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Motivation 
• Complexity of high-end HPC systems keeps growing 

•  Extreme degree of parallelism 
•  Heterogeneous core architectures  
•  Deep memory hierarchy  
•  Power constrains 

• Applications have also become complex 
•  In-situ analysis, workflows 
•  Sophisticated monitoring and tools support, etc.. 
•  Isolated, consistent simulation performance  

• Seemingly contradictory requirements.. 
•  Is the current system software stack ready for this?  

Need for scalable, 
reliable performance 

and capability to rapidly 
adapt to new HW 

Dependence 
on POSIX 

and the rich 
Linux APIs 
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Background – HPC Node OS Architecture 

• Traditionally: driven by the need for scalable, 
consistent performance for bulk-synchronous HPC 
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•  Start from Linux and remove 
features impeding HPC 
performance 

•  Eliminate OS noise (daemons, 
timer IRQ, etc..), simplify 
memory mngt., simplify 
scheduler 

Linux “like” API 

“Stripped  
down 

Linux”  
approach 

(Cray’s Extr. Scale Linux,  
Fujitsu’s Linux,  
ZeptoOS, etc..) 

No full 
Linux API! 
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Background – HPC Node OS Architecture 
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consistent performance for bulk-synchronous HPC 
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•  Start from a thin Light Weight 
Kernel (LWK) written from scratch 
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Linux like I/F, but keep scalability 
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Hybrid Linux + LWK Approach 
•  With the abundance of CPU cores a new hybrid approach: run 

Linux and LWK side-by-side! 
•  Partition resources (CPU core, memory) explicitly 
•  Run HPC apps on LWK 
•  Selectively serve OS features with the help of Linux by offloading 

requests 
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How to 
integrate the 
two types of 

kernels? 

Where should 
tools run and how 

do they interact 
with apps? 

Where is the 
border 

between the 
two kernels? 

What features 
are 

implemented in 
the LWK? 
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Linux + LWK: Requirements 
• Scalability and performance: 

•  System has to deliver LWK scalability, reliability and consistent 
performance 

• Linux compatibility: 
•  Support for POSIX and Linux APIs is an absolute must 

• Adaptability (a.k.a., nimbleness): 
•  System should seamlessly adapt to new HW features and SW 

needs 

•   Maintainability: 
•  System should be highly maintainable, esp. tracking Linux changes 
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Linux + LWK: the Proxy Model 
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• LWK is completely independent from Linux 
• Proxy process: serves as execution context for offloaded 

system calls 
• Ensures that Linux kernel maintains necessary state 

information about the application (i.e., file desc. table) 
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IHK/McKernel: an implementation of the  
Proxy Model 
•  Interface for Heterogeneous Kernels (IHK): 

•  Low level software infrastructure  
•  Allows partitioning SMP chips (using the Linux hotplug service) 
•  Enables management of resources and light-weight kernels 

•  Create OS instances, assign resources 
•  Load kernel images, boot OS, etc.. 

•  Provides low-level Inter-Kernel Communication (IKC) layer 

• McKernel: 
•  A lightweight kernel designed for HPC 
•  Booted from IHK and requires Linux’ presence 
•  Only performance sensitive syscalls (MM, PM, perf counters) impl.  

•  Rest offloaded to Linux 
•  Simple co-operative round-robin scheduler 
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IHK/McKernel: unified address space 
•  System call offloading: what to do with pointers? 

•  Linux kernel may access them (i.e., copy_from_user(), etc..) 
•  User-space virtual to physical mappings are set up to be the same in Linux 

so that the proxy process can access syscall arguments 
•  A pseudo file mapping in mcexec (proxy process) covers the entire user-

space of McKernel. When page fault occurs we trap the handler and set up 
mappings so that they point to the same physical pages 
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Linux + LWK: mOS’ Direct Model 
•  Tight integration between LWK 

and Linux 
•  LWK passes kernel data 

structures to Linux when 
offloading system calls 
(Evanescence) 
•  i.e., migrates the task_struct 

•  LWK is “compiled-in”  
•  Anticipated: various kernel 

features will be available 
directly (e.g., no need to deal 
with pointers in syscall 
offloading, etc..) 

