The Cell Processor
Computing of tomorrow or yesterday?

Torsten Höfler
Department of Computer Science
TU Chemnitz

24.05.2005
Outline

1. The Vision
2. The Cell Architecture
 - Introduction
 - The PowerPC Processing Element (PPE)
 - The Synergistic Processing Element (SPE)
 - The Element Interconnect Bus (EIB)
 - The I/O Interconnect - FlexIO
 - The Memory Interface Controller (MIC)
3. Cell Programming
4. Summary & Conclusion
The Researchers

- started in mid 2000 by Sony Toshiba and IBM
- Sony has PS2 arch - needs chip for PS3
- Toshiba has memory experience - needs Chips for HDTV
- IBM has technical knowledge in processor manufacturing
- billions of dollars have been invested
- high throughput multi purpose processor
Known Problems to Overcome

- memory latency gap
- instruction latency gap (control logic)
- old fashioned x86 arch
- hardware architecture other than ISA
- implicit mem hierarchy (caching)
Main Changes compared to x86

- RISC design
- in order CPU (no OOO)
- SoC design (different cores)
- heterogeneous Multiprocessing
1st Patent - Ken Kutaragi (Sony, 1999)

- cell = software or hardware cell
- software cell = program + data
- hardware cell = execution logic + local memory
- hardware cells process software cells
- no fixed architecture (network distribution)
- cell computer is created ad-hoc (multiple devices)
Heterogeneous Multiprocessing - 9 Core Processor
- SPU - Synergistic Processing Unit
- MFC - Memory Flow Controller
- SPE - Synergistic Processing Element (=SPU+MFC)
- PPE - PowerPC Processing Element
- 1PPE + 8 SPEs = Cell Processor
- 9 full blown CPUs
connected via EIB - Element Interconnection Bus
FlexIO - IO/Processor Interconnect (BIC)
MIC - dual port XDR Memory Interface
hardware DRM :-(
interrupts controller routes only to PPE
effective NoC (Network on Chip)
⇒ single precision 256 GFlops peak
First Prototype

- 90nm SOI, 8 copper layers
- 234 Mill. Transistors
- 60-80 W (prototype)
- only 6-7 SPEs enabled (manufacturing errors)
- IBM's virtualization technology
- 1.1V, 4GHz
Outline

1. The Vision
2. The Cell Architecture
 - Introduction
 - The PowerPC Processing Element (PPE)
 - The Synergistic Processing Element (SPE)
 - The Element Interconnect Bus (EIB)
 - The I/O Interconnect - FlexIO
 - The Memory Interface Controller (MIC)
3. Cell Programming
4. Summary & Conclusion
The Vision
The Cell Architecture
Cell Programming
Summary & Conclusion

Introduction
The PowerPC Processing Element (PPE)
The Synergistic Processing Element (SPE)
The Element Interconnect Bus (EIB)
The I/O Interconnect - FlexIO
The Memory Interface Controller (MIC)
dual-threaded (SMT) 64 bit Power Architecture
- includes VMX (aka Altivec) ISA
- simple architecture, only in-order execution
- super-scalar with deep 2-way pipeline (>20)
- 2 instructions issued per cycle
- 32kB+32kB L1, 512 kB L2 Cache
- supports virtualization → logical partitioning (memory, I/O, time)
- simplified Power Architecture
Outline

1. The Vision

2. The Cell Architecture
 - Introduction
 - The PowerPC Processing Element (PPE)
 - The Synergistic Processing Element (SPE)
 - The Element Interconnect Bus (EIB)
 - The I/O Interconnect - FlexIO
 - The Memory Interface Controller (MIC)

3. Cell Programming

4. Summary & Conclusion
The Vision
The Cell Architecture
Cell Programming
Summary & Conclusion

Introduction
The PowerPC Processing Element (PPE)
The Synergistic Processing Element (SPE)
The Element Interconnect Bus (EIB)
The I/O Interconnect - FlexIO
The Memory Interface Controller (MIC)
- fully blown vector CPUs with own RAM
- ISA: not VMX compatible!
- ISA: 32 bit fixed length
- 21 Mill transistors (14 Mill SRAM, 7 Mill logic)
- no branch prediction or scheduling logic (software)
- two independent short and simple pipes
- can issue two instructions in parallel
- one memory and one SIMD computation
- strictly in order
- instructions work with 128 bit combound data
- 4 SP FP units (not fully IEEE754 compliant - 32GFlops)
- slow DP arithmetic (fully IEEE754 - 3-4GFlops)
- 4 INT units (32 GFlops)
The Cell Processor

