Process-as-a-Service: Elastic and Stateful Serverless with Cloud Processes.

Marcin Copik Alexandru Calotoiu
ETH Ziirich ETH Ziirich
Roman Bohringer
ETH Ziirich
Abstract

Fine-grained serverless functions power many new appli-
cations that benefit from elastic scaling and pay-as-you-use
billing model with minimal infrastructure management over-
head. To achieve these properties, Function-as-a-Service
(FaaS) platforms disaggregate compute and state and, con-
sequently, introduce non-trivial costs due to the loss of data
locality when accessing state, complex control plane interac-
tions, and expensive inter-function communication. We revisit
the foundations of FaaS and propose a new cloud abstrac-
tion, the cloud process, that retains all the benefits of FaaS
while significantly reducing the overheads that result from
disaggregation. We show how established operating system
abstractions can be adapted to provide powerful granular
computing on dynamically provisioned cloud resources while
building our Process as a Service (PraaS) platform. PraaS
improves current FaaS by offering data locality, fast invoca-
tions, and efficient communication. PraaS delivers invocations
up to 32x faster and reduces communication overhead by up
t0 99%.

1. Introduction

In less than a decade, Function-as-a-Service (FaaS) has es-
tablished itself as one of the fundamental cloud program-
ming models. Users invoke stateless and short-running func-
tions and benefit from pay—as—you-use billing while cloud
providers gain more efficient resource usage and opportuni-
ties to reuse idle hardware [21, 68, 78]. Serverless functions
have been used in a wide spectrum of areas, ranging from
web applications, media processing, data analytics, machine
learning, to scientific computing [10, 30, 35, 50, 52, 54]. Al-
though FaaS has achieved remarkable success in reducing
the costs of burstable stateless computations, its adoption to
stateful applications such as data analytics and machine learn-
ing is currently hampered by the limitations of its execution
model [20, 35, 37, 59].

Take distributed machine learning training [16, 28, 35, 69,
71], a popular serverless workload as an example. In this work-
load, each invoked function must compute new gradients using
a subset of data. While the stateless nature of FaaS simplifies
deployment and resource management, combining the new
weights and using them in the next round of invocations incurs
major performance overheads, as in each round of updates, the
output must be written and read from external cloud storage.

Rodrigo Bruno Gyorgy Rethy
INESC-ID, IST, ULisboa ETH Ziirich
Torsten Hoefler
ETH Ziirich
Invocations Serverle"s"s..FunctionRemc‘te | Direc.t Serverless Process
[>= 20 ms] E State [ms] "E/:sc,ar::]ns i: A::::I [S::,tjs] m
Ephemeral Camputej Ephemeral Compute State
T = Comtnunication —] . I Inter—?roFess
== Via Proxy [ms] = Communication [us]
Control 5 J Local State m
Plane - Access [ns, us] o]
t_, E eral Compute State
Ephemeral Compute)
Faa$S Praa$S [This Work]

Figure 1: Cloud processes solve critical inefficiencies inherent to
functions while retaining extreme scalability and elasticity.

Furthermore, each new round requires a FaaS invocation that
goes through the entire cloud control plane.

Researchers have addressed this lack of state management
in ephemeral functions [37, 59] by proposing ephemeral stor-
age solutions [33, 38, 66, 77] that functions can use the keep
state. However, all of these are based on non-serverless in-
frastructure which requires manual infrastructure management
and is not elastic by nature. In addition to an increase of cost
and complexity [33, 59], serverless applications that heavily
depend on non-serverless infrastructure to keep state are only
as elastic as the least elastic component. As a consequence,
state management has become a burden and a limiting factor
for FaaS developers. As a consequence today’s platforms can-
not compete with the performance and efficiency of classical
multi-processing [19, 32, 37].

The separation of data and computing in serverless is fun-
damentally inefficient and cannot be resolved by composing
FaaS with additional remote cloud systems (Fig. 1). Instead,
we introduce a new abstraction: the cloud process. A process
extends the semantics of a function by introducing a durable
state and by defining a universal inter-process communi-
cation API. We demonstrate how processes do not impose
significant design challenges for providers while retaining
the elasticity and scalability characteristics attributed to FaaS.
Process-as-a-Service (PraaS) is heavily inspired by classical
OS design and transfers concepts that have stood the test of
time into the context of granular cloud computing. Similarly to
OS processes using threads for concurrent computations, cloud
processes run on a single machine and launch functions within
a shared environment (here, a function invocation would be
equivalent to a thread OS). When resources become scarce,
PraaS follows traditional-OS design and transparently swaps
state to persistent storage. By implementing responsibilities
traditionally associated with operating systems, PraasS is a
step towards a distributed cloud computing OS that provides

Virtual machine
SSH, TCP, HTTP, RPC, RDMA
Months

Local disk, memory

Memory, cloud storage

Container Process Function
SSH, TCP, HTTP, RPC HTTP, TCP HTTP
Days, hours Minutes, hours Seconds

Memory, cloud storage Cloud storage

Manual, minutes
Persistent

Provisioned

Semi-automatic, secs

Automatic, msecs Automatic, msecs

Persistent Ephemeral Ephemeral

Provisioned

Pay-as-you-go Pay-as-you-go

Figure 2: Evolution of computing platforms in the cloud - PraasS enables state persistence for ephemeral workers.

a better balance between the performance of persistent allo-
cations and the elasticity of ephemeral workers (Fig. 2). The
new model allows us to introduce new solutions to three of the
most significant limitations of FaaS: the lack of efficient and
portable communication, inefficient data plane coupled with
control logic, and the absence of persistent and low latency
state.

Inter-Process Communication Current FaaS platforms re-
strict peer—to—peer communication, forcing users to rely on
storage or proxy-based communication. This approach is ex-
pensive, leads to higher latency, and lacks a portable API. To
encapsulate network transport between two ephemeral entities
in serverless (§2.1), we take inspiration from the indirect IPC
methods that use mailboxes to store message data [63]. In
Praa$, we define a simple yet powerful messaging interface
based only on two operations: send and receive.

A message is sent to a mailbox of the process hosting the
destination function when the process is active, or is stored
externally while the process is swapped out. Messages can
be transferred between two concurrently executing functions
(message passing) but can also be used as triggers for functions
(invocation), effectively replacing storage-based communica-
tion [35, 50]. Orchestration patterns are also enabled with
messages (e.g., if a function should only be invoked after a
certain number of messages is received) through the use of
mailboxes (Sec. 4.3). A single interface across platforms cov-
ers all types of function—to—function communication while
hiding transport protocol details: shared memory, TCP, QUIC,
or RDMA.

Data Plane Serverless functions are predominantly short-
running [61] and, as a consequence, the relative overhead
of the multi-step function workflows is high (§2.2). Slow
control-plane invocations prevent wider adoption of parallel
and granular computing [20, 42, 44], and functions cannot
fully benefit from the availability of fast network transport
when using the control plane. Instead of applying optimiza-
tions to decrease control overheads, we bypass the control
plane overheads from the data path entirely [53] by exposing
a direct communication channel to the process that allows
submitting the invocation payload as a message — effectively
separating control and data paths in the platform.

Durable State The stateless nature of FaaS enables auto-
matic scalability and resource provisioning but significantly

limits the efficiency of applications (§2.3). While cloud opera-
tors retain function containers to minimize cold startups, this
uses limited memory resources to hold function states across
invocations [61]. However, functions cannot solely rely on re-
source caching because ephemeral containers can be removed
anytime. Thus, users must resort to saving state in an exter-
nal store after each invocation. PraasS strikes a new balance
between serverless and traditional stateful and server-based
applications by providing durable state that is automatically
swapped-in/swapped-out as the process becomes active/in-
active. The lifetime of computing and storage is managed
independently, but the state is retained close to compute re-
sources, improving data locality and startup times.

We implemented PraaS atop AWS Fargate, a commercial
black-box system of serverless containers, and Knative, an
open-source Kubernetes-based serverless platform. The new
system consists of a dedicated control plane, a client library,
and a process runtime that can be deployed in any container
or virtual machine. We demonstrate that PraaS can scale as
fast as serverless functions while reducing invocation latency
by up to 32x and communication latency by up to 99%.