•  CPU cores and memory are 
isolated but Linux is aware of 
them, Linux IRQs are not 
directed to LWK cores 

•  Which OS services are 
implemented in LWK and to 
what extent the LWK 
implementation is restricted 
are somewhat unclear 
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Comparison: Linux compatibility 
•  POSIX and Linux API compatibility on LWK: 

•  Correct syscall API and execution (involving offload) 
•  Valid signaling behavior 
•  Availability of /proc and /sys statistical information 
•  Availability of the ptrace interface (many tools rely on this) 
•  Virtual dynamics objects (VDSO) page 
•  Performance counters (PAPI, etc..) 

•  Proxy model (McKernel): 
•  Significant implementation effort because kernel code is isolated 
•  /proc and /sys: 

•  Redirections from the syscall offload kernel module 
•  Data needs to be obtained from McKernel 

•  How far should McKernel present itself as “stand alone”? /proc/cpuid, etc.. 
• mOS: 

•  Lot of things are expected to “fall out” for free 
•  /proc and /sys can be directly accessed due to shared kernel structures, VDSO 

just works 
•  Will signaling/ptrace work?  

•  Cross-kernel IPIs?  
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Comparison: Flexibility 
• LWK Flexibility (a.k.a., nimbleness) 

•  Ability to easily adapt to new requirements 
•  Rapid prototyping for unconventional hardware 

•  Heterogeneous cores, deep memory hierarchies, multiple cache coherence 
domains, etc.. 

•  Easy experimentation for exotic runtimes 
•  Small LWK codebase is favored  

• McKernel: 
•  Standalone kernel code with small codebase  

•  IHK+McKernel: ~50k lines 
•  Full control over implementation 
•  Allows proprietary kernel images as well 

• mOS: 
•   Tighter integration with Linux (data structures) could limit flexibility 

•  Translation between mOS and Linux kernel structures before and after 
syscall offloading could alleviate the issue 
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Comparison: Linux modifications 
• Required Linux modifications 

•  It’s hard to keep track upstream Linux changes 
•  Keeping the number of changes minimal is first priority 

•  IHK/McKernel: 
•  No changes to Linux kernel but unexported symbols are accessed 

•  irq_desc_tree, wakeup_secondary_cpu_via_init(), etc.. 

• mOS: 
•  Evanescence requires some changes (~150 lines) to Linux kernel 

•  System call wrapper macros for offloading 
•  mOS’ objective is to implement most LWK functions isolated from 

the Linux codebase 
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Comparison: LWK reboot 
• LWK reboot capability 

•  Reboot can provide a clean, well defined state 
•  Allows easy deployment of different/customized LWK kernel images  
•  Rebooting the LWK between jobs can lead to more predictable 

application behavior 
•  “Reboot every time” design may simplify the LWK, no need for 

concepts such as switching between apps/users 

• Proxy model (McKernel): 
•  Warm rebooting LWK cores is supported 
•  Can solve problems where otherwise rebooting the node would be 

required (inconsistency in LWK, etc..) 
• mOS: 

•  LWK cores do not go through their own trampoline code → no 
rebooting in its strict sense 

•  CPU hotplug/re-plug may be used  
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Evaluation 
• HW: Ivy Bridge (E5-2670) – same LWK CPU cores in each 

measurements  
• Test: simple “empty” syscall offloading cost comparison 
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•  Surprisingly similar performance! 
• mOS offload performance will probably improve in the future 
•  IHK/McKernel plans for evaluating MONITOR/MWAIT   
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Conclusion 
• Need for enhanced system software to meet HW and 

SW requirements of exascale and beyond 
• Hybrid Linux+LWK approach proposed to provide 

LWK performance but to retain Linux APIs at the 
same time 

• Explored design alternatives and their trade-offs  

• Direct model (mOS @ Intel) 
•   Less development effort for Linux compatibility and tools support 

• Proxy model (IHK/McKernel @ RIKEN) 
•  Retains full control over the code base of the LWK and thus has a 

higher degree of flexibility 



Thank you for your attention! 
Questions? 
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