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ABSTRACT

Serverless functions provide elastic scaling and a fine-grained billing
model, making Function-as-a-Service (FaaS) an attractive program-
ming model. However, for distributed jobs that benefit from large-
scale and dynamic parallelism, the lack of fast and cheap communi-
cation is a major limitation. Individual functions cannot commu-
nicate directly, group operations do not exist, and users resort to
manual implementations of storage-based communication. This re-
sults in communication times multiple orders of magnitude slower
than those found in HPC systems. We overcome this limitation and
present the FaaS Message Interface (FMI). FMI is an easy-to-use,
high-performance framework for general-purpose point-to-point
and collective communication in Faa$S applications. We support dif-
ferent communication channels and offer a model-driven channel
selection according to performance and cost expectations. We model
the interface after MPI and show that message passing can be inte-
grated into serverless applications with minor changes, providing
portable communication closer to that offered by high-performance
systems. In our experiments, FMI can speed up communication
for a distributed machine learning Faa$S application by up to 162x,
while simultaneously reducing cost by up to 397 times.
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1 INTRODUCTION

Function as a Service (FaaS) is an emerging programming para-
digm popular in cloud applications. In FaaS, users focus on writing
application code decomposed into a set of functions. Users are
not concerned with deploying code and managing the underlying
compute and storage infrastructure. Instead, function invocations
are executed by the cloud provider on dynamically provisioned
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servers. Thus, users never allocate servers (serverless computing)
and are charged only for computing time and memory resources
used (pay-as—you—go billing). Small, stateless functions do not need
to communicate — they simply write their results to storage, and fu-
ture functions can continue from there. Thanks to the fine-grained
billing model, functions are a popular programming model for ir-
regular and unbalanced workloads.

Functions are used for distributed and stateful computations in
data analytics, linear algebra, processing of multimedia, machine
learning, and high-performance computing [1-9]. These workloads
benefit from the fast and cheap scalability of ephemeral function
workers. However, such functions run longer and have a significant
internal state. This makes storing the entire state and continuing
execution later once new inputs become available inefficient — they
need a cheap and fast way of exchanging data to become an efficient
backend for distributed computations. Still, they lack a native and
high-performance communication interface.

In HPC, communication in a distributed system is done using the
Message Passing Interface (MPI). In contrast to virtual machines and
HPC applications, serverless functions execute in sandboxes that
provide strict isolation but are prevented from accepting incoming
network connections (Sec. 3.2.1). To communicate, functions rely
on slow object storage, in-memory caches, and storage optimized
for serverless functions — these are primarily designed to improve
performance [10], but introduce a user-managed and persistent
component that defeats the purpose of serverless computing. Users
need a flexible choice between fast and cheap network commu-
nication and slower, more expensive, and durable storage-based
exchange. Unfortunately, while serverless computing is an elastic
solution for computing and resource allocations, it remains surpris-
ingly inflexible when it comes to communication. The performance
and price of serverless messaging is already a critical problem, as
messages exchanged over object storage come with double-digit
millisecond latency and cost $6 per million.

The importance of collective operations is known in the HPC
community [11, 12] — they are used in virtually all MPI jobs [13].
Collectives offer a portable interface for standard parallel program-
ming patterns [14]. Replacing send-receive messages with collec-
tives makes it easier to program, debug, and maintain, and can boost
performance [15]. From the user’s point of view, collectives provide
"division of labor: the programmer thinks in terms of these primitives
and the library is responsible for implementing them efficiently" [16].
This separation is crucial in the black-box serverless world with
major differences between cloud providers.
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At the same time, high performance communication requires
finely tuned algorithms according to network topology, number
of participants, message size, application, and even the memory
hierarchy [17-22]. However, the entire communication hierarchy
that includes nodes, racks, sockets, processes, and caches is hidden
from the user in serverless. This is an additional motivation for
the cloud provider to implement hierarchical and multi-protocol
communication [23], such that serverless applications benefit from
standardized message-passing operations with high-performance
implementations. The world of collective specializations is rich
and remains concealed behind system abstractions, and serverless
should benefit from it (Sec. 3.3).

The community identified the lack of support for efficient group
communication as a fundamental limitation of serverless comput-
ing [1, 24, 25]: applications would benefit from the high perfor-
mance and versatility of collectives, but need a framework to hide
the complexity of the cloud system.

In this work, we provide the first direct general-purpose commu-
nication framework for FaaS: the FaaS Message Interface (FMI).
FMI is an easy—to—use, high-performance framework where the
implementation details of point-to-point and collective operations
are hidden behind a standardized interface inspired by MPI, pro-
viding portability between clouds and runtime adaption. We use
MPI as our guide as it has established itself as the communication
solution for distributed memory systems. We have implemented
and extensively evaluated multiple communication channels with
respect to both price and performance, and they are all included in
the current library implementation. Having determined that direct
communication over TCP is the best solution in all scenarios, we
also implement a general-purpose TCP hole punching solution to al-
low functions to communicate directly, even behind NAT gateways.
While we implement FMI on AWS Lambda, the design of our li-
brary is independent of the cloud provider and can be ported to any
serverless provider. Furthermore, FMI can be wrapped around an
existing MPI implementation, allowing for a seamless port of FaaS
applications to HPC clusters. Concretely, we make the following
contributions:

e We introduce a library for message passing that provides
common and standardized abstractions for serverless point-
to-point and group communication.

e We provide analytical models for communication channels
in FaaS and discuss the performance-price trade-offs of
serverless communication.

o We demonstrate the application of FMI to serverless ma-
chine learning and present a reduction of communication
overhead by a factor of up to 162x and reducing cost by up
to 397 times compared to existing solutions.

