Exceptional service in the national interest

An Evaluation of BitTorrent's Performance In HPC Environments

Matthew G. F. Dosanjh, Patrick G. Bridges, Suzanne M. Kelly, James H. Laros III, Courtenay T. Vaughan

Motivation

- Need scalable system services in large HPC systems
 - Example services: file systems, job launch, system monitoring
 - Communication bottlenecks; performance degradation
- Can we use recent distributed systems techniques here?
 - E.G. Peer-to-peer services developed for Internet systems
 - Must scale to large systems with complex topologies and bottlenecks
 - Not designed for HPC use-cases, networks, etc.

An Example Problem

- Dynamic Shared Libraries distribution on HPC platforms
 - Read-only data-transfer
 - Many simultaneous downloaders
 - Looks a lot like a peer-to-peer problem
- Can we use BitTorrent?

DYNAMIC SHARED LIBRARIES

The Problem

- Demand for Dynamic Shared Library support is increasing
- Two methods of use:
 - Linked at program launch
 - dlopen() during runtime

The Naïve Approach

Current Solutions

- There are a number of current solutions to this problem
 - Cache nodes
 - Bulk pre-distribution
 - Tree-based overlay networks
- These solutions look like peer-to-peer networks
 - Can we use an off-the-shelf peer-to-peer technology?

BITTORRENT

Why BitTorrent?

- One of the more popular peer-to-peer protocols
- Open-source implementations
- Private networks
- Extensible protocol
 - Peer Exchange
 - Magnet Links

Preparation

- Tracker
 - Daemon listens for incoming peers
 - Maintains a list of peers
- Description File
 - User specified file or directory
 - Splits file(s) into smaller pieces
 - Lists tracker information
- Initial Seeder
 - Starts with a full set of data
 - Registers with tracker

Starting a Client

- Reads description file
- Connects to tracker
 - Registers as a peer
 - Gets a list of peers
- Connects to other peers

Data Distribution

- Leechers
 - Keep a list of piece availability
 - Request pieces they don't have
- Seeders and Leechers
 - Respond to requests
 - Distributes Data according to fairness algorithm
- Fairness algorithm
 - Leechers use Tit-for-tat
 - Seeders try to push complete copies

Data Distribution

ARCHITECTURE

Added Actions

- Before Job Launch
 - Create the description file
 - Start Tracker & Initial Seeder
- During Job Launch
 - Distribute the description file
 - On each node
 - Start FUSE client
 - Add directory to LD_LIBRARY_PATH
- During Runtime
 - DL requests first search the FUSE directory
 - If a file isn't downloaded yet, request it from the BitTorrent swarm
 - If a file is downloaded, pass through to a local RAMDisk

Data Request Path

Application Layer

OS Layer

Network Layer

MAKING BITTORRENT WORK FOR HPC

BitTorrent Assumptions Get in the Way

- Basic approach:
 Downloads individual files on-demand
- Problem: Violates basic BitTorrent usage assumption

Fairness Algorithm Problems

- BitTorrent tries to tolerate adversarial peers
- Fairness algorithm tuned for Internet speeds and timescales
- Sequential requests interfere with tit-for-tat choking algorithm

Working Around Fairness

- Solution: Bulk prefetching of launch loaded libraries
- Libraries can be loaded two ways
 - On launch
 - On demand (dlopen)
- List of launch-loaded libraries provided by ldd
- Downloading these together, we match BitTorrent's use case
- We still support on-demand requests

RESULTS

Experimental Setup

- The Pynamic benchmark
 - Test case has 495 libraries totaling ~1.1GB
 - Test case based on an LLNL scientific code
- Three Machines
 - Teller 100 node, AMD Fusion with Infiniband
 - Muzia 20 node, Cray XE6
 - Cielo 8,944 Node, Cray XE6

Small Scale

Muzia: a Gemini system

Teller: an Infiniband system

Cielo

ISSUES AND FUTURE WORK

Network Features

- Can we use HPC network features to enhance and optimize BitTorrent?
- Multicast
- Topology-aware
- Multiple-paths

Acknowledgements

This work was funded by NNSA's Advanced Simulation and Computing (ASC) Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE- ACO4-94AL85000.

QUESTIONS?