2. Background

Function-as-a-Service (FaaS) has found its way to major cloud
providers with a fine-grained and elastic programming model.
Functions are stateless, and invocations cannot rely on re-
sources and data from previous executions. Instead of us-
ing persistent and user-controlled virtual machines and con-
tainers, function instances are dynamically placed in cloud-
managed sandboxes, e.g., containers or lightweight virtual
machines [7]. A cold invocation requires allocation of a new
sandbox that significantly increases invocation latency [20, 48].
Subsequent warm invocations achieve a lower latency by
reusing existing sandboxes. Therefore, cloud systems em-
ploy complex and sophisticated retention and pre-warming
strategies [22, 49, 64, 67], trading off higher memory con-
sumption for faster executions. In addition, flexible pay-as-
you-go billing is another significant advantage of serverless
systems: users are charged only for computation time and
resources used. However, it does have some prominent dis-
advantages: high communication costs, higher latency due to
complex control planes, and poor locality of data due to the
non-existence of local state [20, 26, 37, 72].

Controller
Load Balancer

Sandbox

Function Server Function Server

Figure 3: FaaS control plane: each invocation includes the manage-
ment overhead (@).

2.1. Serverless Communication

Communication in FaaS has always been constrained as in-
dustrial offerings do not offer direct communication. State-
of-the-art solutions implement communication through cloud
storage, increasing latency, costs, and application complex-
ity [35, 37, 45, 54]. Although direct network communication
between functions could alleviate performance problems, func-
tions do not offer the abstractions needed to implement com-
munication between functions with a dynamic lifetime. lLe.,
the message—passing paradigm cannot be applied directly to
ephemeral functions, as the worker lifetime is not well defined:
new workers can be launched and terminated by the provider
at any time according to internal scheduling and scaling poli-
cies that are completely unknown to users. Furthermore, in
typical FaaS deployments, functions operate behind NAT and
cannot accept incoming connections. Connections can be es-
tablished with the help of hole punching [27, 29], but it is
a complex process that applies only to two active functions
simultaneously.

2.2. Serverless Control and Data Planes

Modern platforms implement dynamic function placement
through a centralized routing system (Fig. 3) [7]. It includes
an abstraction of a REST API and a gateway with a persistent
network address and uses an HTTP connection (@) to hide
the selection and allocation of function executors. Invocations
are triggered by internal and external events (G). The input is
forwarded to the central management (@) responsible for au-
thorization, allocation of resources, and routing to the selected
server. In AWS Lambda, the control logic is responsible for
authorizing requests, managing sandbox instances, and plac-
ing execution on a cloud server [7]. In OpenWhisk [1], the
critical path for the function execution is even longer. Each in-
vocation includes a front-end web server, controller, database,
load balancer, and a message queue [60]. Finally, the input
data is moved to a warm (@) or cold (G) sandbox, and the

function returns the output through the gateway (Q).

The many steps of control logic add double—digit millisec-
ond latency to each invocation [7, 18] and require copying user
payload multiple times, even though subsequent invocations
reuse the same warm sandbox when available. The overhead
of the control plane can dominate the execution time and is

Storage Type 1B 1MB 10MB

Persistent storage (AWS S3) 10.3 204 102.4
Key-value storage (AWS DynamoDB) 34 n/a n/a
In-memory cache (AWS ElastiCache) 0.9 24.6 84.6

Table 1: Access time [ms] to remote cloud storage from an AWS
Lambda Function with 2 GiB RAM.

much higher than the network transmission time needed to
transfer the input arguments [20]. The long and complex invo-
cation path is even more visible in distributed applications and
serverless workflows that often invoke functions with large
payloads. Alternative approaches include manual provision-
ing, reusing function instances, decentralized scheduling, and
direct invocations [8, 17, 21, 65, 76], but these optimizations
do not offer a solution generalizable to all FaaS platforms.

2.3. Serverless State

The stateless nature of functions makes them easy to sched-
ule, but places significant constraints on the usability of FaaS
systems. Computing resources are allocated with ephemeral
memory storage that cannot be guaranteed to persist across
invocations. Since many applications require the retention of
state between invocations, stateful functions place their state
in remote cloud storage [33, 66, 77]. While the function’s
state is located in storage far away from the compute resources,
fetching and updating the state adds dozens of milliseconds
of latency to the execution (Table 1), resulting in significant
performance overhead [33, 77]. In the FaaS model, removing
remote storage access from the data path is impossible.

FaaS can be much more than just a platform for irregular
and lightweight workloads, and the serverless programming
model aligns well with requirements for massively parallel
and granular computing [42, 44]. Nevertheless, serverless
systems must first overcome critical limitations: complex
control plane involved in every invocation, lack of a fast and
durable state, and expensive storage-based communication.

3. Cloud Processes

The lack of state and data movement in functions made server-
less simple, but resulted in major performance and usability
limitations (§2). We address these limitations with the new
concept of a cloud process, a natural extension of serverless
functions. Conceptually, we lift traditional OS processes to the
cloud. Processes are dynamically and automatically allocated
on abstracted cloud resources, and like functions they execute
in fine-grained and isolated environments. Each process con-
tains a controller that controls the state, invokes functions,
accumulates logs and metrics, and implements message pass-
ing between processes.

The new cloud process model overcomes the limitations of
existing systems in three areas. (1) Inter-process communica-
tion defines data movement between processes and removes
the dependency on external storage, enabling direct commu-

| o = PraaS Control Plane

Process
. State
[
(2]

Executor
Mailbox Function

Logs Function

Communication Channel Process Controller

Figure 4: The process model in PraaS: ephemeral functions are
executed in a processs with shared and transient state and communi-
cation channels for quick user access.

nication between ephemeral workers (§3.1). (2) Processes
have access to a data plane that supports fast function invo-
cations bypassing the control plane (§3.2). (3) Processes are
equipped with durable state with well-defined durability se-
mantics which efficiently supports stateful applications (§3.3).
With the new process abstraction, we build PraaS$, a new pro-
gramming and execution model (§4).

3.1. Process Model with Communication

Compared to FaaS functions, a process contains two new com-
ponents to support inter-process communication: a data plane
communication channel and a durable state, which includes
all the memory storing user data and a mailbox (Fig. 4). When
a process is allocated by the cloud control plane, it is assigned
an identifier and a user-defined amount of resources. A com-
munication channel is then opened with the first invocation to
transmit the input and output data directly ())). Subsequent in-
vocations can bypass the control plane and use the data plane
(@)). Functions use data stored by previous invocations in the
state (@). The mailbox (@) handles invocations (§4.3) and
communication between processes (§4.2). This component
is allocated within the process and managed by the process
controller to minimize access latency and provide reliability;
messages may live longer than a single function invocation.
Compared to Faa$S, functions executing in a cloud process
have to use only five new functions to benefit from local state
and fast communication (Listing 1). We define two messaging
routines that implement all communication tasks handled by
processes. A recv operation that has two required parameters
only - the sender identifier and message name - and returns
the contents of a message with the given name if such ex-
ists. A send operation takes three standard arguments: the
identifier of the target process, message name, and the con-
tent of the message. Both routines accept a set of optional
flags to support copy and sharing semantics that vary between
programming languages. We define two special identifiers
SELF and ANY to support intra—process communication and
receiving messages from an arbitrary sender. These routines
are optimized to transmit binary data as efficiently as possible
and hide all details of the underlying network transport and
local communication. A simple interface with just five func-
tions expedites porting applications, and function developers

_— Idle period

& m ¥~ Invocations «— m

Create
l& Kill @Swap In ¢ Swap out l
KILLED N SWAPPED
‘~‘______________________—4’

& Remove swapped state

Figure 5: The life cycle of a cloud process. Process status changes in
reaction to user operations («) or operator scaling actions ().