2 BACKGROUND

Distributed FaaS applications already implement many group and
collective operations patterns across concurrent functions, promi-
nent examples being MapReduce in data analytics [3, 26-28],
reduce-scatter in machine learning [1, 4], and scan in video
encoding [7]. Furthermore, serverless applications need direct
communication to offer performance competetive with persistent
servers [29].
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However, the inter-function communication remains the
Achilles’ heel of serverless. Inspired by the statement: "Storage is
not a reasonable replacement for directly-addressed networking, even
with direct I/O —it is at least one order of magnitude too slow." [30], we
list different communication channels and conduct a detailed per-
formance (Sec. 4) and cost analysis of these cloud systems (Sec. 5):

e Object Storage. These systems offer persistent storage for
large objects with high throughput, strong consistency [31],
data reliability [32-34], and a cost linear in the number of
operations and size of stored data.

e Key-Value Storage. NoSQL databases offer low latency
and throughput scaled to the workload [35, 36]. However,
they only support small objects (400kB in DynamoDB) and
have high costs for write operations.

e In-Memory and Hybrid Storage. In-memory stores such
as Redis [37] and memcached [38] offer higher perfor-
mance at the cost of manual scalability management by the
user and non-serverless resource provisioning. Serverless-
optimized storage uses multiple tiers of memory and
disk [10]. The costs depend on the memory size and the
time it remains in use.

e Direct Communication. Direct network connections
could offer high performance without incurring any costs.
We discuss a prototype implementation in Sec. 3

Today’s serverless functions tend to communicate using
cloud proxies for messaging. Functions cannot establish di-
rect connections which would provide higher performance
at a lower cost.

3 FAAS MESSAGE INTERFACE

In this section, we discuss FMI, the FaaS Message Interface for
point—to-point and collective communication as well as the as-
sumptions made by our approach. We then discuss communication
channels tested for FMI (Sec. 3.2). We model the interface of FMI af-
ter the proven interface of MPI (Sec. 3.5) and implement a selection
of the most common collective operations in serverless applications
(Sec. 3.3). We design FMI to be modular - our design makes no
assumptions about the underlying cloud system. This is crucial
as cloud systems change quickly and often contain proprietary
components. FMI can be extended with new communication chan-
nels, collective operations, and support for programming languages
other than C/C++ and Python.

3.1 Assumptions

Isolation of serverless functions. Small, stateless functions work
well in isolation by writing results to storage and can be scheduled
independently from each other. However, the type of functions used
in more complex serverless workflows [1-7] are neither stateless
nor independent of each other, requiring complex task dependen-
cies and communication over cloud storage. We dispense with the
assumption that FaaS functions should be considered in isolation —
the evolving nature of the serverless computing makes it deprecated
in many practical scenarios.

Simultaneous scheduling. We assume that all functions that
will be part of the same communication entity, or communicator,
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can be scheduled simultaneously. A timer is started as soon as
the first function joins the group communicator. If all functions
scheduled to join do not do so before the timer expires, then all
functions exit with an error.

Fault tolerance. In Faa$, individual functions can retry on fail-
ure. In FMI, there is no recovery mechanism for individual commu-
nicator members. If a function fails or a communication channel
times out, the entire communicator exits with an error. Users can
implement fault-tolerant policies on top of FMI, similar to such
approaches in MPL. We propose using group membership combined
with timeouts to ensure all functions are scheduled simultaneously,
and that failure is detected. Furthermore, FMI can be used in combi-
nation with techniques such as checkpoint/restart [39] to provide
fault-tolerant execution in the serverless cloud.

Direct Communication. We assume that direct communication
between functions without cloud proxies is possible on the platform.
Ideally, cloud providers offer an interface for managed TCP or RMA
connection setup. As an alternative, NAT hole punching is discussed
in the next section.

3.2 Communication Channels

While communicators are responsible for data conversion and seri-
alization, channels are the medium for data exchange and operate
on raw memory. We broadly classify them in direct and mediated
channels. In mediated channels, the communication is done over
storage or other indirect means.

Mediated channel examples are object storage (AWS S3), key-
value database (DynamoDB), in-memory cache (Redis), and we
create direct channels using TCP connections. Programmers could
add new channels to the library with little effort and benefit from
other existing FMI features - such as the implementations of collec-
tive operations. For example, support for QUIC could be added to
provide reliable and secure communication on top of UDP [40].If a
channel provides more specialized mechanisms, such as support for
reductions, it is added by overriding default collective algorithms.

