
Advanced Parallel Programming with

MPI-1, MPI-2, and MPI-3

Pavan Balaji

Computer Scientist

Argonne National Laboratory

Email: balaji@mcs.anl.gov

Web: http://www.mcs.anl.gov/~balaji

Torsten Hoefler

Assistant Professor

ETH Zurich

Email: htor@inf.ethz.ch

Web: http://www.unixer.de/

mailto:balaji@mcs.anl.gov
http://www.mcs.anl.gov/~balaji
mailto:htor@inf.ethz.ch
http://www.unixer.de/

What is MPI?

 MPI: Message Passing Interface

– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko

• Portability library writers: PVM, p4

• Users: application scientists and library writers

• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way

• Each function takes fixed arguments

• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the

application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…

– a language or compiler specification

– a specific implementation or product

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Following MPI Standards

 MPI-2 was released in 2000

– Several additional features including MPI + threads, MPI-I/O, remote

memory access functionality and many others

 MPI-2.1 (2008) and MPI-2.2 (2009) were recently released

with some corrections to the standard and small features

 MPI-3 (2012) added several new features to MPI

 The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

 Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of material including tutorials, a FAQ, other MPI pages

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for

correctly identifying parallelism and implementing parallel

algorithms using MPI constructs

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

 8 19 23 35 30 45 67 1 3 5 13 24

O(N log N)

 1 3 5 8 67 13 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Parallel Sort using MPI Send/Recv (contd.)
#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

 int rank;

 int a[1000], b[500];

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0) {

 MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);

 sort(a, 500);

 MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

 /* Serial: Merge array b and sorted part of array a */

 }

 else if (rank == 1) {

 MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

 sort(b, 500);

 MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 MPI_Finalize(); return 0;

}

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

A Non-Blocking communication example

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

A Non-Blocking communication example

int main(int argc, char ** argv)

{

 [...snip...]

 if (rank == 0) {

 for (i=0; i< 100; i++) {

 /* Compute each data element and send it out */

 data[i] = compute(i);

 MPI_ISend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD,

 &request[i]);

 }

 MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

 }

 else {

 for (i = 0; i < 100; i++)

 MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 }

 [...snip...]

}

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI Collective Routines

 Many Routines: MPI_ALLGATHER, MPI_ALLGATHERV,

MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV,

MPI_BCAST, MPI_GATHER, MPI_GATHERV, MPI_REDUCE,

MPI_REDUCESCATTER, MPI_SCAN, MPI_SCATTER,

MPI_SCATTERV

 “All” versions deliver results to all participating processes

 “V” versions (stands for vector) allow the hunks to have different

sizes

 MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and

MPI_SCAN take both built-in and user-defined combiner functions

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI Built-in Collective Computation Operations

 MPI_MAX

 MPI_MIN

 MPI_PROD

 MPI_SUM

 MPI_LAND

 MPI_LOR

 MPI_LXOR

 MPI_BAND

 MPI_BOR

 MPI_BXOR

 MPI_MAXLOC

 MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Bitwise and

Bitwise or

Bitwise exclusive or

Maximum and location

Minimum and location

Introduction to Datatypes in MPI

 Datatypes allow to (de)serialize arbitrary data layouts into a

message stream

– Networks provide serial channels

– Same for block devices and I/O

 Several constructors allow arbitrary layouts

– Recursive specification possible

– Declarative specification of data-layout

• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Derived Datatype Example

 Explain Lower Bound, Size, Extent

Advanced Topics: One-sided Communication

One-sided Communication

 The basic idea of one-sided communication models is to

decouple data movement with process synchronization

– Should be able move data without requiring that the remote process

synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Process 0

Private

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Global
Address
Space

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

Memory

Segment

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending

process is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Possible Applications of One-sided Communication

 One-sided communication (or sometimes referred to as

global address space communication) is very useful for many

applications that require asynchronous access to remote

memory

– E.g., a nuclear physics application called as Greene’s Function Monte

Carlo requires to store nearly 50 GB of memory per task for its

calculations

– No single node can provide that much memory

– With one-sided communication, each task can store this data in global

space, and access it as needed

– Note: Remember that the memory is still “far away” (accesses require

data movement over the network); so large data transfers are better

for performance

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Globally Accessible Large Arrays

 Presents a shared view of physically

distributed dense array objects over

the nodes of a cluster

 Accesses are using one-sided

communication model using Put/Get

and Accumulate (or update) semantics

 Used in wide variety of applications

– Computational Chemistry (e.g., NWChem,

molcas, molpro)

– Bioinformatics (e.g., ScalaBLAST)

– Ground Water Modeling (e.g., STOMP)

Physically distributed data

Global Address Space

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Window Creation: Static Model

 Expose a region of memory in an RMA window

– Only data exposed in a window can be accessed with RMA ops.