Operate on process state
data)

data = state (key)

Send message over IPC

state (key,

send (destination, key, data)

data = recv(source, key)
Invoke function
invoke (destination,

function, data)

Listing 1: New communication interface available to functions.

are not exposed to the complexity of managing the state and
establishing communication.

3.2. Computing Using the Data Plane

Functions can also be invoked by sending the payload over
the data plane (inter-process communication) instead of going
over the control plane. Conceptually, a function invocation
is similar to an allocation of a thread in a running program.
A new thread starts working with a fresh stack but can still
access the process in-memory state. We leave it up to the
implementers to decide if a function executes in a dedicated
OS process or a thread within the main OS process.

The process can handle multiple function invocations simul-
taneously, and it is bounded by the resource limitations of the
underlying sandbox. Cloud providers can limit the number of
simultaneous invocations an individual process can start, for
example, by setting the limit relative to the memory allocated.
Larger workflows are supported by distributing the workload
across multiple processes and communicating through the IPC
interface (§4.2).

The process controller receives invocation messages to start
user functions. Functions queued beyond the upper threshold
wait until resources become available. Furthermore, the pro-
cess controller uploads data plane invocation metrics to the
control plane. When the control plane sends an eviction notice
for example due to inactivity, the controller swaps the state to
cloud storage.

3.3. Scalability with State

Processes are serverless; the cloud operator makes all alloca-
tion decisions, and users have no control over them. Similarly
to FaaS, the allocation is not persistent, the lifetime of a pro-
cess is controlled by the cloud provider, and it can be removed
at any point. Process state enables the persistence of user data
and execution of stateful functions without the user needing
manual state management. Note that a process hosting a sin-

gle function operates as stateful FaaS (similar to a stateful
entity in [14]), with the same ease of scaling and reclaiming
resources.

Processes have a state that must always be locally avail-
able to ensure minimal access latency, but it does not perish
once the sandbox is removed. The state cannot restrict cloud
providers from scaling resources transparently like in FaaS. To
that end, we extend the FaaS function model with a new state
of being swapped out (Fig. 5). By introducing a persistent
swap, we remove the statelessness restriction from FaaS while
not adding any new limitations to the serverless allocation
model. A swapped process can be reactivated later through a
function invocation and an explicit reinitialization.

Scaling Up New processes are allocated on-demand via an
explicit request to the cloud control plane. Processes are allo-
cated with a clean state (creation), or retrieve a swapped state
from the storage and continue execution (swapping in). The
fundamental assumption behind our process is that it never
scales beyond a single server, since such a design radically
simplifies handling memory and state. A process spanning
multiple machines requires a partitioned and distributed shared
memory, which comes with non-trivial issues in cache co-
herency, synchronization, and performance. Instead of using
processes larger than a single machine, users are encouraged
to allocate more processes to handle the increased load. This
decision does not affect the programming model, as the com-
munication interface available to functions is the same for local
and remote operations. When possible, this communication
will be optimized to use local operations.

Active communication channels do not prohibit cloud oper-
ators from performing load balancing and consolidation, since
processes can be migrated between machines. Clients with an
active connection to a migrating process receive a packet with
migration details and can establish a connection to the new
communication channel. This design decision does not intro-
duce additional complexity into writing serverless functions,
since data exchange between two functions always uses the
same API, regardless of whether the communication is intra-
or inter-process.

Scaling Down Upon a process eviction, the sandbox is ter-
minated and the state — including memory, logs, and mailbox,
as in Fig. 4 — is swapped out to persistent cloud storage. Pro-
cesses are swapped implicitly by the control plane according
to the provider’s down-scaling policy (fixed period of inactiv-
ity for example). In practice, our API could be easily extended
to allow users to explicitly swap out processes. When scaling
down, processes do not accept any new invocation requests,
and the state, together with unread messages, is written to the
store. Messages sent to a swapped-out process are delivered
to the backup queue (Fig. 6), and read once the process is
swapped in. If a specific state is no longer required (for exam-
ple, if the user deleted the process), the swapped state can be
completely removed from the cloud storage. Swapping guar-
antees data persistence in the presence of intentional failures,

i Praa$ System
Control Plane

1
1
—_— f
1
1

REST !

Interface | Server / Serveri

o ! - !
- ! Process B n Process Process :
) i .

R i lig!! |_State | |_State [H

1 4 !

<«— Control Path Object Storage

<==> Data Path | =TT |‘__

Figure 6: Platform architecture of Praas.

Backup Queue
EEEEE

PraaS Concept Inspiration

Application Operating system.
Process POSIX process model.
Function Thread in a process.

State POSIX process memory.

State Persistence Swapping memory pages.

Communication Channel System-V message queues.

Communication Model Indirect message passing with mailboxes [63].

Data plane Network data plane in Arrakis [53], kernel bypass in RDMA.

Table 2: In PraaS, the concepts of systems design are used to lift the
cloud process model into a distributed and serverless space.

that is, when the resource is evicted by the cloud provider. For
unintentional failures, when the machine crashes unexpectedly,
we guarantee only the persistence of the state snapshot from
the last swap-out operation.

4. PraaS: Process—as—a—Service

With the cloud process model introduced above, we now apply
proven system design concepts (Table 2), and present Process—
as—a—Service, a new execution model and serverless platform
(Fig. 6).

4.1. Process Management

In PraaS, processes are grouped to create scalable applica-
tions spanning multiple server machines (§4.1). Managing
processes instead of functions requires two extensions to the
FaaS model. First, processes are grouped into applications to
create communication partners for functions, a feature miss-
ing in current serverless platforms. Then, we enhance the
REST interface of the control plane, focused on function
invocations, with process management operations.

A PraaS$ application provides group semantics for a set of
processes, including processes that are active and that have
been swapped out by the cloud provider. In Praas$, the system
grows and shrinks automatically with changes in the workload,
and the cloud operator decides where and how processes are al-
located. Processes in an application can establish inter-process
communication.

Process allocation is controlled by the cloud provider con-
trol plane, and we do not place any restrictions in this regard.
Therefore, low-latency schedulers like the one in Lambda can
be supported [7], and placement can be optimized to increase
data and communication locality. The REST interface of the
control plane allows for managing applications and processes

[N

app_id = create_application ()
status, pid = create_process (app_id, optional[pid])

result, pid = invoke (app_id, func, data, optional[pid])

delete_process (pid)
delete_application (app_id)

Listing 2: PraaS$ control plane REST interface.

tion A: send data to the mailbox o

def sender (process_id, message_id, data):
praas.send(process_id, message_id, data)

def receiver (message_id):
data = praas.recv(praas.ANY, message_id)

Listing 3: Communication between functions A and B encodes data
flow but does not expose the location nor the status of the recipient.

(Listing 2). New processes receive a clean state by default
(2), but they can be initialized from a previously swapped
state by providing the pid. To start a new process, the user
must specify the application, the container image used, and
the resource configuration (we omit some details in Listing 2
for simplicity).

Praa$ is backwards-compatible with the FaaS interface.
Users can skip process creation and directly invoke functions.
At this point, the platform automatically creates a process and
invokes the function (3). Like in Faa$S, the control plane imple-
ments standard container management techniques to increase
the frequency of warm invocations. Unlike in FaaS, users
can control the routing of invocations into selected process
instances by providing a process identifier in request headers.
Thus, processes can be used to implement sticky sessions [70]
where requests from a single user are always handled by the
same process.

Processes directly connect to the control plane to receive
group change notifications, invocations, and swap requests.
Since not every invocation now uses the control plane, pro-
cesses report data plane metrics back to accumulate billing
data, drive the down-scaling policy, and update logs. Shift-
ing the accountability from the invocation critical path to the
control plane is essential in enabling fast serverless computing.

4.2. Inter-Process Communication

Praa$ offers efficient and disaggregated communication
by binding mailboxes and channels to the process instance.
Our communication model does not concentrate on function
invocations since they have a limited lifetime and might not
execute simultaneously, but it is focused on data movement
operations, allowing dynamically reshapable applications to
benefit from peer—to—peer communication. In an application,
processes know about each other’s existence and can commu-
nicate directly. Instead of moving data from a function to a
function via a cloud proxy, it is transmitted between cloud
processes hosting functions that want to communicate, in-
creasing performance and decreasing network communication
volume. Thus, communication services scale up automatically

with the processing units, data is always locally available, and
processes save the latency of reaching an external service.