Ideally, cloud providers would provide direct communication be-
tween functions as a service. Until such time, we provide a method
that allows direct communication using TCP in the current server-
less ecosystem. We first summarize communication over Network
Address Translation (NAT), highlight the obstacles to using it in
the serverless ecosystem, and suggest hole punching as a solution.

3.2.1 Network Address Translation (NAT). Function instances are
placed in sandboxes behind a NAT gateway [41]. The gateway hides
the endpoint by rewriting the internal address with an external one
in packet headers. An outgoing communication creates an entry in
the translation table. This enables replies sent to the external ad-
dress to be forwarded to the intended recipient. Packets are dropped
when there is no entry in the translation table. Therefore, the party
initiating the communication can be behind a NAT gateway but not
the recipient. Thus, when both parties are behind a NAT gateway,
direct communication is not possible.

3.22  Hole Punching. One technique to circumvent the restricted
direct communication for endpoints behind a NAT is hole punch-
ing [42, 43]. This approach relies on a publicly reachable relay server
to create mappings in the translation table and exchange the other

Function A ) Function B
Address: 192.168.10.1 3 Q Address:10.0.0.10
|® ; S |o
a» Gateway (5} a-» Gateway
NAT Table NAT Table
192.168.10.1 40,000 0 HOIe 10.0.0.10 50,000
Erracm O e Punching © | perarm

203.0.113.2 40,001

Address: 203.0.113.2

——  Server 203.0.1133 50,001
Address: 203.0.113.10 Address: 203.0.113.3

@ Functions connect to the hole punching server, NAT table entries are created.

9 Hole punching server sends connection information of the other function.

@ Both functions initiate a connection with the new information.

Figure 1: Network Address Translation (NAT) Hole Punching.

party’s address with each participant. Functions connect to the
hole-punching coordinator and wait for the other party to request
a connection. Then, participants attempt to connect simultaneously
using the existing address mappings from the previous step (Fig. 1).

3.3 Collective Communication

Decades of research into collective operations have led to many
optimized communication protocols. Collective algorithms have
different time, memory, and energy trade-offs [44]. The cost of op-
erations is another fundamental characteristic of communication
via cloud storage. Modern collective operations are extensively
tuned: MPI collectives are specialized for network transport proto-
cols [45-48], network topology [49-53], and even for specific needs
of applications, such as bandwidth and sparsity optimizations in
machine learning [21, 54-56].

Cloud providers must be the ones to apply such optimizations
as the abstraction layer prevents users from understanding the sys-
tem’s architecture, and the opportunities for improvement are no
less complex than for MPI. Serverless heterogeneity is increasing
with RMA [57] as well as GPUs [58, 59], and the dynamically chang-
ing topology of workers presents additional challenges [60-62].

We implement the following collective operations from the
MPI standard [63]: broadcast, barrier, gather, scatter, reduce,
allreduce, and scan. The algorithms selected differ depending on
the communication channel used, and should be modified and up-
dated according to user needs and cloud system configuration. For
example, the scan operation can use a depth-optimal but work-
inefficient algorithm [64] that is impractical on channels with high
data movement cost.

Mediated channels. In broadcast, the root process uploads
the object to the object storage, and other functions download it,
benefiting from the scalable bandwidth of the storage. In barrier,
each function uploads a 1-byte object and polls until all data is
available. Polling is implemented using the list operation on the
storage — this counts the number of objects and succeeds when
the count equals the number of functions in the communicator. In
gather, functions upload their buffers to storage, and the root node
polls for data while scatter follows an inverted communication
pattern. Similarly, the root node downloads the data and applies the



reduction in reduce and allreduce. Finally, in scan, each func-
tion polls for the partial result of its predecessor, applies the scan
operator, and uploads the result.

Direct channels. This case is similar to the MPI use case, so
broadcast, gather, scatter, and reduce are implemented with a
binomial tree to avoid the bandwidth limitations of a single function.
Allreduce uses recursive doubling [17], barrier is implemented
as an allreduce with one-byte input and the no-op reduction
operator and scan is implemented with a two-phase tree-based
operation [65, 66].

3.4 Implementation

The FMI library is implemented in roughly 1,900 lines of C++ code,
as well as Infrastructure—as—a—Code in the form of AWS Lambda lay-
ers and CloudFormation templates [67]. FMI users can use layers
to integrate the message-passing library into serverless applica-
tions without any build steps. Furthermore, we implement a hole
punching library and server, TCPunch, as we found no open-source
solution for C/C++. The server stores address translations in mem-
ory and disseminate them to parties that are trying to establish
connections. TCPunch does not contain any FMI-specific logic and
exposes a simple interface, allowing other applications to easily
integrate it'.

Portability Our approach is platform-agnostic and can be ported
to any serverless platform that upholds the main assumptions
(Sec. 3.1). New cloud systems can be supported by implementing
the interface of mediated channels in terms of available storage and
database systems. In particular, FMI can be used in open-source,
self-hosted, and Kubernetes-based serverless platforms without any
modifications. FMI requires system administrators only to deploy
hole punching instances on virtual machines and containers.