 Arguments:

– base - pointer to local data to expose

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

int MPI_Win_create(void *base, MPI_Aint size,

 int disp_unit, MPI_Info info,

 MPI_Comm comm, MPI_Win *win)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Window Creation: Dynamic Model

 Create an RMA window, to which data can later be attached

– Only data exposed in a window can be accessed with RMA ops

 Application can dynamically attach memory to this window

 Application can access data on this window only after a

memory region has been attached

int MPI_Win_create_dynamic(…, MPI_Comm comm, MPI_Win *win)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Data movement

 MPI_Get, MPI_Put, MPI_Accumulate, MPI_Get_accumulate,

etc., move data between public copy of target window and

origin local buffer

 Nonblocking, subsequent synchronization may block

 Origin buffer address

 Target buffer displacement

– Displacement in units of the window’s “disp_unit”

 Distinct from load/store from/to private copy

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Data movement: Get

MPI_Get(

 origin_addr, origin_count, origin_datatype,

 target_rank,

 target_disp, target_count, target_datatype,

 win)

 Move data to origin, from target

 Separate data description triples for origin and target

Origin Process

Target Process

RMA
Window

Local
Buffer

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Data movement: Put

MPI_Put(

 origin_addr, origin_count, origin_datatype,

 target_rank,

 target_disp, target_count, target_datatype,

 win)

 Move data from origin, to target

 Same arguments as MPI_Get Target Process

RMA
Window

Local
Buffer

Origin Process

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Data aggregation: Accumulate

 Like MPI_Put, but applies an MPI_Op instead

– Predefined ops only, no user-defined!

 Result ends up at target buffer

 Different data layouts between target/origin OK, basic type

elements must match

 Put-like behavior with MPI_REPLACE (implements f(a,b)=b)

– Atomic PUT Target Process

RMA
Window

Local
Buffer

+=

Origin Process

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Data aggregation: Get Accumulate

 Like MPI_Get, but applies an MPI_Op instead

– Predefined ops only, no user-defined!

 Result at target buffer; original data comes to the source

 Different data layouts between target/origin OK, basic type

elements must match

 Get-like behavior with MPI_NO_OP

– Atomic GET Target Process

RMA
Window

Local
Buffer

+=

Origin Process

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI RMA Memory Model

 Window: Expose memory for RMA

– Logical public and private copies

– Portable data consistency model

 Accesses must occur within an epoch

 Active and Passive synchronization

modes

– Active: target participates

– Passive: target does not participate

Rank 0 Rank 1

Public
Copy

Private
Copy

Unified
Copy

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI RMA Memory Model (separate windows)

 Compatible with non-coherent memory systems

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X X

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI RMA Memory Model (unified windows)

Unified
Copy

Same source
Same epoch Diff. Sources

load store store

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted
X – Combining these operations is OK, but data might be garbage

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Ordering of Operations in MPI RMA

 For Put/Get operations, ordering does not matter

– If you do two PUTs to the same location, the resultant can be garbage

 Two accumulate operations to the same location are valid

– If you want “atomic PUTs”, you can do accumulates with

MPI_REPLACE

 In MPI-2, there was no ordering of operations

 In MPI-3, all accumulate operations are ordered by default

– User can tell the MPI implementation that (s)he does not require

ordering as optimization hints

– You can ask for “read-after-write” ordering, “write-after-write”

ordering, or “read-after-read” ordering

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Additional Atomic Operations

 Compare-and-swap

– Compare the target value with an input value; if they are the same,

replace the target with some other value

– Useful for linked list creations – if next pointer is NULL, do something

 Get Accumulate

– Fetch the value at the target location before applying the accumulate

operation

– “Fetch-and-Op” style operation

 Fetch-and-Op

– Special case of Get accumulate for predefined datatypes – faster for

the hardware to implement

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Other MPI-3 RMA features

 Request based RMA operations

– Can wait for single requests

– Issue a large number of operations and wait for some of them to finish

so you can reuse buffers

 Flush

– Can wait for RMA operations to complete without closing an epoch

– Lock; put; put; flush; get; get; put; Unlock

 Sync

– Synchronize public and private memory

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

RMA Synchronization Models

 Three models

– Fence (active target)