Messaging routines provide an abstraction for all commu-
nication in space and time between processes and functions.
When the message name indicates a function invocation, its
contents are interpreted as input payload for a new invocation
(§4.3). A message sent to itself becomes part of the process
state (§4.4). All other messages are placed in the mailbox in
a recipient process, co-located with the process in the same
sandbox to minimize data copies.

Functions communicate by sending messages (send) into
the recipient’s mailbox. Recipient functions read messages
(recv) and optionally specify the source to match the exact
recipient. Since cloud processes communication target mail-
boxes, we establish message passing without enumerating
ephemeral and unreliable functions, as demonstrated in the
example of two functions exchanging data (Listing 3). The
communication interface stays the same, regardless of the
actual location of both functions, as they can execute in the
same process and in two different processes. Message names
encode focus on the data and its semantics, similar to storage-
based communication in FaaS that requires a key for object
and NoSQL storage, and multithreading in OS processes that
uses variable names for that purpose.

Furthermore, the communication may not happen syn-
chronously as the receiver might be swapped out. In such a
scenario, messages are delivered to the backup queue and are
processed once the process has been swapped in. Furthermore,
senders are always identified in the same way, which makes
communication independent of the distribution of functions
across processes. PraaS communication replaces pushing
updates and polling for changes in a cloud proxy, allowing
serverless programs to benefit from the higher bandwidth and
lower costs of peer—to—peer communication.

Distributed applications need to control active workers and
their location in the cloud. This is even more important when
using serverless resources, as allocations are ephemeral and
change often. However, FaaS systems offer little to no support
for controlling the global state of an application. In PraasS,
all processes are equipped with an up-to-date list of active
and swapped-out processes, and with information needed to
establish IPC-style connections. The control plane is involved
in every scaling up and down operation and is responsible
for distributing updates to active processes. Functions are
notified of a change, allowing them to adjust communication
operations and support collective communication patterns,
even when they involve workers that can be swapped out.

Copy data from state and deserialize
model = praas.state("model") .deserialize ()
data = praas.state("data") .deserialize()

Example of appl

g new changes

new_data = compute (new_input, model, data)
Store data in the process state.

praas.state("data", new_data)

Listing 4: Integrating process state into Python functions.

Consider a global reduction operation applied by distributed
workers before continuing with the next batch of work, as
is the case in distributed machine learning training [35].
PraaS$ can be more affordable and efficient at the same time:
functions store their local state in the process state and com-
municate reduction data directly to the destination, avoid-
ing copying in cloud proxies. In the subsequent iteration,
functions are guaranteed to access the warm environment
through the process state.

4.3. Data Plane

PraaS$ helps to minimize FaaS latencies with fast and high-
throughput invocations via the data plane. In FaaS, a serverless
invocation includes authorizing the request, selecting and op-
tionally allocating resources, and redirecting the payload to
the executor function. Repeated control operations are redun-
dant when many execution requests are redirected to the same
warm container. Therefore, as long as the authorization re-
mains valid, users can bypass control operations and move
data directly to the process. The payload is sent from the user
to the process mailbox, and this single-hop approach helps
achieve high throughput on larger payloads. Thus, the invo-
cation latency is bounded only by the network fabric and the
performance of function executors in a process.

Type Mechanism

Standard Each message creates a new function invocation.
Multi-Source Invocation waits for N messages with the same key.
Batch Invocation waits for N messages with any key.

Table 3: In PraasS, function invocation patterns are defined as condi-
tions on messages arriving in the cloud process.

Serverless workflows may require complex function inter-
actions such as function chaining, conditional invocation, and
batching of input data. These often require external orchestra-
tors and service-based triggers that increase costs and complex-
ity even for small workflows, e.g., a function pipeline or an
aggregation function taking more than one input. To facilitate
serverless programming, we implement basic control and data
policies that allow users to support dynamic and configurable
invocations (Table 3). Invocations are represented as regular
messages whose names encode function and an invocation key.
These messages are tracked by the process controller which
accumulates provided invocation keys and checks if any of

the function triggers are satisfied. More complex orchestrators
can be implemented atop cloud processes.

Multi-source invocations can be used by machine learning
applications for reduction with the epoch number as an
invocation key, while a MapReduce task would use keys to
send intermediate data into different reducers.

4.4. State

Process state includes memory and unread mailbox messages,
which, on a process eviction, are swapped out to cloud object
storage. Saving messages guarantees access from future func-
tion invocations while not relying on an external cloud service
that comes with additional latency and cost. We implement a
simple interface for accessing and modifying the state mem-
ory that internally uses the same communication interface as
invocations and IPC (Listing 4). The simple communication
interface incorporates new state and communication features,
requiring neither a complete redesign of serverless applica-
tions [75] nor dedicated compilers [31].

The communication interface provides copy and sharing
semantics for data exchange, depending on the language and
platform support. Objects are stored in binary form in the
former, and each call to recv returns a new copy. Functions
receive the object data from the process state by using standard
local IPC methods, such as POSIX message queues or UNIX
domain sockets. In the latter, objects are stored directly in a
shared memory pool accessed by all functions in the cloud
process, providing serialization—free and zero—copy access.
For example, functions executing in C-based languages can
receive a pointer to a shared object. On the other hand, Python
functions require pickling data for each state operation, but
they can still benefit from a process implementation that uses
zero—copy-shared memory instead of traditional IPC meth-
ods to communicate between functions and state. The state
implementation is hidden from the user, who only sees the
operations send and recv, allowing cloud operators to decide
where and how objects should be stored and find a balance
between access latency and the cost of in-memory storage of
user data.

5. PraasS in Practice

We implement PraaS as an extension to CaaS and FaaS plat-
forms to facilitate wide adoption and demonstrate the compat-
ibility of our process model with existing systems.

The solution consists of roughly 11.5 thousand lines of
code in C++ and Python, with an additional Python runtime
for a process (400 lines). We use dedicated libraries for event
handling, I/O multiplexing, HTTP serving, and data serializa-
tion. PraaS can be extended with deployment to new serving
platforms, execution in new container types, and support for
new transport protocols and network fabrics, e.g., QUIC and
RDMA.

F
.
g10z =i ==
- 1
CIg')lo1 = b —l H_———E B |
= .
c
o ----|- -
S 100 . .- | B BN EE B
2 10 d e
8 |
Z 101
10~] B BN B B B
108 10 KiB 100 KiB 1 MiB 5 MiB

Message size [bytes]

==+ TCP (baseline) PraaS (Local) PraaS (Remote) AWS Lambda

Figure 7: Invocation latency of a no-op function in PraaS on AWS
Fargate.

As in other serverless platforms, users deploy containers
with function code and dependencies, which are later extended
with the PraaS process runtime. In addition to the OS pro-
cesses that execute user code, we add controller running with
superuser permissions. The controller handles invocation mes-
sages, accumulates data plane metrics, manages state, and
implements swapping policies. Then, it uses TCP connections
to propagate messages to other processes.

We demonstrate the execution of processes on top of the
managed containers using Kubernetes [4] and Knative [3].
Processes are allocated with standard control plane operations.
Furthermore, we replace the default down—scaling policies
that terminate a randomly selected or the least recently used
container. Instead, we terminate process containers with data
plane activity below a specified threshold. On Kubernetes, we
manually modify the scaling set, while in Knative, we use the
pod deletion cost mechanism to target selected containers.

Furthermore, we deploy PraaS on the AWS Fargate, a cloud
service that outsources container management from the user.
Serverless containers offered by Fargate are allocated on de-
mand without resource provisioning for a Kubernetes cluster.
We use a container instead of running a cloud process directly
as a serverless function on AWS Lambda because Fargate al-
lows us to attach public IP address to the container, a feature
necessary for direct communication. Note that the IP is not
exposed to the user code. Thanks to a resource configuration
scheme similar to AWS Lambda, we can compare serverless
containers with an equivalent resource allocation as Lambda
functions. To use Fargate as the service backend of PraaS, we
only need to implement the down—scaling policy in the PraaS
control plane.