Furthermore, FMI can be seamlessly ported to HPC systems by
wrapping the MPI library to benefit from optimizations and sup-
port for high-speed networking that existing MPI implementations
provide. Thus, a single codebase can be used for scaling parallel
processing on both MPI ranks in an HPC cluster and serverless
functions in a public cloud.

Practical Experiences We have deployed FMI with NAT hole
punching successfully on the AWS cloud. However, we observed
unexpected timeouts between some functions, which required re-
peating the hole-punching procedure to create a new pair of con-
nected sockets. An analysis reveals that the source of the problem is
TCP acknowledgments that never arrive at the destination, caused
by the interference of NAT gateways with TCP timestamps and
using Ethernet jumbo frames on EC2 virtual machines. Timestamps
are enabled by default in the TCP stack of many Linux distribu-
tions. Disabling them resolves the issue in user-controlled envi-
ronments like virtual machines, self-hosted serverless platforms,
and Kubernetes instances. However, preventing the issue entirely
in environments such as AWS Lambda requires support from the
cloud provider, as functions running on this platform operate in a
restricted environment.

!For details on the source code and configuration of hole punching and message
passing, we refer readers to a technical report: https://www.research-collection.ethz.
ch/handle/20.500.11850/532425
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3.5 Interface

The FMI interface is based on MPI, so programmers familiar with
MPI can use it without adjustment. The interface is designed with
compatibility in mind: we primarily extend the MPI interface with
modern C++ features, e.g., we remove the need for explicit typing
in many operations:

#include <fmi.h>

// The functions are part of a communicator comm
// Here, the communicator contains 3 functions
// Each function has a unique id: @, 1, 2

// Defining send buffer

FMI::Comm: :Data<std: :vector<int>> vec({0, 1, 2});
// Defining receive buffer

FMI: :Comm: :Data<std::vector<int>> recv(1);

// Collective operation

comm.scatter(vec, recv, 0);

// Test that each function got the correct data
assert(recv.get()[0] == my_id);

Languages. Support for new languages can be easily added
by implementing a wrapper around the communicator library.
We demonstrate the support for Python, with the help of the
Boost.Python library:

import fmi
# Defining a datatype:
dtype = fmi.types(fmi.datatypes.int)
# Root function sends data:
if my_id == 0:
comm.bcast(42, 0, dtype)
# All other functions receive data:
else:
assert comm.bcast(None, 0, dtype) == 42

Communicators. As in MPI, all message-passing operations
are based on the concept of a communicator. Each communicator
is uniquely named and is based on a group of N Faa$ functions,
each one with a unique identifier in the range [0, N) [68]. Since
each function pair in a communicator is independent of each other,
communicators can parallelize the hole punching process to accom-
modate the increasing number of functions. Therefore, an applica-
tion can create multiple communicators with different numbers of
peers or lifetimes, and providing the flexibility needed to support
the many communication patterns of serverless. For collectives that
reduce data, such as (all)reduce and scan, users can provide an
arbitrary function object as a reduction operation.

Concurrent invocation of multiple parallel functions can be im-
plemented in existing FaaS systems, and we envision that future
serverless runtimes will provide this natively.

4 COMMUNICATION CHANNEL
PERFORMANCE

An ideal communication channel should support both low latency
and high throughput communication. Many cloud technologies
can be used for serverless communication, but none fulfills all
requirements (Tab. 1).

Additional requirements for serverless storage include elastic
scaling with serverless parallelism and efficient support for ar-
bitrary object sizes [69]. The latter is necessary to support the
different communication patterns of serverless applications that
can involve both fine-grained messaging and exchanging large data
objects. Furthermore, serverless storage offers message persistence
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Channel Latency  Bandwidth Cost  Scalability = Max. Message Push vsPull? Message Persistence Serverless?
Object Storage Very High Low Low Provider-side 5TB Pull 4 v
NoSQL Database High Very Low  High Provider-side 400 kB Pull v v
In-Memory Cache Low High Low User-side 512 MB Pull X
Direct TCP Very Low High Free User-side Unlimited Push X v

Table 1: Serverless communication channels. In the following sections, we quantify the differences and characterizations.

for fault tolerance. In-memory caches can access some past mes-
sages while the instance is running but are lost upon releasing the
resource. While persistence can be useful for fault tolerance, not
all application require saving each message.

An aspect to consider is that not all communication channels
support push messages — messages where the receiver blocks and
waits for data to arrive. Instead, the recipient must actively and
frequently poll the channel to verify if the expected message is
available — also known as pull messages. Active polling introduces
additional complexity (Sec. 4.1) and adds an important performance-
cost trade-off (Sec. 5).

Finally, not all systems support a truly serverless deployment
where no resource provisioning by the user is required. Until es-
tablishing direct communication channels is offered as a service by
cloud providers a hole-punching server must be set up - it requires
minimal resources as its only responsibility is to accept connection
requests. Many tenants can use hole punching simultaneously, and
the service scales horizontally according to the traffic.

