
Exploring the Design Space of
Combining Linux with Lightweight
Kernels for Extreme Scale
Computing

Balazs Gerofi†, Takagi Masamichi†, Yutaka Ishikawa†,
Rolf Riesen‡, Evan Powers‡, Robert W. Wisniewski‡

†RIKEN Advanced Institute for Computational Science, Japan
‡Intel Corporation, US

06/16/2015 ROSS'15, Portland, USA 1

06/16/2015 ROSS'15, Portland, USA 2

Outline
• Motivation
• Background

•  HPC OS Architecture and Lightweight kernels (LWK)

• Linux + LWK
•  Issues and Requirements
•  Design

•  Proxy model
•  Direct model

• Comparison
• Evaluation
• Conclusion

06/16/2015 ROSS'15, Portland, USA 3

Motivation
• Complexity of high-end HPC systems keeps growing

•  Extreme degree of parallelism
•  Heterogeneous core architectures
•  Deep memory hierarchy
•  Power constrains

• Applications have also become complex
•  In-situ analysis, workflows
•  Sophisticated monitoring and tools support, etc..
•  Isolated, consistent simulation performance

• Seemingly contradictory requirements..
•  Is the current system software stack ready for this?

Need for scalable,
reliable performance

and capability to rapidly
adapt to new HW

Dependence
on POSIX

and the rich
Linux APIs

06/16/2015 ROSS'15, Portland, USA 4

Background – HPC Node OS Architecture

• Traditionally: driven by the need for scalable,
consistent performance for bulk-synchronous HPC

Linux

FileSys
Drivers

Dev.
Drivers

TCP
stack

Comlex
Mem
Mngt.

Proc
Mngt.

VFS

Full Linux API

HPC OS

Network
Driver

Simple Mem
Mngt.

Proc
Mngt.

General
Scheduler

Simple
Scheduler

•  Start from Linux and remove
features impeding HPC
performance

•  Eliminate OS noise (daemons,
timer IRQ, etc..), simplify
memory mngt., simplify
scheduler

Linux “like” API

“Stripped
down

Linux”
approach

(Cray’s Extr. Scale Linux,
Fujitsu’s Linux,
ZeptoOS, etc..)

No full
Linux API!

06/16/2015 ROSS'15, Portland, USA 5

Background – HPC Node OS Architecture

• Traditionally: driven by the need for scalable,
consistent performance for bulk-synchronous HPC

Thin
LWK

Network
Driver

Very Simple
Mem Mngt.

Proc Mngt.

Limited API

HPC OS

Network
Driver

Proc
Mngt.

Linux “like” API

Co-operative
Scheduler

Co-operative
Scheduler++

•  Start from a thin Light Weight
Kernel (LWK) written from scratch
and add features to provide a more
Linux like I/F, but keep scalability

•  Support dynamic libraries, allow
thread over-subscription, support
for /proc filesys, etc..

Simple
Mem
Mngt.

“Enhanced
LWK”

approach
(Catamount, CNK,

etc..)

No full
Linux API!

06/16/2015 ROSS'15, Portland, USA 6

Outline
ü Motivation
ü Background
ü HPC OS Architecture and Lightweight kernels (LWK)

• Linux + LWK
•  Issues and Requirements
•  Design

•  Proxy model
•  Direct model

• Comparison
• Evaluation
• Conclusion

06/16/2015 ROSS'15, Portland, USA 7

Hybrid Linux + LWK Approach
•  With the abundance of CPU cores a new hybrid approach: run

Linux and LWK side-by-side!
•  Partition resources (CPU core, memory) explicitly
•  Run HPC apps on LWK
•  Selectively serve OS features with the help of Linux by offloading

requests

Thin
LWK

Network
Driver

Very Simple
Mem Mngt.

Proc Mngt.

Limited API

Co-operative
Scheduler

Linux

FileSys
Drivers

Dev.
Drivers

TCP
stack

Comlex
Mem
Mngt.

Proc
Mngt.

VFS

Full Linux API

General
Scheduler

cpu0 cpu1 cpum-1

Application

cpum cpum+1 cpun

?

06/16/2015 ROSS'15, Portland, USA 8

Hybrid Linux + LWK Approach
•  With the abundance of CPU cores a new hybrid approach: run

Linux and LWK side-by-side!
•  Partition resources (CPU core, memory) explicitly
•  Run HPC apps on LWK
•  Selectively serve OS features with the help of Linux by offloading

requests

Thin
LWK

Network
Driver

Very Simple
Mem Mngt.

Proc Mngt.