6. Evaluation

In this Section, we focus on showing the practical benefits of
Praa$ with respect to improving invocation latency, reducing
the overhead of communication between functions, and avoid-
ing the need to rely on slower cloud storage by using the local
process state. We then evaluate the trade-offs of Praa$ and its
cost compared to FaaS systems.

(o)
3 100 R .
1S l | .
> I
(6]
G 100 = = = = B B
— .
= |
) I
= !
T 100 = | = B N
(%]
()
= N ’
10B 10 KiB 100 KiB 1 MiB 5 MiB
Message size [bytes]
PraaS Send-Recv Redis AWS S3

Figure 8: Communication latency of two PraaS processes running
on Fargate with different communication channels.

6.1. Lower Latency Invocations via the Data Plane

We start our evaluation of PraaS by comparing the latency
of function invocation over the data plane compared to using
AWS Fargate. For this purpose, we invoke a function that
accepts a payload of a given size and returns it immediately -
this is the serverless invocation equivalent of a no-op.

We invoke warm AWS Lambda and PraaS functions. PraaS
is running on AWS Fargate, and invokes a remote function on a
Fargate container with 1 CPU and 2 GB which is equivalent to
the Lambda configuration that uses 1792 MB and 1 vCPU. The
version testing local follow-up invocations is using a Fargate
container with 2 vCPU.

The results shown in Fig. 7 show a consistent, significant
benefit for using PraaS, with remote invocations having virtu-
ally no overhead compared to the baseline of simply transfer-
ring the payload over TCP.

Local invocations measure invocations of a follow-up func-
tion scheduled on the same process rather than going through
the control plane. While much faster than alternatives (up
to 32 times faster than AWS Lambda), local invocations are
limited by the delay introduced by the POSIX message queues
used to move invocation data between the process controller
and function invoker. PraaS$ invocation have significantly less
latency compared to Lambda: remote invocations are between
68% and 94% faster while local invocations are between 94%
and 99% faster.

6.2. Inter-Function Communication

An important concept in serverless workflows is chaining
functions to pass the output of one as input to the other one.
We now evaluate the impact of direct message passing between
processes compared to communication through Redis and S3
for different payload sizes.

We design the experiment to send a single message between
two PraaS processes across two Fargate containers with 1
vCPU and 2 GB RAM. As baselines, we use a Redis instance
(allocated on a c4.xlarge EC2 VM) and AWS S3. Both Redis
and S3 are used to replace point-to-point communication. The
sender uploads an object/key and the receiver reads it.

Lambda, 443 MiB
Lambda, 885 MiB

Lambda, 1769 MiB
Lambda, 3538 MiB

Praas, 0.25 vCPU
Praa$, 0.50 vCPU

Time [ms]

Qe Qe e

& Q !
v X X G
\N& \3966 \N&

b

Service, benchmarking scenario

(a) Services for collaborative editing of LaTeX files.

10? (™ [| N

PraaS, 1 vCPU
Praas, 2 vCPU

Lambda, 443 MiB
Lambda, 885 MiB

Lambda, 1769 MiB
Lambda, 3538 MiB

Praas, 0.25 vCPU
Praas, 0.50 vCPU

Praas, 1 vCPU
Praas, 2 vCPU

104 -
o

Time [ms]
-
<
I

Y 1

o
3
@
O

\(\9&’5

N

Qe «° N
\e

co‘(\v

e
LG«\Q\\

Service, benchmarking scenario

(b) Compilation microservice.

Figure 9: LaTeX microservice with serverless functions (AWS Lambda) and cloud processes (AWS Fargate). Semi-log plot.

100000 13 15 11 11 i 50
10000

1000

-
o
o

Input size [elements]
s

1 10 25 50 100
Number of reduction invocations

(a) Speedup of reduction in PraaS over state in S3.

2 100000 1.2 1.2 1 1 1 20
= .
[}

€ 10000 1.8
@

L 1000 16
N

™ 100 - 14
o

5 -12
Q 10

£

1 10 25 50 100
Number of reduction invocations

(b) Speedup of reduction in PraaS over state Redis.

Figure 10: The reduction benchmark storing state.

For all cases, we measure the round-trip latency of sending
and receiving between the two processes and divide the time
by two. Results represent the median out of 100 runs.

Figure 8 presents the results of this experiment. Praa$S
improves the latency against S3 from 77% to 99% (smallest
message) and against Redis from 39% to 93%. The benefits
are higher for small messages, which is particularly impor-
tant when considering deploying large stateful functions or
services [56]. In addition to latency reductions, PraaS avoids
significant costs and maintenance overheads associated with
using S3 and setting up (and scaling) Redis instances.

6.3. The benefits of Cloud Process State

We now evaluate how much time can be saved by using the
local process state PraaS provides instead of saving partial
results in cloud storage. The scenario where many workers
aggregate results using reduction functions is common in many
cloud applications, especially in distributed machine learning.

The reduction function needs to update the state resulting
from previous invocations whenever it is invoked with new
data. Instead of loading data from cloud storage, updating and
storing it again, serverless functions can skip the first and last
steps by keeping the data in the memory of a warm container.

The reduction shown in Fig. 10 accumulates data in a vector
of 8 byte integers. We invoke the function with different input
sizes, and we compute the time needed to invoke the reduction
N times and display the speedup provided by PraasS using its
persistent, swappable state compared to storing the state in S3
or Redis. We run Fargate with 1 vCPU and 2 GB memory in
this benchmark and Redis on a c4.xlarge machine. PraaS does
not incur the additional costs of running a separate in-memory
cache that Redis does.

Praa$ is approximately 2x faster than Redis except for
the largest input sizes, where there is enough computation
to effectively hide the time needed to load and store partial
results. The speed-up compared to S3 is overwhelming - at
least 11 times faster, with some scenarios being over 50 times
faster.

6.4. Case Study - LaTeX Service

We demonstrate the benefits of state and data plane invocations
with a case study of a microservice handling collaborative La-
TeX editor, similar to the Overleaf project [5]. We implement
four services that allow us to update project files, retrieve the
newest version, recompile, and retrieve the compiled docu-
ment. To support online editing, serverless functions must use
an external storage as two independent calls to a service might
be placed in different containers. On the other hand, functions
in PraaS offer a persistent state and data plane connection
which guarantees that calls to a service for the same project
are handled by the same process.

We evaluate each service with different inputs on AWS
Lambda with S3 storage, and PraaS processes deployed on
AWS Fargate. We vary the Fargate container allocations and
Lambda memory configurations to measure the impact of vary-
ing availability of computing resources and I/O bandwidth,
and repeat each invocation 50 times. Lambda memory is tuned
to use the same virtual CPU allocation as PraaS processes run-

Time [s] KMeans Execution Time
300 F T T T T]

praas -

250 b - knative-s3 - 1

knative ==

200 -

150 |

100

50

200 k 400k 600 k 800 k 1000 k

Number of instances per worker

Figure 11: LambdaML with K-Means algorithm and Higgs dataset.
Praa$ against Knative with S3 and Redis.

ning in a Fargate container. Figure 9 shows that a persistent
process state decreases the overhead of running microservices
in a serverless setting. Even for a compute-intensive incremen-
tal LaTeX compilation, a local state guarantees that updated
files can be served quickly.

6.5. Case Study - Machine Learning

To demonstrate the benefits of PraaS, we apply it to the dis-
tributed machine learning framework LambdaML [36]. We
select the K-Means algorithm using the Higgs dataset and
execute it on the PraaS Kubernetes implementation, compar-
ing against execution on Knative, which uses AWS S3 and
Redis for communication. We execute the benchmark with 8
workers on a cluster of consisting of 4 t3a.1large EC2 nodes
and present the results in Fig. 11. Compared to the S3 version,
we speed up the runtime by a factor of 1.5 to 6 times.