On the other hand, setting up the Redis cluster requires a sig-
nificant amount of work, and right-sizing the cluster is the user’s
responsibility. The system traffic must be monitored since an un-
derprovisioned Redis cluster will not lead to failures but instead
cause performance degradation, complicating server management
further.

To understand the performance implications of selected cloud
communication channels, we consider two scenarios: With a single
sender and a single receiver, we examine point—to—point communi-
cation, the basic building block of all communication operations
(Sec. 4.2). Then, we consider a one-to-many scenario with one sender
and a variable number of receivers. This benchmark intentionally
stresses bandwidth scalability of the different channels (Sec. 4.3),
so we explicitly do not use algorithmical optimizations in this step.

4.1 Benchmarking Setup

We analyze the following communication channels in the AWS
cloud: S3 (object storage), ElastiCache Redis (in-memory data store),
DynamoDB (NoSQL key-value store), and direct TCP communi-
cation with NAT hole punching. For all of them, we implement
the message exchange in serverless Lambda functions written in
C++. We assign 2 GiB of RAM to Lambda functions to provide
functions with sufficient I/O bandwidth and decrease the likelihood
of functions’ co-location in a single virtual machine [70]. We run
the experiments in the cloud region eu-central-1.

The S3 and DynamoDB stores do not require additional con-
figuration beyond creating cloud resources. We use the pay—as—
you-go billing model for DynamoDB, and we deploy Redis on the
cache. t3.small instance with 1.37 GiB RAM and two vCPUs. The

hole punching server fits on a t2.micro instance (1 GiB RAM, one
vCPU) as it only stores a few bytes per connection during setup
and it costs less than 1.5¢ per hour.

Polling. To communicate over S3, DynamoDB, or Redis, the pro-
ducer creates an object or an item in a predetermined location.
Unfortunately, there is no explicit notification mechanism to in-
form consumers that data is available. It is possible to launch new
functions asynchronously on data updates but not notify existing
functions. For small, short-running functions, this is no issue. How-
ever, for large stateful functions stopping and resuming is inefficient.
Therefore, consumers must poll the store using the predetermined
key until they get the data. We implement a hybrid backoff strat-
egy to reduce the number of required GET operations, as each one
million reads costs approximately $0.5: for the first 100 retries, the
backoff time is linearly increased from 1 ms to 100 ms, followed
by setting the backoff time to 2x retries, i.e., 202 ms, 204 ms. We
bound the maximum number of retries to 500. This is unnecessary
for ElastiCache Redis as polling here does not incur additional costs
- in contrast to cloud-managed S3 and DynamoDB, read requests in
Redis are free.

4.2 Point-to-Point

To measure point-to—point communication, we execute a ping-
pong benchmark and report half of the round-trip time. For storage-
based communication, the time includes both put and get requests.
For small messages (Fig. 2a), inter-function TCP is the fastest and
can achieve microsecond latency. For large messages (Fig. 2b), di-
rect communication over TCP remains the fastest option with a
reasonably symmetrical density, concentrated around the mean.

For the next experiment, we vary message size from 1 byte to 1
MiB and present the median bandwidth (Fig. 3). Direct communica-
tion remains the fastest communication channel for all data sizes,
with the difference to cloud storage being smaller for larger sizes:
the relative overhead of the cloud proxy becomes smaller compared
to the transmission time. While other authors have reported high
read bandwidths for S3 [69], our measurements include both the
send-receive (put-get) communication and the overhead of polling.
The write bandwidth of S3 cannot currently exceed 70 MB/s for
objects up to 10 MB [69], limiting throughput.

4.3 One-To-Many

To test a one-to-many communication, we use one Lambda pro-
ducer that sends messages to multiple consumers. This experiment
allows us to assess bandwidth limitations and performance with
multiple functions receiving from one source. We vary the message
size and present the aggregated bandwidth across all 8 receivers in
Fig. 4. While direct communication results in the highest bandwidth,
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the difference to Redis and S3 decreases with the number of partici-
pants. For messages larger than 10 KiB, there is a strong increase
in communication time due to bandwidth limitations. Both Redis
and S3 scale well in this benchmark, as the latter offers automatic
scaling with user count.

We investigated the feasibility of increasing the number of con-
sumers beyond 64. S3 handles scalability with 128 consumers well,
but we observe irregular failures on Redis with 128 and 256 con-
sumers, likely due to resource limitations. Our hole punching server
easily supported the connection setup with 256 functions, even with
a t2.micro instance. However, the producer’s bandwidth becomes
the bottleneck as the number of consumers grow, highlighting the
need for specialized algorithms for collective communication.

Bandwidth Value Latency Value
1/B(s3) 50 MB/s  a(s3) 14.7 ms
1/B(ddb) 7MB/s  a(ddb) 8.9 ms
1/B(redis) 100 MB/s  a(redis) 0.88 ms
1/B(direct) 400 MB/s «a(direct) 0.39 ms

Table 2: Performance model parameter values for AWS (S3,
DynamoDB, ElastiCache Redis, and Lambda).

