemen-

tation details are handled differently in the C interface. For

example, in MPICH communicators are implemented as an

integer constant, whereas in Open MPI it is a pointer. But

both Fortran interfaces handle them in a similar fashion (both

use integer values).

V. PERFORMANCE EVALUATION

BoSSS has over 1.07 million lines of code and over 17.1

thousand functions. In this work, we focus on the compressible

Navier-Stokes solver which is used to simulate the Double-

Mach reflection, contains over 16 thousand lines of code

and over 100 methods itself but calls methods from other

parts of the framework as well. We chose this solver as

the developers use it extensively and had clear performance

expectations for it. To model the performance of BoSSS

empirically, we ran it with all combinations of MPI processes

in the set p ∈ {4; 8; 16; 32; 64; 128; 256} and problem size

per core s ∈ {1, 600; 6, 400; 25, 600; 102, 400; 409, 600}, re-

peating each configuration four times to counter noise. The

measurements were gathered on the Lichtenberg Cluster in

Darmstadt. The cluster contains two types of nodes: nodes

containing 8 sockets with 2 Intel Xeon E5-2670 AVX proces-

sor cores each with either 32 or 64 GB memory per node and

nodes containing 12 sockets with 2 Intel Xeon E5-2680 v3

AVX2 processor cores each with 64 GB memory per node.

A preliminary analysis revealed that four functions

that were repeatedly called by the application had both
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TABLE I: Performance models for each of the behavior classes in functions of BoSSS identified as performance bottlenecks

prior to optimization. We include the median runtime at p = 64; s = 409, 600 to provide a intuitive picture of the difference

between cluster runtimes. R̂2 is the adjusted coefficient of determination.

Kernel and Model with R̂2 Model with R̂2 Median at
cluster type default clusters tuned clusters runtime

Density flux
Corner 18 · log s− 2 · log p 0.77 0.17 · log s · log p+ 16 · log p 0.65 127s

Top& bottom edge 4 · 10−3
· s0.8 − 2 · 10−4

· s0.8 · log p 0.72 2.1 · log s · log p− 24.6 · log p 0.58 109s

Left& right edge 6 · 10−2
· s0.33 · log s 0.90 2.7 · 10−3

· s0.67 · log p− 2.1 · log p 0.87 85s

Inner 1.5 · 10−4
· s 1 1.5 · 10−4

· s 1 62s

Energy flux

Corner 1.3 · s0.25 · log p− 16 · log p 0.66 16 · log s 0.60 141s

Top& bottom edge 1.9 · 10−7
· s1.33 · log s+ 0.01 · log p 0.77 11.5 · log s 0.52 127s

Left& right edge 1.2 · 10−3
· s0.75 · log p− 1.1 · log p 0.91 2.9 · 10−4

· s0.75 · log s 0.92 102s

Inner 2.2 · 10−4
· s 1 2.2 · 10−4

· s 1 88s

Momentum flux

Corner 2.8 · ·s0.25 · log p− 35 · log p 0.67 34.9 · log s 0.65 305s

Top& bottom edge 7.6 · 10−6
· s1.33 0.68 25.2 · log s 0.56 276s

Left& right edge 4 · 10−3
· s0.67 0.91 6.3 · 10−3

· s0.8 0.93 224s

Inner 4.8 · 10−4
· s 1 4.8 · 10−4

· s 1 195s

Viscosity flux

Corner 7.3 · 10−4
· s+ 8.8 · 10−6

· s · log p 0.99 7.7 · 10−4
· s 1 318s

Top& bottom edge 7.5 · 10−4
· s− 2 · 10−8

· p3 · log p 0.99 7.6 · 10−4
· s 1 315s

Left& right edge 7.5 · 10−4
· s− 0.1 · p0.25 · log p 0.99 7.3 · 10−4

· s 1 301s

Inner 7.1 · 10−4
· s 1 7.1 · 10−4

· s 1 292s

significantly higher runtimes than the developers expected,

exhibiting varying numbers of clusters depending on the

execution configuration, namely the number of clusters

grew as the process count increased. These functions,

density_flux, energy_flux, momentum_flux,

and viscosity_flux are the Riemann solvers F̂int and

F̂bnd (c.f. Section IV, Eq. 5) for the respective transport

equations for mass, energy, and momentum (including

viscous effects).