6.6. Trade-Offs

While the new process model requires minor adjustments to
the lifecycle of a serverless workers, these changes may intro-
duce non-negligible overheads. In this section we look into
the process allocation, process deallocation, state swapping
costs in PraasS.

Process Allocation Allocating a process requires accessing
a shared control plane state in Redis and deciding whether
process can be allocated, and to which application it belongs.
Figure 12 shows the process allocation time on Kubernetes
(our baseline), PraaS$ directly on top of Kubernetes, and PraaS
on Knative. We run this experiment on a VM cluster using
t3.medium EC2 VM instances. Each instance supports up to
30 pods. In total, we use four 4 VMs with a maximum of
120 pods. We also ran this experiment on a larger deployment
(cluster of 6 VMs with up to 160 pods) and the results are very
similar therefore we do not show both experiments.

Results (Figure 12) show that PraaS introduces a low over-
head on top of Kubernetes and knative. This overhead is

10

1400

Knative has a lower maximum
number of user pods due to
additional service containers.

800

PraaS on k8s has up to 15% higher
allocation cost in worst case than Kubernetes

0 20 40 60 80 100
Number of pods in Kubernetes cluster
—— Kubernetes (baseline) —— Praa$S (Kubernetes) =~ —— Praa$S (Knative)

120

Figure 12: Allocating PraaS processes on managed services.

IMiB 5MiB 10MiB 50MiB 100 MiB 200 MiB
Fargate 98.4 173 232 907.7 1719.3 3480.4
EC2 120.5 172.8 2202 791.8 1525.7 2930.5

Table 4: Time of swapping [msec] in-memory state into AWS S3,
from a process executing in a Fargate container and Docker container
on EC2.

the result of the extra access to storage to check if there is a
swapped state that should be brought back from storage.

Process Deallocation Deallocating a process differs from
deallocating a FaaS function. When scaling down FaaS func-
tions, cloud operators only need to reduce some arbitrary
ephemeral workers to adjust the scale to the current workload.
On the other hand, in PraasS, each process can have a different
activity on data plane and we should deallocate processes that
are idle instead of the active ones.

We evaluate the added overhead of deallocation by compar-
ing the time between process reporting low data plane metrics
that warrant deallocation and the moment process receives a
termination signal. An external benchmark triggers the dele-
tion of a specific process and waits until the process reports
that it started the termination process.

We find that time needed to delete a container in pure Ku-
bernetes and in PraaS (which builds on Kubernetes) does not
differ significantly and depending on the workload and system
noise, the median is approximately 1.7 to 1.8 seconds. Most
of this latency comes from Kubernetes logic to deallocate a
pod.

Swapping State PraaS swaps state in and out of storage. To
measure the performance cost of this operation, we measure
the time needed to transfer the state from a process to S3 from
both Fargate and EC2. We run each experiment 20 times in
repetition. As can be seen in Table 4, swapping state takes 100
ms to write of 1 MB to S3 from Fargate takes approximately
100ms. This latency increases proportionally with the size of
the state.

Shahrad et al. [61] show (using real-world Azure data) that
90% of the applications never consume more than 400MB,
and 50% of the applications allocate at most 170MB. However,
the actual swappable state will be much lower - this includes
the entire memory of a function, including additional libraries,

runtime, local and temporary variables. In practice, only a
fraction of data objects will become state, therefore, resulting
in a low latency overhead for swapping state. Swapped state
will also incur a storage cost that will be proportional to the
number of swap-in/swap-out operations and size of the state.
We estimate that this storage cost will not dominate the entire
cost of the infrastructure and might even be compensated by
reducing the initialization time that FaaS currently suffer.

7. Related Work

Stateful Functions augment the spectrum of applications that
benefit from FaaS by allowing functions to keep state, even
if disaggregated. Researchers have built stateful functions
on top of key-value stores specialized to Serverless [11, 66],
and elastic ephemeral caches [39, 55, 57] which combine dif-
ferent placement strategies to manage cost and performance.
Others have gone a step further and offered transaction sup-
port and fault tolerance atop FaaS [33] to help developers
build consistent and fault tolerant systems atop ephemeral
functions. Instead of relying on external cloud services to
work around the limitations of FaaS, we propose rethinking
and redesigning the underlying abstraction to support state
and communication. Similarly to stateful cloud applications
(such as microservices), applications built atop PraaS can nat-
urally be complemented with external databases and caches to
facilitate synchronization, fault tolerance, and consistency.
Function Orchestration and Data Locality are also be-
ing extensively studied. Systems such as Speedo [23] and
Nightcore [34] optimize function orchestration by either ac-
celerating the control plane [23] or by completely skipping
it [34] for internal function invocations. Other systems have
looked into how to optimize the data path by comparing dif-
ferent function communication strategies and automatically
adapting deployment decisions [46], by avoiding moving data
by allowing multiple functions to share the execution envi-
ronment over time [41], or by offering direct network access
to functions [73]. Pheromone [75] improves serverless work-
flows by binding control logic with ephemeral data objects,
and Unum [43] proposes a decentralized orchestrator for FaaS
workflows. Durable Functions [13, 14] (DF) extended FaaS’s
programming model by incorporating support for orchestra-
tion, stateful entities, and critical sections. DFs build on ex-
isting cloud services to offer consistency and synchronization
across all entities. Palette [6] proposes locality hints that can
be used to forward requests of a client to the same worker.
PraaS, on the other hand, proposes a general-purpose execu-
tion environment that looks similar to the one available in an
OS-level process. In fact, the process abstraction can be used
to implement traditional FaaS applications and stateful enti-
ties. PraasS offers basic orchestration primitives that rely on
message passing but more advanced orchestration frameworks
such as Unum could be easily integrated at the application
level. For communication, processes use mailboxes which
can be implemented atop direct communication or indirect

11

communication via proxy/storage. Mailboxes do not require
the recipient to be alive upon sending nor the sender to be
alive upon receiving.

Lightweight sandboxes utilize specialized virtualization
engines [2, 24] that offer low startup times and memory foot-
print when compared to traditional virtual machine managers.
However, to continue improving the scalability and elasticity
of serverless applications, Software Fault Isolation-based sys-
tems [12, 25, 62] have been proposed to co-execute multiple
invocations inside the same OS process. Praas$ is, in part,
inspired by such systems by allowing multiple functions of
the same user to execute concurrently inside a single process
(note that a PraaS$ process can be implemented different sand-
boxing technology as long as it allows multiple functions to
share memory). By doing so, resource redundancy is reduced
and new opportunities for local communication arise. Nu [58]
proposes logical processes that span many proclets execut-
ing on a distributed execution environment. However, unlike
Praa$S, Nu is not designed for serverless platforms as it as-
sumes always-on stateful instances with direct communication
Finally, Praa$S’s design does not preclude orthogonal optimiza-
tion techniques such as image pre-initialization [9, 15, 24, 51]
to optimize process startup time and memory footprint, or
unikernels [40, 47, 79] to optimize process startup and mem-
ory footprint.

8. Discussion

A step towards a Cloud Operating System Distributed op-
erating systems have been an active research topic for a long
time, but, despite the efforts, researchers have not converged
on a scalable system that transparently distributes the load and
manages resources across multiple cloud machines communi-
cating via a shared messaging service [74]. Similarly to the
classical OS, a Cloud OS is expected to perform several tasks,
such as resource allocation/management, scheduling, and file
system management. We envision the cloud process as one of
the missing building blocks of a cloud OS.

Fault-tolerance Cloud processes should enjoy a level of
fault-tolerance comparable to using the non-serverless infras-
tructure. By providing a swappable state, PraaS handles in-
tentional/planned failures (such as evictions) by removing the
ephemeral, on-spot executor but persisting state data. If more
data is generated than previously allocated to state memory,
the overflow is pushed directly to cloud storage and enjoys
the same guarantees as cloud queues. A sudden failure of the
cloud process is still possible (as a sudden failure of a VM
instance is possible). In the case of such unintentional failures,
users can retrieve the last state snapshot from cloud storage.
For long-lived processes, users can periodically swap/check-
point the state to ensure that a recent snapshot is available.