5 THE PRICE OF PERFORMANCE

When modeling and designing HPC collectives [18, 71], time, mem-
ory, and energy trade-offs [44] must be considered. In the server-
less world, we must also consider the price of cloud operations.
The price-performance trade-off has always been a major issue
in serverless [72]: allocating more powerful instances decreases
computation time and resource occupancy but does not always lead
to lower costs. Therefore we include both the cost of data trans-
fer and the runtime functions spent transmitting data. We use the
alpha-beta model for time — one of the simplest ways to describe
parallel communication. This model considers «, the latency of the
communication channel, and f, the inverse of its bandwidth. The
time to send a message of size s becomes T = o + s - 5.

To compare direct and mediated channels we consider the latency
and bandwidth of two functions in a point-to-point communication.
We report parameter values for AWS in Tab. 2. The results show that
the in-memory store outperforms object storage in both bandwidth
and latency, but they are both inferior to direct communication.

We consider the cost per second of executing serverless functions,
hosting in-memory cache, and using cloud storage (Tab. 3). We do
not incorporate the fixed fee per function invocation in this analysis,
as these costs are the same for each communication channel and
are negligible for long-running functions.

Direct communication. As we have seen in Sec. 4.3, TCP com-
munication has no inherent cost, but limited bandwidth — and thus
the increased communication time might generate higher costs.
The cost of direct communication is limited to the runtime spent in
communication by participating FaaS functions, but we consider
the hole punching service currently needed by adding the cost of
the virtual machine (pnps) running the service.

Mediated channels. For object storage or in-memory data
stores, we define a minimal transfer time as the least time it takes
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Item Value ($) Description

Pfaas 1.67-10™> Lambda GiB per s.

Phps 3.72-107°  t2.micro EC2 instance per s.
Predis 1.05-107>  cache.t3.small ElastiCache per s.
Ps3.d 4.3-1077 S3 GET per request.

Ps3u 5.4-107° S3 PUT per request.

Pddbd  7.62- 107  DynamoDB read per 1kB.

Pddbu  1.5- 107° DynamoDB write per 1kB.

Table 3: Price components of the model for AWS in
eu-central-1, US dollars.

Channel Time (ms) FaaS ($) Channel (§) Total ($)
S3 16.70 1.12 5.83 6.95
DynamoDB 151.76 10.10 1,580.00  1,590.10
Redis 10.88 0.73 0.16 0.84
Direct 2.89 0.19 0.01 0.20

Table 4: Price analysis for communication over S3, Dy-
namoDB, ElastiCache Redis, direct TCP communication.

for a piece of data to be written to the intermediary storage by a
function and then read by another - therefore, assuming there is
no time spent waiting and polling for the data to become available.
The actual transfer time will be longer in practice, as the functions
sending and receiving are unlikely to be perfectly synchronized.
This will require additional polling on the part of the receiving func-
tion, and therefore result in delays. When using object storage such
as S3 or DynamoDB for communication, there are no additional
infrastructure costs because the system is managed by the provider
and charged on a per-use basis. We further assume that all data is
ephemeral and immediately deleted after execution, which leads
to negligible storage costs. We therefore only pay for the uploads
(Ps3,u> Pddb,u) and downloads (ps3,d, Pddb,d)- For communication
over an in-memory data store, only infrastructure costs for the
store are incurred (predis), and these only depend on how long the
instance runs.

Cost of Faa$S functions. The total cost of communication is the
sum of the cost to run the Faa$S functions during the communication
and the cost of moving the data through the channel. One exchange
with P participants, each with M GiB of RAM, that takes ¢ seconds
on average has a cost that can be calculated as follows:

Cfunction = P * [ * Praas * M (1)

The cost of Lambda instances increases linearly with memory allo-
cation, hence the M term in the cost equation. The average used for
the time ¢ may not necessarily be representative for the individual
experienced communication times, but remains a useful approxima-
tion given the large number of Faa$S functions serverless systems
commonly handle.

Price-performance analysis. We compute the cost and time
required by each communication channel to communicate 1MB be-
tween two 2GiB Lambda functions a million times by instantiating
the models previously described and present the results in Tab. 4.

Direct communication is more than four times cheaper and faster
than all alternatives.

6 EVALUATION

We now evaluate the performance and efficiency of our message-
passing interface. We focus our evaluation on collective operations,
as the point-to-point performance has been analyzed in Sec. 4.2.
We first examine the scaling of FMI Collectives on AWS Lambda
(Sec. 6.1). We then compare FMI’s performance against MPI on
virtual machines (Sec. 6.2), and quantify the overheads brought by
the serverless environment (Sec. 6.3). Finally, we demonstrate how
the integration of FMI into a serverless machine learning framework
improves performance and decreases costs (Sec. 6.4).
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Figure 5: Evaluation of FMI collectives on AWS Lambda.