Our first set of experiments only contained

combinations of the MPI processes in the set

p ∈ {4; 8; 16; 32; 64; } and problem sizes per core

s ∈ {1, 600; 6, 400; 25, 600; 102, 400; 409, 600}. While

these were sufficient to discover that multiple behaviors are

present for numbers of processes greater than four, they

did not allow us to model all behavior classes. With four



processes, we only had examples of corner processes, and

with 8 processes only corner and top and bottom edges. With

sixteen processes or more, all classes of behavior are present.

Extra-P requires at least four, but preferably five data points

in each parameter dimension to allow accurate models to be

derived.

We therefore expanded our measurement set to include MPI

processes in the set p ∈ {128; 256}. In Table I, we show the

performance models of the different behavior classes identified

by our clustering approach, using the full set of measurements

available.

Unfortunately, clusters with processes working on bound-

aries are less numerous than inner processes, and their mea-

surements are also more strongly affected by variance. This

makes both clustering and modeling these behaviors quite dif-

ficult. Figure 5 shows a set of measurements where no definite

way of generating clusters is apparent. The small values are

very similar and should therefore be clustered together, but the

other values grow with jumps and variations making a clear

separation into clusters impossible. This negatively impacts the

modeling process. While the model for the inner processes is

always identified according to developer expectation, models

for the other processes vary significantly.

With the developers identifying the issue, namely that

processes involved in boundary computations are the perfor-

mance bottlenecks, we tune the clustering approach to match

their expectations. The tuned approach uses rules to assign

processes to clusters according to the problem decomposition

and number of boundary computations and is more accurate

than the default one which only relies on relative distance.

In the case of the viscosity flow function this tuned approach

generates models in agreement with developer expectations.

To decide how well our models fit the data, we use R̂2, the

adjusted coefficient of determination, as shown in Table I. It is

an indicator of how much better a given model fits the set of

measurements used to derive it, compared to simply averaging

all measurements and using the average value instead of the

model. It also applies a penalty to models depending on the

degrees of freedom they have to limit over-fitting. In our

experience, values smaller than 0.95 indicate that the model

is not able to fit the data well, and a value of 1 indicates a

perfect fit.

Having clusters containing varying numbers of data points

affected differently by noise is likely to be an issue for

other applications as well. The default clustering algorithm

we propose allows good models to be generated if enough

data with little noise is available, but should be tuned as

the analysis uncovers additional information about how the

clustering should be performed. If they are available, hardware

counter information such as numbers of instructions and cache

misses can further guide the clustering process and allow users

to improve the clustering results. This in turn will improve

the quality of the performance models we generate from these

clusters and hopefully allow further insights to be gained.
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Fig. 5: Example of measurement set that is challenging to clus-

ter. Measurements represent the runtime of the density flow

routine across all experiments where p = 32 and s = 25, 600.

The colors represent the different clusters generated using the

clustering algorithm using relative distance.

A. Optimization of boundary fluxes

To explain the performance bottleneck discovered and how

it was removed, we now return to the BoSSS code and the

physical processes it simulates. In a regular scenario, that is

one with between 104 and 106 cells per core, the interior

Riemann solver F̂int is invoked far more often than F̂bnd and

thus its impact on application runtime was expected to be

dominant. Therefore the optimization of the implementation

of F̂int was prioritized.

The divergence in performance models for the four flux

computation functions across clusters leads to a more detailed

analysis of these functions and their models. We observe

that models for processes that must compute boundaries scale

worse than inner processes. Each process simulates as part of

its sub-domain a very large number of cells. The developers

discovered that for these routines, the evaluation of F̂bnd, for

a single cell edge is about 80 times more expensive than the

evaluation of F̂int. This means that each cell at an egde of the

simulation domain takes 80 times longer to compute compared

to the inner cells, and the corner cells take up 160 times longer.

As the ratios of inner cells to edge cells changes with the

number of cells in the subdomain, the runtime will also change

resulting in the performance models we observe.

Two reasons were identified that lead to this performance

gap: First, the implementation of F̂int is ‘vectorized’, that

is, it computes the Riemann solution for multiple quadrature

nodes in a single function call, which hides the overhead of

calling virtual functions. The implementation of F̂bnd did not

have such an optimization. Second, the implementation of the

computation of the virtual exterior state is rather complex—it

involves several evaluations of trigonometric functions as well

as square roots.