Portability of PraaS Our cloud process model makes no
assumptions on the underlying virtualization technology (con-
tainer, VM, microVM, etc), and is not restricted to language,
cloud platform, or serverless system. In sum, PraaS can be

used in all major cloud providers and even allows platforms to
offer specialized back-ends tailored to the systems themselves,
as long as the required operations are supported.

9. Conclusions

PraaS$ is the next step towards a cloud computing OS. By
taking advantage of processes, applications benefit from a low-
latency state, fast invocations that bypass the control plane,
and fast communication between processes. PraaS brings
persistent state to ephemeral workers and offers a speed-up of
up to 55 times over using cloud storage, while providing a 76
% reduction in cost.

References

[1] Apache OpenWhisk. https://openwhisk.apache.

org/,2016. Accessed: 2020-01-20.

[2] Firecracker.
firecracker-microvm/firecracker, 2018.

cessed: 2020-01-20.

https://github.com/
Ac-

[3] Knative. https://knative.dev/, 2021. Accessed:
2021-11-21.

[4] Kubernetes. https://kubernetes.io/, 2021. Ac-

cessed: 2021-11-29.

[5] Overleaf: An open-source online real-time collabora-
tive LaTeX editor. https://github.com/overleaf/
overleaf, 2023. Accessed: 2023-08-10.

[6] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose

Faleiro, Gohar Irfan Chaudhry, Inigo Goiri, Ricardo

Bianchini, Daniel S Berger, and Rodrigo Fonseca. Palette

load balancing: Locality hints for serverless functions.

In Proceedings of the Eighteenth European Conference

on Computer Systems, EuroSys *23, page 365-380, New

York, NY, USA, 2023. Association for Computing Ma-

chinery.

[7] Alexandru Agache, Marc Brooker, Alexandra Iordache,

Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and

Diana-Maria Popa. Firecracker: Lightweight virtualiza-

tion for serverless applications. In 17th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 20), pages 419—434, Santa Clara, CA, February

2020. USENIX Association.

[8] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,

Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat

Aditya, and Volker Hilt. Sand: Towards high-

performance serverless computing. In Proceedings of the

2018 USENIX Conference on Usenix Annual Technical

Conference, USENIX ATC ’18, pages 923-935, USA,

2018. USENIX Association.

12

[9] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards High-
Performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923-935, Boston, MA, July 2018. USENIX Association.

[10] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 18, pages 263274, New York,

NY, USA, 2018. Association for Computing Machinery.
(11]

Daniel Barcelona-Pons, Marc Sdnchez-Artigas, Gerard
Paris, Pierre Sutra, and Pedro Garcia-Lépez. On the
faas track: Building stateful distributed applications with
serverless architectures. In Proceedings of the 20th In-
ternational Middleware Conference, Middleware 19,
page 41-54, New York, NY, USA, 2019. Association for

Computing Machinery.

[12] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645-650, Boston, MA,

July 2018. USENIX Association.

[13] Sebastian Burckhardt, Badrish Chandramouli, Chris
Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, Christopher S. Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless work-

flows. Proc. VLDB Endow., 15(8):1591-1604, apr 2022.

[14] Sebastian Burckhardt, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, and Christopher S.
Meiklejohn. Durable functions: Semantics for stateful
serverless. Proc. ACM Program. Lang., S(OOPSLA),

oct 2021.

[15] James Cadden, Thomas Unger, Yara Awad, Han Dong,
Orran Krieger, and Jonathan Appavoo. Seuss: Skip
redundant paths to make serverless fast. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, EuroSys *20, New York, NY, USA, 2020. Asso-

ciation for Computing Machinery.

[16] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Randy Katz. Cirrus: A serverless framework
for end-to-end ml workflows. In Proceedings of the ACM

Symposium on Cloud Computing, pages 13-24, 2019.

[17] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali An-
war, Panruo Wu, and Yue Cheng. Wukong: A scalable
and locality-enhanced framework for serverless parallel
computing. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC *20, page 1-15, New York,

NY, USA, 2020. Association for Computing Machinery.

https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker
https://knative.dev/
https://kubernetes.io/
https://github.com/overleaf/overleaf
https://github.com/overleaf/overleaf

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek,
Anna Woodard, Ben Blaiszik, Ian Foster, and Kyle Chard.
Funcx: A federated function serving fabric for science.
In Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing,
HPDC 20, page 65-76, New York, NY, USA, 2020.
Association for Computing Machinery.

Marcin Copik, Alexandru Calotoiu, Konstantin Taranov,
and Torsten Hoefler. Faaskeeper: a blueprint for server-
less services, 2022.

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta,
Michal Podstawski, and Torsten Hoefler. Sebs: A server-
less benchmark suite for function-as-a-service comput-
ing. In Proceedings of the 22nd International Middle-
ware Conference, Middleware ’21. Association for Com-
puting Machinery, 2021.

Marcin Copik, Konstantin Taranov, Alexandru Calotoiu,
and Torsten Hoefler. RFaaS: RDMA-Enabled FaaS Plat-
form for Serverless High-Performance Computing, 2021.

Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni.
Xanadu: Mitigating cascading cold starts in serverless
function chain deployments. In Proceedings of the 21st
International Middleware Conference, Middleware 20,
page 356-370, New York, NY, USA, 2020. Association
for Computing Machinery.

Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni.
Speedo: Fast Dispatch and Orchestration of Serverless
Workflows, page 585-599. Association for Computing
Machinery, New York, NY, USA, 2021.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS ’20, page 467-481, New York, NY, USA,
2020. Association for Computing Machinery.

Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gus-
tavo Alonso. Photons: Lambdas on a diet. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC 20, page 45-59, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

Adam Eivy and Joe Weinman. Be wary of the economics
of "serverless" cloud computing. IEEE Cloud Comput-
ing, 4(2):6-12, 2017.

J. L. Eppinger. TCP Connections for P2P Apps: A Soft-
ware Approach to Solving the NAT Problem. Carnegie
Mellon University, Technical Report, ISRI-05-104, Jan-
uary 2005.

13

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

L. Feng, P. Kudva, D. Da Silva, and J. Hu. Explor-
ing serverless computing for neural network training.
In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pages 334-341, July 2018.

Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-
peer communication across network address translators.
In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC °05, page 13, USA,
April 2005. USENIX Association.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In /4th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 363-376, Boston, MA,
March 2017. USENIX Association.

Zhiyuan Guo, Zachary Blanco, Mohammad Shahrad,
Zerui Wei, Bili Dong, Jinmou Li, Ishaan Pota, Harry Xu,
and Yiying Zhang. Resource-centric serverless comput-
ing, 2022.

Joseph M. Hellerstein, Jose M. Faleiro, Joseph E.
Gonzalez, Johann Schleier-Smith, Vikram Sreekanti,
Alexey Tumanov, and Chenggang Wu. Serverless com-
puting: One step forward, two steps back. CoRR,
abs/1812.03651, 2018.

Zhipeng Jia and Emmett Witchel. Boki: Stateful server-
less computing with shared logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 691-707, New York, NY,
USA, 2021. Association for Computing Machinery.

Zhipeng Jia and Emmett Witchel. Nightcore: Efficient
and scalable serverless computing forlatency-sensitive,
interactive microservices. In Proceedings ofthe 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS °21, New York, NY, USA, 2021. Association
for Computing Machinery.

Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gus-
tavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu,
and Ce Zhang. Towards demystifying serverless machine
learning training. In ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2021), June
2021.

Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gus-
tavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu,
and Ce Zhang. Towards demystifying serverless machine
learning training. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, SIGMOD

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

’21, page 857-871, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Sto-
ica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. CoRR,
abs/1902.03383, 2019.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In Pro-
ceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’ 18, pages
427444, USA, 2018. USENIX Association.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
Proceedings of the 13th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’ 18, page
427-444, USA, 2018. USENIX Association.

Ricardo Koller and Dan Williams. Will serverless end
the dominance of linux in the cloud? In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems,
HotOS °17, page 169-173, New York, NY, USA, 2017.
Association for Computing Machinery.