– Post-start-complete-wait (active target)

– Lock/Unlock (passive target)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Fence Synchronization

 MPI_Win_fence(assert, win)

 Collective, assume it

synchronizes like a barrier

 Starts and ends access &

exposure epochs (usually)

Fence Fence

Get

Target Origin

Fence Fence

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

PSCW Synchronization

 Target: Exposure epoch

– Opened with MPI_Win_post

– Closed by MPI_Win_wait

 Origin: Access epoch

– Opened by MPI_Win_start

– Closed by MPI_Win_compete

 All may block, to enforce P-S/C-

W ordering

– Processes can be both origins and

targets

Start

Complete

Post

Wait

Get

Target Origin

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Lock/Unlock Synchronization

 Passive mode: One-sided, asynchronous communication

– Target does not participate in communication operation

 Erroneous to combine active and passive modes

Active Target Mode Passive Target Mode

Lock

Unlock

Get Start

Complete

Post

Wait

Get

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Passive Target Synchronization

 Begin/end passive mode epoch

– Doesn’t function like a mutex, name can be confusing

– Communication operations within epoch are all nonblocking

 Lock type

– SHARED: Other processes using shared can access concurrently

– EXCLUSIVE: No other processes can access concurrently

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

When should I use passive mode?

 RMA performance advantages from low protocol overheads

– Two-sided: Matching, queueing, buffering, unexpected receives, etc…

– Direct support from high-speed interconnects (e.g. InfiniBand)

 Passive mode: asynchronous one-sided communication

– Data characteristics:

• Big data analysis requiring memory aggregation

• Asynchronous data exchange

• Data-dependent access pattern

– Computation characteristics:

• Adaptive methods (e.g. AMR, MADNESS)

• Asynchronous dynamic load balancing

 Common structure: shared arrays

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Use Case: Distributed Shared Arrays

 Quantum Monte Carlo: Ensemble data

– Represents initial quantum state

– Spline representation, cubic basis functions

– Large(100+ GB), read-only table of coeff.

– Accesses are random

 Coupled cluster simulations

– Evolving quantum state of the system

– Very large, tables of coefficients

– Tablet read-only, Tablet+1 accumulate-only

– Accesses are non-local/overlapping

 Global Arrays PGAS programming model

– Can be supported with passive mode RMA *Dinan et al., IPDPS’12+

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Advanced Topics: Hybrid Programming with

Threads and Shared Memory

MPI and Threads

 MPI describes parallelism between processes (with

separate address spaces)

 Thread parallelism provides a shared-memory model within

a process

 OpenMP and Pthreads are common models

– OpenMP provides convenient features for loop-level parallelism.

Threads are created and managed by the compiler, based on user

directives.

– Pthreads provide more complex and dynamic approaches. Threads

are created and managed explicitly by the user.

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Programming for Multicore

 Almost all chips are multicore these days

 Today’s clusters often comprise multiple CPUs per node sharing

memory, and the nodes themselves are connected by a

network

 Common options for programming such clusters

– All MPI

• MPI between processes both within a node and across nodes

• MPI internally uses shared memory to communicate within a node

– MPI + OpenMP

• Use OpenMP within a node and MPI across nodes

– MPI + Pthreads

• Use Pthreads within a node and MPI across nodes

 The latter two approaches are known as “hybrid programming”

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI’s Four Levels of Thread Safety

 MPI defines four levels of thread safety -- these are

commitments the application makes to the MPI

– MPI_THREAD_SINGLE: only one thread exists in the application

– MPI_THREAD_FUNNELED: multithreaded, but only the main thread

makes MPI calls (the one that called MPI_Init_thread)

– MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a

time makes MPI calls

– MPI_THREAD_MULTIPLE: multithreaded and any thread can make MPI

calls at any time (with some restrictions to avoid races – see next slide)

 MPI defines an alternative to MPI_Init

– MPI_Init_thread(requested, provided)

• Application indicates what level it needs; MPI implementation returns the

level it supports

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

MPI+OpenMP

 MPI_THREAD_SINGLE

– There is no OpenMP multithreading in the program.