6.1 Performance of FMI Collectives in FaaS

To evaluate FMI’s collectives on a FaaS platform, we use AWS
Lambda functions with 2 GiB RAM. We deploy C++ functions using
the native runtime for AWS Lambda and compile functions with
GCC 9.5. We use AWS SDK C++ 1.9.225 for communication over
Redis and AWS, and native TCP/IP sockets. For Redis, we use one



cache.t3.small (1.37 GiB RAM, 2 vCPUs) instance, and set the
polling interval for S3 to 20ms.
We evaluate collective operators with the following operations:

allreduce: Adding an integer per process.
bcast: Broadcasting an integer.

gather: The root receives 5,000 integers in total.
reduce: Adding an integer per process.

scan: Prefix sum with an integer per process.
scatter: The root sends 5,000 integers in total.

Each operation is preceded with a barrier to synchronize workers,
and we measure the maximum time across all workers needed to
complete the collective operation. We repeat all experiments 30
times.

The results are summarized in Figure 5. In Redis, communication
times grow sharply for some algorithms. This demonstrates the lim-
itation of using a provisioned service where the user is responsible
for scaling resources, and the correct instance size is not always
known a priori. Choosing the minimal size that supports a given
workload can be time-consuming and expensive as communication
times gradually increase, which often leads to overprovisioning.
S3 storage performs the worst on all benchmarks due to high la-
tency on small objects, and only a broadcast operation with a large
number of workers demonstrates the benefits of automatic band-
width scalability. On all algorithms, the direct TCP communication
achieves the lowest latency.

Furthermore, we observe that the average memory consumption
does not exceed 100 MB. However, functions need large memory
allocations to achieve sufficient network bandwidth as resources
are scaled with the memory alloction [72].

Direct TCP communication enabled by FMI is necessary to
achieve high performance collective operations.

6.2 Comparison of FMI and MPI in Virtual
Machines

To compare the performance of FMI and MPI, we deploy both on
virtual machines for an unbiased comparison, since MPI is not
available on FaaS platforms.

Setup. We execute the MPI benchmarks on t2.xlarge virtual
machines, running Ubuntu 20.04.1 VMs with 16 GiB of RAM and 4
vCPUs. We configure both Open MPI and FI to use one rank per
node when using up to eight peers, and we use up to 4 processes
per node otherwise. We use Open MPI 4.0.3 with the default con-
figuration, which uses the TCP transfer layer for communication.
We use a non-tuned FMI installation with direct communication.

Performance. The performance and variance of FMI collectives
is comparable to Open MPI (Fig. 6). We repeat the evaluation of
each collective operation 1,000 times, after discarding a first warm-
up measurement, and use a barrier before each experiment. Our
implementation of the collectives is competitive and our framework
does not introduce significant overhead.

FMI is competitive with established MPI implementations,
bringing the HPC message-passing performance closer to
the serverless world.
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Figure 6: Comparison of FMI with Open MPI in virtual ma-
chines. Functions and MPI ranks are spread across virtual
machines with 4 vCPUs each.

6.3 Evaluating the Overhead of FaaS Platforms

Thanks to FMI, we can quantify the performance losses incurred
by the serverless environment by comparing operations executed
in virtual machines (IaaS) and FaaS. We deploy FMI and OpenMPI
again on virtual machines and use the default co-location settings of
OpenMPI. Then, we compare it against FMI deployment in server-
less functions (Sec. 6.1). Results presented in Figure 7 show that
communication performance on serverless functions can be worse,
even if using identical software and communication algorithms.
Furthermore, the better performance achieved by MPI is explained
by its ability to use shared memory for communication when ranks
are located on the same machine. On the other hand, the opaque
infrastructure in serverless functions prevents using local means
of communication, as functions are unaware of co-location and
always use the NAT hole punching for communication, even when
both parties are on the same machine.
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6.4 Practical Case Study: Distributed Machine
Learning

To demonstrate the benefits of integrating FMI into serverless ap-
plications, we use LambdaML, a state-of-the-art framework for
distributed machine learning on AWS Lambda, using distributed
K-Means with the DynamoDB backend as it was shown to be the
best performing [4]. For FMI, we replace the allreduce provided
by the author with the corresponding FMI collective. We use the
HIGGS [73] dataset with 1 MB file per function. Lambda functions
are configured with 1 GiB RAM, and we run the training for 10
epochs. We use autoscaling for DynamoDB and direct communica-
tion over TCP in FML

Performance. Figure 8 presents the distribution of communica-
tion times per epoch, i.e., how much time passed between functions
ready to exchange data until they accumulate the centroids of the

2The annotation denotes the speedup of the median communications time provided
by FMI. No measurements beyond 64 functions are provided for DynamoDB due to
outliers and timeouts.
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Figure 9: Cost comparison of FMI and the LambdaML Dy-
namoDB channel. The annotation denotes the cost reduction
provided by FMI.