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating Function-as-a-
Service workflows. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 805-820. USENIX
Association, July 2021.

Collin Lee and John Ousterhout. Granular computing.
In Proceedings of the Workshop on Hot Topics in Operat-
ing Systems, HotOS °19, page 149-154, New York, NY,
USA, 2019. Association for Computing Machinery.

David H. Liu, Amit Levy, Shadi Noghabi, and Sebas-
tian Burckhardt. Doing more with less: Orchestrating
serverless applications without an orchestrator. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1505-1519, Boston,
MA, April 2023. USENIX Association.

Pedro Garcia Lopez, Aleksander Slominski, Michael
Behrendt, and Bernard Metzler. Serverless predictions:
2021-2030, 2021.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi.
{SONIC}: Application-aware data passing for chained

14

[46]

[47]

(48]

[49]

(50]

(51]

[52]

(53]

serverless applications. In 2021 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 21), pages 285-301,
2021.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana
Klimovic, Somali Chaterji, and Saurabh Bagchi. SONIC:
Application-aware data passing for chained serverless
applications. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 285-301. USENIX
Association, July 2021.

Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP *17,
page 218-233, New York, NY, USA, 2017. Association
for Computing Machinery.

Johannes Manner, Martin EndreB, Tobias Heckel, and
Guido Wirtz. Cold start influencing factors in function
as a service. 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Com-
panion), pages 181-188, 2018.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-
ile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
19), Renton, WA, July 2019. USENIX Association.

Ingo Miiller, Renato Marroquin, and Gustavo Alonso.
Lambada: Interactive data analytics on cold data using
serverless cloud infrastructure. ArXiv, abs/1912.00937,
2019.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
57-70, Boston, MA, July 2018. USENIX Association.

Matthew Perron, Raul Castro Fernandez, David DeWitt,
and Samuel Madden. Starling: A scalable query en-
gine on cloud functions. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’20, page 131-141, New York,
NY, USA, 2020. Association for Computing Machinery.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In /7/th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14),
pages 1-16, Broomfield, CO, October 2014. USENIX
Association.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: Scalable analytics on serverless in-
frastructure. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
193-206, Boston, MA, February 2019. USENIX Associ-
ation.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: Scalable analytics on serverless
infrastructure. In Proceedings of the 16th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’ 19, page 193-206, USA, 2019. USENIX
Association.

Francisco Romero, Gohar Irfan Chaudhry, fﬁigo Goiri,
Pragna Gopa, Paul Batum, Neeraja J. Yadwadkar, Ro-
drigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$t: A transparent auto-scaling cache for server-
less applications. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’21, page 122—-137, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

Francisco Romero, Gohar Irfan Chaudhry, Tiigo Goiri,
Pragna Gopa, Paul Batum, Neeraja J. Yadwadkar, Ro-
drigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$t: A transparent auto-scaling cache for server-
less applications, 2021.

Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera,
Adam Belay, and Malte Schwarzkopf. Nu: Achiev-
ing Microsecond-Scale resource fungibility with logical
processes. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1409-1427, Boston, MA, April 2023. USENIX Associa-
tion.

Johann Schleier-Smith, Vikram Sreekanti, Anurag Khan-
delwal, Joao Carreira, Neeraja J. Yadwadkar, Raluca Ada
Popa, Joseph E. Gonzalez, Ion Stoica, and David A. Pat-
terson. What serverless computing is and should become:
The next phase of cloud computing. Commun. ACM,
64(5):76-84, April 2021.

M. Sciabarra. Learning Apache OpenWhisk: Developing
Open Serverless Solutions. O’Reilly Media, Incorpo-
rated, 2019.

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and op-
timizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 205-218. USENIX Association, July
2020.

15

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Simon Shillaker and Peter Pietzuch. Faasm: Lightweight
isolation for efficient stateful serverless computing.
In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 419433, 2020.

Abraham Silberschatz, Peter B Galvin, and Greg Gagne.
Operating System Concepts, 10e Abridged Print Com-
panion. John Wiley & Sons, 2018.

Paulo Silva, Daniel Fireman, and Thiago Emmanuel
Pereira. Prebaking functions to warm the serverless cold
start. In Proceedings of the 21st International Middle-
ware Conference, Middleware ’20, page 1-13, New York,
NY, USA, 2020. Association for Computing Machinery.

Arjun Singhvi, Kevin Houck, Arjun Balasubramanian,
Mohammed Danish Shaikh, Shivaram Venkataraman,
and Aditya Akella. Archipelago: A scalable low-latency
serverless platform, 2019.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles
Lin, Johann Schleier-Smith, Joseph E. Gonzalez,
Joseph M. Hellerstein, and Alexey Tumanov. Cloud-
burst: Stateful functions-as-a-service. Proc. VLDB En-
dow., 13(12):2438-2452, July 2020.

Kun Suo, Junggab Son, Dazhao Cheng, Wei Chen, and
Sabur Baidya. Tackling cold start of serverless applica-
tions by efficient and adaptive container runtime reusing.
In 2021 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 433-443, 2021.

Amoghavarsha Suresh and Anshul Gandhi. Servermore:
Opportunistic execution of serverless functions in the
cloud. SoCC ’21, page 570-584, New York, NY, USA,
2021. Association for Computing Machinery.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng,
Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora,
Ravi Netravali, Miryung Kim, et al. Dorylus: Afford-
able, scalable, and accurate {GNN} training with dis-
tributed {CPU} servers and serverless threads. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 495-514, 2021.

Werner Vogels. Eventually consistent. Commun. ACM,
52(1):40-44, January 2009.

Hao Wang, Di Niu, and Baochun Li. Distributed ma-
chine learning with a serverless architecture. In IEEE
INFOCOM 2019-1EEE Conference on Computer Com-
munications, pages 1288—-1296. IEEE, 2019.

Liang Wang, Mengyuan Li, Yinqgian Zhang, Thomas
Ristenpart, and Michael Swift. Peeking behind the cur-
tains of serverless platforms. In Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’18, page 133-145, USA, 2018.
USENIX Association.

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Mike Wawrzoniak, Ingo Miiller, Rodrigo Fraga Barcelos
Paulus Bruno, and Gustavo Alonso. Boxer: Data ana-
lytics on network-enabled serverless platforms. In 71th

Annual Conference on Innovative Data Systems Research
(CIDR’21), 2021.

David Wentzlaff, Charles Gruenwald, Nathan Beckmann,
Kevin Modzelewski, Adam Belay, Lamia Youseff, Jason
Miller, and Anant Agarwal. An operating system for
multicore and clouds: Mechanisms and implementation.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 10, page 3—14, New York, NY, USA,
2010. Association for Computing Machinery.

Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan
Chen. Following the data, not the function: Rethinking
function orchestration in serverless computing, 2021.

Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan
Chen. Restructuring serverless computing with
data-centric function orchestration. arXiv preprint
arXiv:2109.13492, 2021.

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-tolerant and trans-
actional stateful serverless workflows. In /4th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 1187-1204. USENIX Associa-
tion, November 2020.

Yangi Zhang, {iigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP °21, page 724-739, New York, NY,
USA, 2021. Association for Computing Machinery.

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfei
Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang
Xiong, and Guihai Chen. Kylinx: A dynamic library
operating system for simplified and efficient cloud virtu-
alization. USENIX ATC ’18, page 173-185, USA, 2018.
USENIX Association.

16

	Introduction
	Background
	Serverless Communication
	Serverless Control and Data Planes
	Serverless State

	Cloud Processes
	Process Model with Communication
	Computing Using the Data Plane
	Scalability with State

	PraaS: Process–as–a–Service
	Process Management
	Inter-Process Communication
	Data Plane
	State

	PraaS in Practice
	Evaluation
	Lower Latency Invocations via the Data Plane
	Inter-Function Communication
	The benefits of Cloud Process State
	Case Study - LaTeX Service
	Case Study - Machine Learning
	Trade-Offs

	Related Work
	Discussion
	Conclusions