 MPI_THREAD_FUNNELED

– All of the MPI calls are made by the master thread. i.e. all MPI calls are

• Outside OpenMP parallel regions, or

• Inside OpenMP master regions, or

• Guarded by call to MPI_Is_thread_main MPI call.

– (same thread that called MPI_Init_thread)

 MPI_THREAD_SERIALIZED

#pragma omp parallel

…

#pragma omp critical

{

 …MPI calls allowed here…

}

 MPI_THREAD_MULTIPLE

– Any thread may make an MPI call at any time

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Specification of MPI_THREAD_MULTIPLE

 When multiple threads make MPI calls concurrently, the outcome

will be as if the calls executed sequentially in some (any) order

 Blocking MPI calls will block only the calling thread and will not

prevent other threads from running or executing MPI functions

 It is the user's responsibility to prevent races when threads in the

same application post conflicting MPI calls

– e.g., accessing an info object from one thread and freeing it from another

thread

 User must ensure that collective operations on the same

communicator, window, or file handle are correctly ordered

among threads

– e.g., cannot call a broadcast on one thread and a reduce on another

thread on the same communicator

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Threads and MPI

 An implementation is not required to support levels higher

than MPI_THREAD_SINGLE; that is, an implementation is not

required to be thread safe

 A fully thread-safe implementation will support

MPI_THREAD_MULTIPLE

 A program that calls MPI_Init (instead of MPI_Init_thread)

should assume that only MPI_THREAD_SINGLE is supported

 A threaded MPI program that does not call MPI_Init_thread is

an incorrect program (common user error we see)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

An Incorrect Program

 Here the user must use some kind of synchronization to

ensure that either thread 1 or thread 2 gets scheduled first

on both processes

 Otherwise a broadcast may get matched with a barrier on

the same communicator, which is not allowed in MPI

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

A Correct Example

 An implementation must ensure that the above example

never deadlocks for any ordering of thread execution

 That means the implementation cannot simply acquire a

thread lock and block within an MPI function. It must

release the lock to allow other threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

The Current Situation

 All MPI implementations support MPI_THREAD_SINGLE (duh).

 They probably support MPI_THREAD_FUNNELED even if they

don’t admit it.

– Does require thread-safe malloc

– Probably OK in OpenMP programs

 Many (but not all) implementations support

THREAD_MULTIPLE

– Hard to implement efficiently though (lock granularity issue)

 “Easy” OpenMP programs (loops parallelized with OpenMP,

communication in between loops) only need FUNNELED

– So don’t need “thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Performance with MPI_THREAD_MULTIPLE

 Thread safety does not come for free

 The implementation must protect certain data structures or

parts of code with mutexes or critical sections

 To measure the performance impact, we ran tests to measure

communication performance when using multiple threads

versus multiple processes

– Details in our Parallel Computing (journal) paper (2009)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Message Rate Results on BG/P

Message Rate Benchmark

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Why is it hard to optimize MPI_THREAD_MULTIPLE

 MPI internally maintains several resources

 Because of MPI semantics, it is required that all threads have

access to some of the data structures

– E.g., thread 1 can post an Irecv, and thread 2 can wait for its

completion – thus the request queue has to be shared between both

threads

– Since multiple threads are accessing this shared queue, it needs to be

locked – adds a lot of overhead

 In MPI-3.1 (next version of the standard), we plan to add

additional features to allow the user to provide hints (e.g.,

requests posted to this communicator are not shared with

other threads)

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

55

Thread Programming is Hard

 “The Problem with Threads,” IEEE Computer

– Prof. Ed Lee, UC Berkeley

– http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/

 “Why Threads are a Bad Idea (for most purposes)”

– John Ousterhout

– http://home.pacbell.net/ouster/threads.pdf

 “Night of the Living Threads”
http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_threads.html

 Too hard to know whether code is correct

 Too hard to debug

– I would rather debug an MPI program than a threads program

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/
http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/
http://home.pacbell.net/ouster/threads.pdf
http://home.pacbell.net/ouster/threads.pdf
http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_threads.html
http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_threads.html

Ptolemy and Threads

 Ptolemy is a framework for modeling, simulation, and design of

concurrent, real-time, embedded systems

 Developed at UC Berkeley (PI: Ed Lee)

 It is a rigorously tested, widely used piece of software

 Ptolemy II was first released in 2000

 Yet, on April 26, 2004, four years after it was first released, the

code deadlocked!