Limited API

Co-operative
Scheduler

Linux

FileSys
Drivers

Dev.
Drivers

TCP
stack

Comlex
Mem
Mngt.

Proc
Mngt.

VFS

Full Linux API

General
Scheduler

cpu0 cpu1 cpum-1

Application

cpum cpum+1 cpun

Tool
 Tool

How to
integrate the
two types of

kernels?

Where should
tools run and how

do they interact
with apps?

Where is the
border

between the
two kernels?

What features
are

implemented in
the LWK?

06/16/2015 ROSS'15, Portland, USA 9

Linux + LWK: Requirements
• Scalability and performance:

•  System has to deliver LWK scalability, reliability and consistent
performance

• Linux compatibility:
•  Support for POSIX and Linux APIs is an absolute must

• Adaptability (a.k.a., nimbleness):
•  System should seamlessly adapt to new HW features and SW

needs

•  Maintainability:
•  System should be highly maintainable, esp. tracking Linux changes

06/16/2015 ROSS'15, Portland, USA 10

Linux + LWK: the Proxy Model

LWK$
$
$
$
$
$
$

Linux$
$
$
$
$
$

Linux&&
syscall

?&

Syscall$delegator$
$

Inter6kernel$
communicator$

Applica;on$
$
$

StandardCLibrary$

return&to&userspace&

handle&&
in&LWK&

Proxy$$
process$
$

StandardCLibrary$

execute&&
syscall&

yes&&

no&

cpu0& cpum&cpum81& cpun&…$ …$

• LWK is completely independent from Linux
• Proxy process: serves as execution context for offloaded

system calls
• Ensures that Linux kernel maintains necessary state

information about the application (i.e., file desc. table)

06/16/2015 ROSS'15, Portland, USA 11

IHK/McKernel: an implementation of the
Proxy Model
•  Interface for Heterogeneous Kernels (IHK):

•  Low level software infrastructure
•  Allows partitioning SMP chips (using the Linux hotplug service)
•  Enables management of resources and light-weight kernels

•  Create OS instances, assign resources
•  Load kernel images, boot OS, etc..

•  Provides low-level Inter-Kernel Communication (IKC) layer

• McKernel:
•  A lightweight kernel designed for HPC
•  Booted from IHK and requires Linux’ presence
•  Only performance sensitive syscalls (MM, PM, perf counters) impl.

•  Rest offloaded to Linux
•  Simple co-operative round-robin scheduler

06/16/2015 ROSS'15, Portland, USA 12

IHK/McKernel: unified address space
•  System call offloading: what to do with pointers?

•  Linux kernel may access them (i.e., copy_from_user(), etc..)
•  User-space virtual to physical mappings are set up to be the same in Linux

so that the proxy process can access syscall arguments
•  A pseudo file mapping in mcexec (proxy process) covers the entire user-

space of McKernel. When page fault occurs we trap the handler and set up
mappings so that they point to the same physical pages

Proxy&process&

Virtual&address&space&in&Linux&

Applica5on&&

Virtual&address&space&in&McKernel&Physical&&
memory&

Proxy&process&&
text,&data.&etc..&

&
&

Heap&
&
&

Excluded&
&

&
&

Heap&
&
&

Anonymous&
mapping,&etc..&

Anonymous&
mapping,&etc..&

Applica5on&&
text,&data,&etc..&

&
&

Applica5on&&
text,&data,&etc..&

&
&

&
&
&
&
&

&
&

06/16/2015 ROSS'15, Portland, USA 13

Linux + LWK: mOS’ Direct Model
•  Tight integration between LWK

and Linux
•  LWK passes kernel data

structures to Linux when
offloading system calls
(Evanescence)
•  i.e., migrates the task_struct

•  LWK is “compiled-in”
•  Anticipated: various kernel

features will be available
directly (e.g., no need to deal
with pointers in syscall
offloading, etc..)

•  CPU cores and memory are
isolated but Linux is aware of
them, Linux IRQs are not
directed to LWK cores

•  Which OS services are
implemented in LWK and to
what extent the LWK
implementation is restricted
are somewhat unclear

06/16/2015 ROSS'15, Portland, USA 14

Outline
ü Motivation
ü Background
ü HPC OS Architecture and Lightweight kernels (LWK)

ü Linux + LWK
ü Issues and Requirements
ü Design

ü Proxy model
ü Direct model

• Comparison
• Evaluation
• Conclusion

06/16/2015 ROSS'15, Portland, USA 15

Comparison: Linux compatibility
•  POSIX and Linux API compatibility on LWK:

•  Correct syscall API and execution (involving offload)
•  Valid signaling behavior
•  Availability of /proc and /sys statistical information
•  Availability of the ptrace interface (many tools rely on this)
•  Virtual dynamics objects (VDSO) page
•  Performance counters (PAPI, etc..)