256kB Local Storage

Instruction Fetch

Data Path

2-way issue

Even
-4xSP/2xDP FP
-4xINT
-128bit logical
-Byte ops

Odd
-Load/Store
-Byte ops
-Branch
-Branch hints

128 REGs
- 256kB local storage (LS) memory
- accessible in 128bit lines
- 128 128bit registers (2 cycles latency)
- registers are layered (hold all data types)
- no virtual memory, no coherency
- no processing in main memory
- DMA to move data between LS and main memory
- MFC connects to EIB, acts like MMU + synch
Opteron: 3GHz, 3 FP units - SPE: 4GHz, 4 SP FP units
Outline

1. The Vision
2. The Cell Architecture
 - Introduction
 - The PowerPC Processing Element (PPE)
 - The Synergistic Processing Element (SPE)
 - The Element Interconnect Bus (EIB)
 - The I/O Interconnect - FlexIO
 - The Memory Interface Controller (MIC)
3. Cell Programming
4. Summary & Conclusion
- four 128 bit wide concentric rings
- optimized for 1024 bit blocks
- 96 byte/cycle
- buffered point-to-point ring (cmp. SCI)
- SPE buffers and routes
- scalable (more SPEs increase latency)
- guaranteed bandwidth of 1/# devices
 → Real Time capable
Outline

1. The Vision
2. The Cell Architecture
 - Introduction
 - The PowerPC Processing Element (PPE)
 - The Synergistic Processing Element (SPE)
 - The Element Interconnect Bus (EIB)
 - The I/O Interconnect - FlexIO
 - The Memory Interface Controller (MIC)
3. Cell Programming
4. Summary & Conclusion
- 12 unidirectional byte-wide lanes
- 96 pairs in the whole
- 6.4 Gb/s per lane (76.8 Gb/s in the whole)
- 7 lanes (44.8 GB/s) out, 5 lanes (32 GB/s) in
- coherent (cc-NUMA) and non coherent links
- also used as processor interconnect (cmp. HT)
- connect two processors glueless
- needs switch for more
Outline

1. The Vision
2. The Cell Architecture
 - Introduction
 - The PowerPC Processing Element (PPE)
 - The Synergistic Processing Element (SPE)
 - The Element Interconnect Bus (EIB)
 - The I/O Interconnect - FlexIO
 - The Memory Interface Controller (MIC)
3. Cell Programming
4. Summary & Conclusion
The Vision
The Cell Architecture
Cell Programming
Summary & Conclusion

Introduction
The PowerPC Processing Element (PPE)
The Synergistic Processing Element (SPE)
The Element Interconnect Bus (EIB)
The I/O Interconnect - FlexIO
The Memory Interface Controller (MIC)
- two channel Rambus XDR Memory - 25.2 GB/s
- ECC protected (why?)
- PPE/SPE have conventional protection system to access main memory (cmp. MMU)
- PPE/SPE use virtual addresses
- no cache → moved to software
no abstraction layer like x86
- difficult programming and optimization
- same problems as for Multi-Core or SMPs
- direct programming of SPEs, 256kb storage + 128 Regs
- no need for assembly - but it is available :)
- programmable in C/C++
- SPEs are allocated in software
- SPE virtualization by OS? (more SPE tasks as SPEs)
- PPE code must only be PPC970
 - Linux already running
- SPE code must be self-contained
- autoparallelizing compiler from IBM: Octopile
Programming Models:
- job queue
- self multitasking SPE
- Stream Processing
- Software Managed Cache
- MPI?
Let the Cells glow!
• general purpose Power CPU with 8 vector processors (SPEs)
• RISC approach - moving functionality to software → more complicated compiler (cmp. VLIW)
• very fast I/O System coupled with task distribution
• 560 Cells to get to the top of the top500 (theoretically)
• Realtime capabilities because of independent SPE
• intended to be the standard of tomorrow
• (hopefully) integrated in PS3 and Toshiba TVs (hdtv) in 2006
Resources / Additional Information:

- http://www.blachford.info/computer/Cells/Cell0.html