

A Gossip-Based Approach to Exascale System Services

Philip Soltero, *Patrick Bridges*, and Dorian Arnold University of New Mexico Mike Lang Los Alamos National Laborotory

Building Exascale System Services

- Need large-scale services at huge node counts
 - Job launch, power monitoring/control, load balancing, etc.
 - System-wide communication a major challenge here
- Have to worry about all of address the standard exascale and distributed system design concerns
 - Power, Resilience
 - Scalability, Consistency
- We've traditionally designed HPC system services like they were HPC applications:

Synchronous, Structured, and Global

How much do we need consistency?

- Same tired old idea: Discard consistency for scalability or resilience
- For what services does this make sense?
 - Dependent on hardware and programming model
 - Past work in this direction has for load balancing, other services
- What kind of weakly consistent communication to use?

Gossip-based Communication

- Popular recent distributed system technique
 - Round-based protocol
 - Each round: Every node exchanges information with small random set of nodes
 - Information propagates epidemically throughout system
 - Design so global data view converges to correct value
- Robust to failures; no global communication coupling

Some things are hard to Gossip

Some types of aggregation are easier than others

- Idempotent operations (max, min, etc.) easy to do
- Average, Sum, etc. are more difficult – simple pairwise exchanges are insufficient
- Can use more complex protocols for computing global sums

Gossip can also be slow

- Takes some number of synchronized rounds for results to converge towards true value
- Different nodes have different values at different times
- When to use the current value or start a new round?
- ▶ Few well-understood roundless gossip protocols

Can we actually build useful exascale services with this?

Implementation

- Built a simple UDP gossip library for testing gossip algorithms
- Currently uses a fixed view of potential peers to select from

How well does Gossip converge?

- 1000 participants computing averages
- How close is each node to the real average after each round?
- Very high accuracy in about 6-7 rounds

Prototype: Gossip-based Power Control

 Goal: Simple power control scheme to examine the limitations of gossip for exascale system service design

Given:

- 1. Cap on average local power consumption (global cap)
- Multiple available power gears (F/V pairs)
- 3. Local power measurements

Approach:

- 1. Use gossip to estimate global power usage
- Locally change gears to help converge global average towards desired value

Evaluation

- Simulate effects of power consumption control
- Process:
 - 1. Each node sets local power
 - 2. Simulator determines resulting global power usage
 - 3. Nodes are given communicated global power usage based on (scaled) accuracy profiles
 - 4. And on around the loop
- Assume perfectly balanced load
- 5 energy gears (1200MHz/1.2V to 2000MHz/2.0 V)

Impact of Changing Accuracy on Power Management Decisions

- Graph is for 1000 participants
- With "enough" rounds we can get sufficient accuracy and hence control
- "Enough" is 24 rounds at exascale

Analysis and Conclusions

Upsides

- Can still get reasonable control (in this one case) even when we've discarded any guarantee of complete consistency
- Gossip is robust to failure (5% failure with a simple failure model didn't impact gossiped value or accuracy)

Downsides

- 20-24 rounds (with one peer per round) is non-trivial,
 corresponds to 10-12 level binary reduction tree (e.g. TBON)
- Behavior can be poor if accuracy is insufficient
- Need some fallback to enforce hard limits

Related and Future Work

Related Work

- Structured Communication Networks (TBON, CIFTS, etc.)
- Asynchronous/non-blocking collectives
- A whole raft of traditional distributed systems studies

Future Work

- More thorough resilience studies
- Experimental study of asynchrony/consistency tradeoffs
- Feasibility for other exascale services (resilience, etc.)

Acknowledgements

- Faculty and students in the UNM Scalable Systems Lab
- Funding from the New Mexico Consortium and Los Alamos National Laboratory