 The bug was lurking for 4 years of widespread use and testing!

 A faster machine or something that changed the timing caught

the bug

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

An Example I encountered recently

 We received a bug report about a very simple

multithreaded MPI program that hangs

 Run with 2 processes

 Each process has 2 threads

 Both threads communicate with threads on the other

process as shown in the next slide

 I spent several hours trying to debug MPICH2 before

discovering that the bug is actually in the user’s program 

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

2 Proceses, 2 Threads, Each Thread Executes this

Code

for (j = 0; j < 2; j++) {

 if (rank == 1) {

 for (i = 0; i < 3; i++)

 MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

 for (i = 0; i < 3; i++)

 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

 }

 else { /* rank == 0 */

 for (i = 0; i < 3; i++)

 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);

 for (i = 0; i < 3; i++)

 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

 }

}
Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

What Happened

 All 4 threads stuck in receives because the sends from one

iteration got matched with receives from the next iteration

 Solution: Use iteration number as tag in the messages

Rank 0

3 recvs

3 sends

3 recvs

3 sends

3 recvs

3 sends

3 recvs

3 sends

Rank 1

3 sends

3 recvs

3 sends

3 recvs

3 sends

3 recvs

3 sends

3 recvs

Thread 1

Thread 2

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Hybrid Programming with Shared Memory

 MPI-3 allows different processes to allocate shared memory

through MPI

– MPI_Win_allocate_shared

 Uses many of the concepts of one-sided communication

 Applications can do hybrid programming using MPI or

load/store accesses on the shared memory window

 Other MPI functions can be used to synchronize access to

shared memory regions

 Much simpler to program than threads

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Advanced Topics: Nonblocking Collectives

Nonblocking Collective Communication

 Nonblocking communication
– Deadlock avoidance

– Overlapping communication/computation

 Collective communication
– Collection of pre-defined optimized routines

 Nonblocking collective communication
– Combines both advantages

– System noise/imbalance resiliency

– Semantic advantages

– Examples

Nonblocking Communication

 Semantics are simple:

– Function returns no matter what

– No progress guarantee!

 E.g., MPI_Isend(<send-args>, MPI_Request *req);

 Nonblocking tests:

– Test, Testany, Testall, Testsome

 Blocking wait:

– Wait, Waitany, Waitall, Waitsome

Nonblocking Communication

 Blocking vs. nonblocking communication

– Mostly equivalent, nonblocking has constant request management

overhead

– Nonblocking may have other non-trivial overheads

 Request queue length

– Linear impact on

performance

– E.g., BG/P: 100ns/req

• Tune unexpected Q length!

Collective Communication

 Three types:

– Synchronization (Barrier)

– Data Movement (Scatter, Gather, Alltoall, Allgather)

– Reductions (Reduce, Allreduce, (Ex)Scan, Red_scat)

 Common semantics:

– no tags (communicators can serve as such)

– Blocking semantics (return when complete)

– Not necessarily synchronizing (only barrier and all*)

 Overview of functions and performance models

Collective Communication

 Barrier –

– Often α+β log2P

 Scatter, Gather –

– Often αP+βPs

 Alltoall, Allgather -

– Often αP+βPs

Collective Communication

 Reduce –

– Often αlog2P+βm+γm

 Allreduce –

– Often αlog2P+βm+γm

 (Ex)scan –

– Often αP+βm+γm

Nonblocking Collective Communication

 Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

 Semantics:
– Function returns no matter what

– No guaranteed progress (quality of implementation)

– Usual completion calls (wait, test) + mixing

– Out-of order completion

 Restrictions:
– No tags, in-order matching

– Send and vector buffers may not be touched during operation

– MPI_Cancel not supported

– No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Nonblocking Collective Communication

 Semantic advantages:

– Enable asynchronous progression (and manual)

• Software pipelinling

– Decouple data transfer and synchronization

• Noise resiliency!

– Allow overlapping communicators

• See also neighborhood collectives

– Multiple outstanding operations at any time

• Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Nonblocking Collectives Overlap

 Software pipelining

– More complex parameters

– Progression issues

– Not scale-invariant

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

 A Non-Blocking Barrier?

 What can that be good for? Well, quite a bit!

 Semantics:

– MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

 Uses:

– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but

synchronize collectively!

