
ANGEL: A Hierarchical Approach to
Online Auto-Tuning

Ray S. Chen

Jeffrey K. Hollingsworth

1

Motivation

• HPC systems will require online auto-tuning

– Managing billion-way parallelism is non-trivial

• Cannot myopically focus on wall-time

– 20MW power goal represents additional hurdle

• Need an auto-tuner that is:

– Coordinated (Managed by the runtime OS)

– Online (Optimization occurs without training runs)

– Multi-objective (Handle power as well as wall-time)

2

Dealing with Multiple Objectives

• Multi-objective problems have a set of solutions

– Each solution in set is equivalent

• Optimal solution is subjective

– Tuner cannot choose for the user

• Online tuning even harder

– Cannot pause for user input

– Must limit overhead of testing

– Use as few evaluations as possible

3

ANGEL Inputs

• Two values per objective collected from user apriori

– Priority Rank

• Orders each objective from highest to lowest

• Each rank must be unique

– Leeway Percentage

• Amount ANGEL may stray from this objective’s best

• Used to find improvements in other objectives

4

ANGEL Algorithm

• Begin with highest priority objective

– Use single-objective algorithm for this objective alone

– Record all value ranges (min, max) during sub-search

– Repeat with next highest objective until all are searched

• Penalize sub-searches to maintain leeway preference

– Applied when higher priority objective exceeds leeway

– Allows upper level sub-searches to guide lower levels

• Result of final sub-search is the overall solution

5

ANGEL Penalty Function

• One-dimensional example with two objectives

6

Numerical Testsuite Experiments

• Tests from multi-objective optimization literature

– Designed to be difficult, but not pathological

• Compared against ParEGO

– Represents best evolutionary algorithm for our case

– Strives to use very few function evaluations

– Geared towards (relatively) low-dimensional objectives

• Compared against random

– Must ensure our algorithm does something intelligent

7

Testsuite Results – Quality

• Quality is a measure of the converged solution.

– Distance from the best solution discovered by hand.

• ANGEL wins on two-thirds of testsuite.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

KNO1 OKA1 OKA2 VLMOP2 VLMOP3 DTLZ1a DTLZ2a DTLZ4a DTLZ7a

Converged Distance from Optimal (Normalized)

Random

ParEGO

ANGEL

43.39

8

Testsuite Results – Efficiency

• Efficiency is a measure of search overhead.

– Critically important to keep low for online auto-tuning.

• ANGEL wins on all but one test.

0

0.5

1

1.5

2

2.5

3

3.5

4

KNO1 OKA1 OKA2 VLMOP2 VLMOP3 DTLZ1a DTLZ2a DTLZ4a DTLZ7a

Distance from Optimal per Evaluation (Normalized)

Random

ParEGO

ANGEL

7.04

9

LULESH Experiments

• Lawrence Livermore’s LULESH proxy application

– Unstructured hex mesh problem

• Tuning two input variables:

– OpenACC loop vector length

– GPU clock frequency

• Two objectives:

– Minimize running time

– Minimize energy consumption

10

LULESH Objective Landscapes

11

Changing the Threshold

• ANGEL behaves properly for changing leeways

– Energy usage declines along with leeway

– Shows proper behavior for real HPC data

12

Conclusion and Future Work

• ANGEL is a step towards runtime system auto-tuning

– Uses an iterative and hierarchical approach

– Controlled by simple user inputs provided aprioi

– Performs well on numerical testsuite

– Shown to work correctly on real HPC data

• Future work

– Power (rather than energy) studies

– Alternate underlying single-objective algorithms

– Explore avenues for parallelism

13

