
Towards a Practical Ecosystem of
Specialized OS Kernels

Conghao Liu and Kyle C. Hale
Illinois Institute of Technology

1

Overview

1. We were working on Nautilus, an Unikernel developed at NU and
IIT.

2. The development and deployment of new applications on
Unikernels like Nautilus is really tedious.

3. What tool can we use/create to help us?

4. We developed Diver, a prototype tool aims to make Specialized
Operating Systems “easier” to use.

2

Outline

1. Specialized OSes and problems they face.

2. Our solution and Design goals.

3. Details of our solution.

4. Three important deployment modes.

5. Conclusion and future works.

3

Outline

1. Specialized OSes and problems they face.

2. Our solution and Design goals.

3. Details of our solution.

4. Three important deployment modes.

5. Conclusion and future works.

4

Resurgence of SOSes

1. Several reasons like hardware heterogeneity and application
diversity impose new challenges to General Purpose Operating
Systems.

2. Specialized Operating Systems provide one avenue for addressing
these challenges.

3. Examples of SOSes: OSv, Libra, Nautilus, …

5

Challenges of SOSes

1. POSIX compatibility.

2. Pick the right abstractions for the target workloads.

3. Decide on the right level of protection.

All of these challenges make SOSes “hard” to use. Can we make them
“easier” to use without introducing much performance overheads?

6

Outline

1. Specialized OSes and problems they face.

2. Our solution and Design goals.

3. Details of our solution.

4. Three important deployment modes.

5. Conclusion and future works.

7

Inspiration from existing tools

1. Capstan for OSv.

2. Cargo for Rust.

8

Capstan

9

Cargo

10

Our requirements for the ecosystem

1. Discoverability: Easy to find the kernel we need. (dnf/apt)
2. Ease-of-Use: Easy to build, easy to deploy. (capstan/cargo)
3. Composability: Pipelined workflow using different kernel

deployed in different ways. (cat …|grep …)
4. Customizability. Kernel modification.

5. Performance: little performance overhead.

11

Design on the Server-side

12

Design on the client-side

13

Outline

1. Specialized OSes and problems they face.

2. Our solution and Design goals.

3. Details of our solution.

4. Three important deployment modes.

5. Conclusion and future works.

14

Diver

1. It can search/download kernels by name/tags.

2. It can publish new kernel images.

3. It helps build and deploy your code.

15

Discoverbility

$> diver init helloworld nautilus
…

16

serverlocal

Ease-of-use

#coding…

$> diver build [helloworld]
…
$> diver dive -d splitVM
Nautilus-shell>

17

Customizability

$> diver init hw nautilus
$> cd hw
$> ls –a
. .. .nautilus Makefile main.c

18

Deployment Modes

1. Fully virtualized Environment

2. Partitioned VMs

3. Partitioned hardware

19

Partitioned VMs

1. Libra first explored this approach for running JVM in virtualized
execution environment.

2. Co-existence of GPOS and SOS in a space-partitioned VM.
- Multiverse and HRT.

3. Syscall-delegation makes SOS more versatile.

20

Overheads of partitioned VM are low!

22

Language shootout benchmark performance with Racket runtime running
native, in a virtual machine, and a VM split between two OSes (using
Multiverse).

System call breakdown.
Only a small set of system calls matters most!

23

Histograms representing syscall invocation trace for memcached and bzip2.

Why is this mode useful?

It enables incremental porting of legacy code!

24

Partitioned Hardware

1. Lange et al. explored this mode using the Pisces Co-kernel architecture
and the XEMEM system for efficiently sharing memory between kernels.

2. Physical hardware resources partitioned between a GPOS and a
specialized kernel.

3. The GPOS must support offlining cores.

4. The specialized OS must support bootup in a special software
environment

25

Outline

1. Specialized OSes and problems they face.

2. Our solution and Design goals.

3. Details of our solution.

4. Three important deployment modes.

5. Conclusion and future works.

26

Conclusion

1. It’s the time to begin building ecosystems for SOSes to encourage
experimentation and design iteration.

2. We described several requirements for such ecosystem that should
meet.

3. We presented a prototype of such tool called Diver.

27

Future works

1. Integrate Partitioned Hardware deployment mode into Diver.
2. Add support for more SOSes.
3. Explore the standard interface/features SOSes should meet to fit in

with Diver.
4. Explore interface/techniques to enable pipelined workflow using

different kernels in different deployment mode.

28

Thanks!

Conghao Liu: cliu115@hawk.iit.edu
Kyle Hale: khale@cs.iit.edu

29

mailto:cliu115@hawk.iit.edu
mailto:khale@cs.iit.edu