To close the performance gap between the evaluation of

the interior and the boundary edge flux, the implementation
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Fig. 6: Total application runtime before (left bar) and after optimizing the performance bottleneck identified through performance

modeling (right bar).

TABLE II: Performance models for functions identified as

performance bottlenecks in BoSSS after optimization. Note

that the behavior can no longer be separated into different

classes.

Kernel Model R̂2

Density flux — All processes 1.7 · 10
−4

· s 1

Energy flux — All processes 2.3 · 10
−4

· s 1

Momentum flux — All processes 5.2 · 10
−4

· s 1

Viscosity flux — All processes 7.3 · 10
−4

· s 1

of F̂bnd was vectorized in the same fashion as F̂int. This

also allowed a couple of optimizations in the computation of

the virtual exterior state. For example, we are now able to

cache certain results of trigonometric functions. After these

optimizations, the evaluation of F̂bnd is ‘only’ three times

more expensive than F̂int. For the investigated number of MPI

processes, these modification have shown to be sufficient in

order to ensure that the evaluation of boundary conditions no

longer dominates the application runtime.

B. Performance improvement

After optimizing the four bottleneck functions

density_flux, energy_flux, momentum_flux,

and viscosity_flux, as discussed in the previous

subsection, we can observe the significantly improved

performance models for these functions in Table II. The

boundary computations have been optimized to the degree

that measurements no longer detect any meaningful difference

between the computations performed by the inner processes

compared to processes with one or more boundaries to

simulate.

Furthermore the performance models we identify are, with-

out exception, of the same complexity class as the models for

processes without any boundary condition to compute (i.e.,

inner processes) from the unoptimized version of the code.

Therefore the optimized boundary computation has no mea-

surable impact on the overall performance of BoSSS. Figure 6

shows a comparison of the optimized and unoptimized version

of BoSSS for different configurations of process count and

problem size. For s = 1.6k the improvement is 4.5 times

larger, and on the largest problem and process count we have

measurements available for it is an improvement of 30%.

We therefore confidently claim that our performance analysis

workflow has allowed the developers to pinpoint and eliminate

a significant bottleneck in their application and substantially

improve the runtime of BoSSS.

VI. RELATED WORK

Analytical modeling is an approach with a long history

of successes in performance analysis of high performance

applications [10], [11]. While requiring significant effort on

the part of the human experts significant insights into complex

behaviors can be gained through manual code analysis [12]–

[14]. Of particular relevance to our work is the discovery that

large differences between actual and predicted performance

can be caused by system noise (Petrini et al. [15]). We use

the six-step process to create application performance models

defined by Hoefler et al. [16] as a basis for our own, automatic,

approach.

Several methods automate parts of the performance mod-

eling process in the attempt to make it easier to use on

real applications [17]–[20]. Siegmund et al. [21] also use

methods derived from statistics, however, by focusing on

applications monolithic-ally they cannot pin-point bottlenecks

or differentiate behaviors in the way our approach does.

Clustering has long been used as a tool in the performance

analysis arsenal. A large survey by Isaacs et al [22] provide

an overview of different performance visualization techniques

and how they categorize performance information. Gamblin et

al [23] propose CAPEK, a parallel clustering algorithm that

enables in-situ analysis of performance data at run time. Ahn et

al. [24] suggested the use of clustering as a way to understand

multi-variate relationships in measuring hardware counters.

Huck et al. [25], [26] use clustering to determine representative

behaviors automatically out of large performance experiments



and provide a tool, PerfExplorer to achieve this goal. Our

own clustering approach is based on recent work by Shah

et al. [4], that introduces a relative distance metric rather than

absolute thresholds to allow the correct clustering of data sets

affected by noise with large differences between clusters. This

advance was necessary to estimate application interference in

shared network environment but can be adapted for empirical

performance modeling as well.

VII. CONCLUSION

After introducing spatial clustering in our empirical

performance-modeling workflow, we can now create differ-

entiated models, representing the distinct behavior classes

being observable on different MPI processes during the same

execution of a parallel application. This feature supports the

discovery of spatial performance divergence related proper-

ties of the process topology. Its application was essential in

uncovering a previously unknown performance bottleneck in

the BoSSS fluid dynamics code. Its removal left the affected

function 20 times faster than before, resulting in an overall

speed-up for the entire application of up to a factor of 4.5. We

plan to integrate this feature into the next release of Extra-

P, enabling even more developers to uncover performance

bottlenecks related to spatial divergence.
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