

COMPUTER SCIENCE UNIVERSITY OF MARYLAND

ANGEL: A Hierarchical Approach to Online Auto-Tuning

ERSIT

Ray S. Chen Jeffrey K. Hollingsworth

Motivation

- HPC systems will require online auto-tuning
 - Managing billion-way parallelism is non-trivial
- Cannot myopically focus on wall-time
 - 20MW power goal represents additional hurdle
- Need an auto-tuner that is:
 - Coordinated (Managed by the runtime OS)
 - Online (Optimization occurs without training runs)
 - Multi-objective (Handle power as well as wall-time)

Dealing with Multiple Objectives

- Multi-objective problems have a set of solutions
 - Each solution in set is equivalent
- Optimal solution is subjective
 - Tuner cannot choose for the user
- Online tuning even harder
 - Cannot pause for user input
 - Must limit overhead of testing
 - Use as few evaluations as possible

ANGEL Inputs

- Two values per objective collected from user apriori
 - Priority Rank
 - Orders each objective from highest to lowest
 - Each rank must be unique
 - Leeway Percentage
 - Amount ANGEL may stray from this objective's best
 - Used to find improvements in other objectives

ANGEL Algorithm

- Begin with highest priority objective
 - Use single-objective algorithm for this objective alone
 - Record all value ranges (min, max) during sub-search
 - Repeat with next highest objective until all are searched
- Penalize sub-searches to maintain leeway preference
 - Applied when higher priority objective exceeds leeway
 - Allows upper level sub-searches to guide lower levels
- Result of final sub-search is the overall solution

ANGEL Penalty Function

One-dimensional example with two objectives

Numerical Testsuite Experiments

- Tests from multi-objective optimization literature
 - Designed to be difficult, but not pathological
- Compared against ParEGO
 - Represents best evolutionary algorithm for our case
 - Strives to use very few function evaluations
 - Geared towards (relatively) low-dimensional objectives
- Compared against random
 - Must ensure our algorithm does something intelligent

Testsuite Results – Quality

- Quality is a measure of the converged solution.
 - Distance from the best solution discovered by hand.
- ANGEL wins on two-thirds of testsuite.

Testsuite Results – Efficiency

- Efficiency is a measure of search overhead.
 - Critically important to keep low for online auto-tuning.
- ANGEL wins on all but one test.

LULESH Experiments

- Lawrence Livermore's LULESH proxy application
 - Unstructured hex mesh problem
- Tuning two input variables:
 - OpenACC loop vector length
 - GPU clock frequency
- Two objectives:
 - Minimize running time
 - Minimize energy consumption

LULESH Objective Landscapes

Energy Search Space

Runtime Search Space

Changing the Threshold

- ANGEL behaves properly for changing leeways
 - Energy usage declines along with leeway
 - Shows proper behavior for real HPC data

12

Conclusion and Future Work

- ANGEL is a step towards runtime system auto-tuning
 - Uses an iterative and hierarchical approach
 - Controlled by simple user inputs provided aprioi
 - Performs well on numerical testsuite
 - Shown to work correctly on real HPC data
- Future work
 - Power (rather than energy) studies
 - Alternate underlying single-objective algorithms
 - Explore avenues for parallelism

