
mOS:
An Architecture for Extreme Scale
Operating Systems

Robert W. Wisniewski, Todd Inglett, Pardo Keppel,

Ravi Murty, Rolf Riesen

Presented by: Robert W. Wisniewski

Chief Software Architect Extreme Scale Computing

Senior Principal Engineer, Intel Corporation

June 10, 2014

Copyright © 2014 Intel Corporation. All rights reserved.

1

Legal Disclaimer

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any
difference in system hardware or software design or configuration may affect actual performance.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Intel, Intel Xeon, Intel Core microarchitecture, and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2014, Intel Corporation. All rights reserved.

Agenda

• Extreme scale software challenges

•mOS

•Discussion

•Goal

– High-level description of architecture ((some)details in paper)

�Motivate discussion

Intel Confidential
3

4

When investigations began

• Challenges too great with current SW

• Need all new OS, compiler, language…

Others advocated

• Enhance capability of existing

• Hard, drive evolutionary approach

OR

??

Extreme-Scale Software Challenge

Revolutionary versus Evolutionary

5

•Which one ?

Revolutionary

6

Imagine vendors telling their
customers throw out everything
you’ve done over the last 20+ years.
Leverage tremendous investment in
Intel Architecture ecosystem.

Evolutionary

7

But there are serious challenges
getting to exascale. Drive new
innovations and invigorate the x86
ecosystem.

The Real Extreme-Scale Software Challenge

8

• The real challenge in moving software to extreme
scale, and therefore the real solution, will be
figuring out how to incorporate and support
existing computation paradigms in an evolutionary
model while simultaneously supporting new
revolutionary paradigms.

AND

Operating System Example

Intel Confidential
9

K42

Linux

Ap

LibraOS

Linux

Hypervisor

Ap

Application

High Perf API

Common API

Implementation

Linux

Ap

ExaOS

mOS: Operating Systems Technical Drivers

• Vision and technical direction
– mOS that supports Linux® API and ABI (from app perspective)

– LWK and Linux working in unison (LWK on compute cores, Linux for
compatibility)

– Simultaneously support legacy (Linux API) and new high performance
calls

– Nimble to support new technology effectively

– Hybrid memory, many cores, new core technology, etc.

– Move to hierarchy of OS offload for scalability

– Support fine-grained threading and asynchronous requests

– Enable specialized networking

– Provide support for and be amenable to running on differentiated
cores

– Free and Open Source Software (FOSS)

Intel Confidential
10

OS I/O Offload

Intel Confidential
11

Storage System

HPC System

LWK
OS

Application
read()

Compute
Node

Aggregation (file systems can not handle 100sK+ clients)
Noise reduction
Reduced cache and memory pollution

FWK
OS

I/O daemon

OS
Node

1,8 2,7

3,6

4,5

N:1

OS Expanded Compute Node View

Intel Confidential
12

• Components

– LWK

– Linux Kernel

– Intranode connection

– System call triage

– Offload to OS Node

– Partitioning

Compute
Node

Linux

I/O daemon

OS
Node

N:1

LWK
OSLinux

Application

HPC System

Platform Software

partitioned

glibc/shim

App
Assist

tools

Related Work

• LWK vs FWK
– Catamount, CNK, Kitten/Palacios, ZeptoOS

– SGI® Linux, Cray® CNL from CLE (ESL vs CCM)

•Microkernels and virtualization

– K42, LibraOS, Kitten/Palacios and Hobbes

•Multiple kernels

– Tesselation, NIX, Argo, McKernel, FusedOS

Intel Confidential
13

Intel Confidential
14

Tensions Pulling in HPC OS Design

Resolving the Tensions

• In the past it was possible to achieve high performance with
ultra scalability. Or, one could run Linux. But not both.

• With an architecture like mOS, it is possible to have a more
gradual path from the upper left LWK corner to the lower right
FWK corner.

• An application’s choice of which features it uses, influence its
overall performance and scalability.

Intel Confidential
15

Advantages for HPC Applications

• Use large pages effectively
– Use 1GB pages well, use 2MB well, use 4K minimally,

– Don’t age shoot-down pages the network has touched

• Provide specialized scheduling classes

• mOS will do the right things for scheduling
– Will not take minutes to stabilize

• Guarantee globally symmetric addresses
– Valuable for PGAS

• Low-latency network interrupts

• Use native transports for network traffic

• Easy exploration of mixed memory types

• Support new hierarchical memory architectures
– Allocate based on bandwidth, latency, energy, and locality

Intel Confidential
16

Advantages for HPC Applications

• Could allow specialized simple hardware
– Range mappings

• mOS can be quickly changed to meet new needs

• Thread placement to reflect workload and microarchitecture
– Different cores at different distances from memory and network interfaces

– Memory type optimization

– In-package high BW memory, off-package DRAM and off-package NVRAM

• Can optimize specific system calls

Intel Confidential
17

Conclusions and Discussion

• mOS offers new OS architecture for future HPC and other

• Key points
– mOS: OS architecture for hierarchical systems

– Simultaneous support Linux API (FWK) and high-performance LWK

– Nimbly leverage future generation chip technology

– Heterogeneous cores

– Hybrid memory

– Tightly coupled networking

– Chip architecture using transistors for specialized purposes

• mOS architecture mostly in place
– Working to finalize architecture

– Next half year focus on prototyping challenging areas

– After that, implementation

• Discussion

Intel Confidential
18