A Semantics Example: DSDE

 Dynamic Sparse Data Exchange

– Dynamic: comm. pattern varies across iterations

– Sparse: number of neighbors is limited ()

– Data exchange: only senders know neighbors

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Dynamic Sparse Data Exchange (DSDE)

 Main Problem: metadata

– Determine who wants to send how much data to me

(I must post receive and reserve memory)

OR:

– Use MPI semantics:

• Unknown sender

– MPI_ANY_SOURCE

• Unknown message size

– MPI_PROBE

• Reduces problem to counting

the number of neighbors

• Allow faster implementation!

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Using Alltoall (PEX)

 Bases on Personalized Exchange ()

– Processes exchange

metadata (sizes)

about neighborhoods

with all-to-all

– Processes post

receives afterwards

– Most intuitive but

least performance

and scalability!

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Reduce_scatter (PCX)

 Bases on Personalized Census ()

– Processes exchange

metadata (counts) about

neighborhoods with

reduce_scatter

– Receivers checks with

wildcard MPI_IPROBE

and receives messages

– Better than PEX but

non-deterministic!

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

MPI_Ibarrier (NBX)

 Complexity - census (barrier): ()

– Combines metadata with actual transmission

– Point-to-point
synchronization

– Continue receiving
until barrier completes

– Processes start coll.
synch. (barrier) when
p2p phase ended

• barrier = distributed
marker!

– Better than PEX,
PCX, RSX!

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

Parallel Breadth First Search

 On a clustered Erdős-Rényi graph, weak scaling

– 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange

A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

FFT Software Pipelining

NBC_Request req[nb];

for(int b=0; b<nb; ++b) { // loop over blocks

 for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

 // pack b-th block of data for alltoall

 NBC_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}

NBC_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

A Complex Example: FFT

 Main parameter: nb vs. n  blocksize

 Strike balance between k-1st alltoall and kth FFT stencil block

 Costs per iteration:

– Alltoall (bandwidth) costs: Ta2a ≈ n2/p/nb * β

– FFT costs: Tfft ≈ n/p/nb * T1DFFT(n)

 Adjust blocksize parameters to actual machine

– Either with model or simple sweep

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications

Nonblocking And Collective Summary

 Nonblocking comm does two things:

– Overlap and relax synchronization

 Collective comm does one thing

– Specialized pre-optimized routines

– Performance portability

– Hopefully transparent performance

 They can be composed

– E.g., software pipelining

Advanced Topics: Network Locality and

Topology Mapping

Topology Mapping and Neighborhood Collectives

 Topology mapping basics

– Allocation mapping vs. rank reordering

– Ad-hoc solutions vs. portability

 MPI topologies

– Cartesian

– Distributed graph

 Collectives on topologies – neighborhood colls

– Use-cases

Topology Mapping Basics

 First type: Allocation mapping

– Up-front specification of communication pattern

– Batch system picks good set of nodes for given topology

 Properties:

– Not widely supported by current batch systems

– Either predefined allocation (BG/P), random allocation, or “global

bandwidth maximation”

– Also problematic to specify communication pattern upfront, not

always possible (or static)

Topology Mapping Basics

 Rank reordering

– Change numbering in a given allocation to reduce congestion or

dilation

– Sometimes automatic (early IBM SP machines)

 Properties

– Always possible, but effect may be limited (e.g., in a bad allocation)

– Portable way: MPI process topologies

• Network topology is not exposed

– Manual data shuffling after remapping step

On-Node Reordering

Naïve Mapping Optimized Mapping

Topomap

 Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology
 Adaption

Off-Node (Network) Reordering

Application Topology Network Topology

Naïve Mapping Optimal Mapping

Topomap

MPI Topology Intro

 Convenience functions (in MPI-1)

– Create a graph and query it, nothing else

– Useful especially for Cartesian topologies

• Query neighbors in n-dimensional space

– Graph topology: each rank specifies full graph 

 Scalable Graph topology (MPI-2.2)

– Graph topology: each rank specifies its neighbors or an arbitrary

subset of the graph

 Neighborhood collectives (MPI-3.0)

– Adding communication functions defined on graph topologies

(neighborhood of distance one)

MPI_Cart_create

 Specify ndims-dimensional topology

– Optionally periodic in each dimension (Torus)