current epoch, averaged across ten epochs. FMI significantly re-
duces both the median and maximum communication time by up
to 105 and 1224 times, respectively, when running with 64 func-
tions. We did not increase the number of functions beyond 64 for
DynamoDB due to the timeouts and outliers we observed for 64
functions. In contrast, FMI scaled well with good performance and
few outliers up to 256 functions. The performance benefits of using
FMI stem from replacing DynamoDB with a direct communication
channel, and replacing a sequential reduction algorithm of Lamb-
daML with a parallel collective operation in FMI. A further cause is
the base64 serialization of binary data that is needed in communi-
cation using DynamoDB — FMI directly operates on binary data.
Furthermore, we avoid unnecessary buffer copies by using numpy
arrays on top of existing memory buffers from the C++ library.
Cost. We estimate the cost of moving data and running the
Lambda function for the duration of the communication epoch.
For FMI, we assume an hourly cost of running the hole punch-
ing service. For DynamoDB, we assume one read and write unit
per second for each function, as this is the minimum traffic AWS



. General ~ Object  In-Memory Direct Central

Solution -
Purpose  Storage Storage Communication ~ Server

Cirrus [1] X
Crucial [2] X X
gg [75] X X X
Lambada [3] X
Boxer [27] X X
LambdaML [4] X X X
Locus [74] X
mu [7] X X
Pocket [10] X X
PyWren [76] X X
Starling [6] X
FMI (this work) X X X X X

Table 5: Comparison of serverless communication.

requires each function to provision. This assumption is rather opti-
mistic because one function can generate multiple reads during one
collective operation in LambdaML’s implementation, as functions
repeatedly send requests until an item becomes visible. Therefore,
our estimation of the monetary benefits of using FMI is conserva-
tive.

Despite this pessimistic approximation, FMI results in signif-
icantly cheaper communication costs (Fig. 9). When using only
a few functions, the cost is relatively similar because of the the
hourly cost of the hole punching server. At 64 functions, a user
pays approximately $7.52 for 1000 epochs of communication with
DynamoDB while using FMI lowers these costs to less than $0.02,
a reduction by a factor of 397. This trend will increase with more
functions as communication time increases significantly. However,
FMI infrastructure costs are practically independent of the number
of functions, due to the limited requirements of the hole punching
server.

Integration. We integrate FMI into the K-Means benchmarks with
only four lines of code changed.

FMI can be integrated into serverless applications with min-
imal overhead, providing performance and cost improve-
ments of two degrees of magnitude.

7 RELATED WORK

Multiple works partially address communication in serverless envi-
ronments and implement specialized systems for given workloads
(Table 5). In contrast, FMI provides a modular, high-performance,
and general-purpose solution, with support for various communi-
cation channels and a model-driven selection at runtime.

Ephemeral Storage for Serverless. Pocket [10] is a special-
ized data store for intermediate data in serverless, with automatic
resource scaling and multiple storage tiers. Pocket is orthogonal to
our work and can be integrated into FMI as a cheaper alternative
to in-memory stores. Locus [74] and Crucial [2] include specialized
communication channels for serverless analytics and distributed
synchronization.

Serverless Communication. Emerging frameworks support
stateful and distributed FaaS jobs, but many of them focus on
domain-specific optimizations. Systems such as gg [75], mu [7],
and PyWren [76] are designed to handle general-purpose tasks, and
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they use cloud stores, dedicated in-memory caches, and messaging
servers.

Other systems target specific workloads and execution patterns.
LambdaML [4] and Cirrus [1] are specialized frameworks for ma-
chine learning, using custom parameter servers and dedicated stores
for intermediate data. Lambada [3] and Starling [6] implements
communication specialized for data analytics, including multi-level
exchanges and pipelining to minimize the cost and high latency
of object storage operations. Boxer [27] extends Lambada with
TCP hole punching. While Boxer implements transparent hole
punching for query processing, our solution offers a collection of
algorithms to target all serverless workloads that can benefit from
inter-function communication. Furthermore, we provide collective
operations with an MPI-compatible interface to support HPC appli-
cations. Finally, the modular FMI system supports adding domain-
specific communication optimizations, similarly to the multitude
of specializations for MPI collectives.

Serverless Platforms. SONIC [77] extends OpenLambda with
application-aware data passing. SAND [78] implements a dedicated
hierarchical message bus, and Cloudburst [79] adds co-located
caches and an autoscaling key-value store. The optimized com-
munication channels available on a given platform can be inte-
grated into FMI, letting users benefit from the high performance
of message-based communication while hiding the complexity and
specialization.

8 CONCLUSIONS

We propose FMI: an easy-to-use, modular, high-performance frame-
work for general-purpose point-to-point and group communication
in FaaS. We benchmark communication channels available in server-
less, implement direct TCP communication, and derive performance
and cost models that support the selection of optimal protocols.
FMI introduces collective communication to serverless, simplify-
ing distributed computing and allowing cloud providers to hide
platform-specific optimizations. The FMI interface can be wrapped
around existing MPI implementations, improving the portability of
applications between serverless functions and clusters.

We evaluate FMI by comparing the performance of its communi-
cation to MPI, and demonstrate the benefits of FMI in a case study
of distributed machine learning, showing easy integration and de-
creased communication time by up to 162x. FMI brings serverless
applications closer to the performance of MPI communication in
HPC and lifts one of the most critical limitations of serverless com-
puting.
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