•  Proxy model (McKernel):
•  Significant implementation effort because kernel code is isolated
•  /proc and /sys:

•  Redirections from the syscall offload kernel module
•  Data needs to be obtained from McKernel

•  How far should McKernel present itself as “stand alone”? /proc/cpuid, etc..
• mOS:

•  Lot of things are expected to “fall out” for free
•  /proc and /sys can be directly accessed due to shared kernel structures, VDSO

just works
•  Will signaling/ptrace work?

•  Cross-kernel IPIs?

06/16/2015 ROSS'15, Portland, USA 16

Comparison: Flexibility
• LWK Flexibility (a.k.a., nimbleness)

•  Ability to easily adapt to new requirements
•  Rapid prototyping for unconventional hardware

•  Heterogeneous cores, deep memory hierarchies, multiple cache coherence
domains, etc..

•  Easy experimentation for exotic runtimes
•  Small LWK codebase is favored

• McKernel:
•  Standalone kernel code with small codebase

•  IHK+McKernel: ~50k lines
•  Full control over implementation
•  Allows proprietary kernel images as well

• mOS:
•  Tighter integration with Linux (data structures) could limit flexibility

•  Translation between mOS and Linux kernel structures before and after
syscall offloading could alleviate the issue

06/16/2015 ROSS'15, Portland, USA 17

Comparison: Linux modifications
• Required Linux modifications

•  It’s hard to keep track upstream Linux changes
•  Keeping the number of changes minimal is first priority

•  IHK/McKernel:
•  No changes to Linux kernel but unexported symbols are accessed

•  irq_desc_tree, wakeup_secondary_cpu_via_init(), etc..

• mOS:
•  Evanescence requires some changes (~150 lines) to Linux kernel

•  System call wrapper macros for offloading
•  mOS’ objective is to implement most LWK functions isolated from

the Linux codebase

06/16/2015 ROSS'15, Portland, USA 18

Comparison: LWK reboot
• LWK reboot capability

•  Reboot can provide a clean, well defined state
•  Allows easy deployment of different/customized LWK kernel images
•  Rebooting the LWK between jobs can lead to more predictable

application behavior
•  “Reboot every time” design may simplify the LWK, no need for

concepts such as switching between apps/users

• Proxy model (McKernel):
•  Warm rebooting LWK cores is supported
•  Can solve problems where otherwise rebooting the node would be

required (inconsistency in LWK, etc..)
• mOS:

•  LWK cores do not go through their own trampoline code → no
rebooting in its strict sense

•  CPU hotplug/re-plug may be used

06/16/2015 ROSS'15, Portland, USA 19

Outline
ü Motivation
ü Background
ü HPC OS Architecture and Lightweight kernels (LWK)

ü Linux + LWK
ü Issues and Requirements
ü Design

ü Proxy model
ü Direct model

ü Comparison
• Evaluation
• Conclusion

06/16/2015 ROSS'15, Portland, USA 20

Evaluation
• HW: Ivy Bridge (E5-2670) – same LWK CPU cores in each

measurements
• Test: simple “empty” syscall offloading cost comparison

0"

2500"

5000"

7500"

10000"

12500"

15000"

17500"

20000"

22500"

25000"

Proxy"model""""""""""""""""""""""""""""""""
(IHK/McKernel)"

Direct"model"""""""""""""""""""""""
(mOS)"

CP
U
$c
yc
le
s$ ReaffiniAzaAon"

IKC"

Proxy"overhead"

Mode"changes"

Linux"syscall"(kernel)"

•  Surprisingly similar performance!
• mOS offload performance will probably improve in the future
•  IHK/McKernel plans for evaluating MONITOR/MWAIT

06/16/2015 ROSS'15, Portland, USA 21

Conclusion
• Need for enhanced system software to meet HW and

SW requirements of exascale and beyond
• Hybrid Linux+LWK approach proposed to provide

LWK performance but to retain Linux APIs at the
same time

• Explored design alternatives and their trade-offs

• Direct model (mOS @ Intel)
•  Less development effort for Linux compatibility and tools support

• Proxy model (IHK/McKernel @ RIKEN)
•  Retains full control over the code base of the LWK and thus has a

higher degree of flexibility

Thank you for your attention!
Questions?

06/16/2015 ROSS'15, Portland, USA 22