 Some processes may return MPI_COMM_NULL

– Product sum of dims must be <= P

 Reorder argument allows for topology mapping

– Each calling process may have a new rank in the created communicator

– Data has to be remapped manually

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int

*dims, const int *periods, int reorder, MPI_Comm *comm_cart)

MPI_Cart_create Example

 Creates logical 3-d Torus of size 5x5x5

 But we’re starting MPI processes with a one-dimensional

argument (-p X)

– User has to determine size of each dimension

– Often as “square” as possible, MPI can help!

int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

MPI_Dims_create

 Create dims array for Cart_create with nnodes and ndims

– Dimensions are as close as possible (well, in theory)

 Non-zero entries in dims will not be changed

– nnodes must be multiple of all non-zeroes

MPI_Dims_create(int nnodes, int ndims, int *dims)

MPI_Dims_create Example

 Makes life a little bit easier

– Some problems may be better with a non-square layout though

int p;

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

Cartesian Query Functions

 Library support and convenience!

 MPI_Cartdim_get()

– Gets dimensions of a Cartesian communicator

 MPI_Cart_get()

– Gets size of dimensions

 MPI_Cart_rank()

– Translate coordinates to rank

 MPI_Cart_coords()

– Translate rank to coordinates

Cartesian Communication Helpers

 Shift in one dimension

– Dimensions are numbered from 0 to ndims-1

– Displacement indicates neighbor distance (-1, 1, …)

– May return MPI_PROC_NULL

 Very convenient, all you need for nearest neighbor

communication

– No “over the edge” though

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

MPI_Graph_create

 Don’t use!!!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors for the first i

nodes (sum)

– Acts as offset into edges array

 edges stores the edge list for all processes

– Edge list for process j starts at index[j] in edges

– Process j has index[j+1]-index[j] edges

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const

int *index, const int *edges, int reorder, MPI_Comm

*comm_graph)

MPI_Graph_create

 Don’t use!!!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors for the first i

nodes (sum)

– Acts as offset into edges array

 edges stores the edge list for all processes

– Edge list for process j starts at index[j] in edges

– Process j has index[j+1]-index[j] edges

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const

int *index, const int *edges, int reorder, MPI_Comm

*comm_graph)

Distributed graph constructor

 MPI_Graph_create is discouraged

– Not scalable

– Not deprecated yet but hopefully soon

 New distributed interface:

– Scalable, allows distributed graph specification

• Either local neighbors or any edge in the graph

– Specify edge weights

• Meaning undefined but optimization opportunity for vendors!

– Info arguments

• Communicate assertions of semantics to the MPI library

• E.g., semantics of edge weights

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

MPI_Dist_graph_create_adjacent

 indegree, sources, ~weights – source proc. Spec.

 outdegree, destinations, ~weights – dest. proc. spec.

 info, reorder, comm_dist_graph – as usual

 directed graph

 Each edge is specified twice, once as out-edge (at the

source) and once as in-edge (at the dest)

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int

indegree, const int sources[], const int sourceweights[], int

outdegree, const int destinations[], const int destweights[],

MPI_Info info,int reorder, MPI_Comm *comm_dist_graph)

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

MPI_Dist_graph_create_adjacent

 Process 0:

– Indegree: 0

– Outdegree: 1

– Dests: {3,1}

 Process 1:

– Indegree: 3

– Outdegree: 2

– Sources: {4,0,2}

– Dests: {3,4}

 …

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

MPI_Dist_graph_create

 n – number of source nodes

 sources – n source nodes

 degrees – number of edges for each source

 destinations, weights – dest. processor specification

 info, reorder – as usual

 More flexible and convenient

– Requires global communication

– Slightly more expensive than adjacent specification

MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int

sources[], const int degrees[], const int destinations[], const

int weights[], MPI_Info info, int reorder, MPI_Comm

*comm_dist_graph)

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

MPI_Dist_graph_create

 Process 0:

– N: 2

– Sources: {0,1}

– Degrees: {2,1}

– Dests: {3,1,4}

 Process 1:

– N: 2

– Sources: {2,3}

– Degrees: {1,1}

– Dests: {1,2}

 …

 Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Distributed Graph Neighbor Queries

 MPI_Dist_graph_neighbors_count()

– Query the number of neighbors of calling process

– Returns indegree and outdegree!

– Also info if weighted

 MPI_Dist_graph_neighbors()

– Query the neighbor list of calling process

– Optionally return weights

MPI_Dist_graph_neighbors_count(MPI_Comm comm, int

*indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int

maxindegree, int sources[], int sourceweights[], int

maxoutdegree, int destinations[],int destweights[])

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Further Graph Queries

 Status is either:

– MPI_GRAPH (ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED (no topology)

 Enables to write libraries on top of MPI topologies!

MPI_Topo_test(MPI_Comm comm, int *status)

Neighborhood Collectives

 Topologies implement no communication!

– Just helper functions

 Collective communications only cover some patterns

– E.g., no stencil pattern

 Several requests for “build your own collective” functionality in

MPI

– Neighborhood collectives are a simplified version

– Cf. Datatypes for communication patterns!

Cartesian Neighborhood Collectives

 Communicate with direct neighbors in Cartesian topology

– Corresponds to cart_shift with disp=1

– Collective (all processes in comm must call it, including processes

without neighbors)

– Buffers are laid out as neighbor sequence:

• Defined by order of dimensions, first negative, then positive

• 2*ndims sources and destinations

• Processes at borders (MPI_PROC_NULL) leave holes in buffers (will not

be updated or communicated)!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Cartesian Neighborhood Collectives

 Buffer ordering example:

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Graph Neighborhood Collectives

 Collective Communication along arbitrary neighborhoods

– Order is determined by order of neighbors as returned by

(dist_)graph_neighbors.

– Distributed graph is directed, may have different numbers of

send/recv neighbors

– Can express dense collective operations 

– Any persistent communication pattern!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

MPI_Neighbor_allgather

 Sends the same message to all neighbors

 Receives indegree distinct messages

 Similar to MPI_Gather

– The all prefix expresses that each process is a “root” of his

neighborhood

 Vector and w versions for full flexibility

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_alltoall

 Sends outdegree distinct messages

 Received indegree distinct messages

 Similar to MPI_Alltoall

– Neighborhood specifies full communication relationship

 Vector and w versions for full flexibility

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

Nonblocking Neighborhood Collectives

 Very similar to nonblocking collectives

 Collective invocation

 Matching in-order (no tags)

– No wild tricks with neighborhoods! In order matching per

communicator!

MPI_Ineighbor_allgather(…, MPI_Request *req);

MPI_Ineighbor_alltoall(…, MPI_Request *req);

Why is Neighborhood Reduce Missing?

 Was originally proposed (see original paper)

 High optimization opportunities

– Interesting tradeoffs!

– Research topic

 Not standardized due to missing use-cases

– My team is working on an implementation

– Offering the obvious interface

MPI_Ineighbor_allreducev(…);

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI

Topology Summary

 Topology functions allow to specify application

communication patterns/topology

– Convenience functions (e.g., Cartesian)

– Storing neighborhood relations (Graph)

 Enables topology mapping (reorder=1)

– Not widely implemented yet

– May requires manual data re-distribution (according to new rank

order)

 MPI does not expose information about the network topology

(would be very complex)

Neighborhood Collectives Summary

 Neighborhood collectives add communication functions to

process topologies

– Collective optimization potential!

 Allgather

– One item to all neighbors

 Alltoall

– Personalized item to each neighbor

 High optimization potential (similar to collective operations)

– Interface encourages use of topology mapping!

Section Summary

 Process topologies enable:

– High-abstraction to specify communication pattern

– Has to be relatively static (temporal locality)

• Creation is expensive (collective)

– Offers basic communication functions

 Library can optimize:

– Communication schedule for neighborhood colls

– Topology mapping

Concluding Remarks

 Parallelism is critical today, given that that is the only way to

achieve performance improvement with the modern

hardware

 MPI is an industry standard model for parallel programming

– A large number of implementations of MPI exist (both commercial and

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many many scientific applications with great

success

 Your application can be next!

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

Web Pointers

 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPICH : http://www.mpich.org

 MPICH mailing list: discuss@mpich.org

 MPI Forum : http://www.mpi-forum.org/

 Other MPI implementations:

– MVAPICH (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-

library/

– Microsoft MPI (MPICH derivative)

– Open MPI : http://www.open-mpi.org/

 Several MPI tutorials can be found on the web

Pavan Balaji and Torsten Hoefler, PPoPP, Shenzhen, China (02/24/2013)

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpich.org/
mailto:discuss@mpich.org
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/

