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Outline 

n  Motivation  
n  Illustration of a common memory management 
n  Design of the node-based memory management 
n  Critical analysis 
n  Future prospects 
n  Benchmark results 
n  Conclusions and outlook 
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Performance Characteristics 
(NumaScale-Cluster) 
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n  2 systems with 2 AMD QuadCores of type 8378 combined via 
NumaConnect 

n  all data on node 0  



Eight-Socket Configuration 
(Westmere-EX) 
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Performance Characteristics 
(Westemere-EX) 
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n  8 Intel Xeon CPU E7-8850 (Westmere-EX) 
n  8 * 10 Cores / 8 * 20 Cores via HyperThreading 
n  all data on node 0  

 



Common Memory Management 
Process/thread creation 
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n  Pointer to the 1st level page 
table is also part of the process 
control block 

n  All threads use the identical 
address space 

à  Same entry point on all cores 



Page Table per Node 
Basic idea 
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Page Table per Node 
Replication of read-only regions 

Node-Based Memory Management for Scalable NUMA Architectures 
Stefan Lankes |  Chair for Operating Systems | June 29, 2012 

9 

Node 0 

MEM0 

CPU0 

Node n 

MEMn 

CPUn 

1st level  
page table 

Interconnect 

2nd level 
page table 

1st level  
page table 

2nd level 
page table 

First memory access!  
Page fault! 

Page Replication 

R
O

 

R
O

 



Advantages & Disadvantages 

n  Pro: 
à Reflecting actual hardware at mapping layer 
à After duplication only accesses to local memory 
à Easy preparation of applications to use mprotect() 

n  Contra: 
à Memory overhead  

»  One page table per NUMA node 
»  Duplicated pages 

à Replication time 
à Searching for mappings at all NUMA nodes   

 (page fault, mprotect(), free()) 
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Avoid PGT-Traversal at Mapping 
Search 

n  Current Approach 
à Searching for mappings at all NUMA nodes 
à On which node should we start? 

n  Under development 
à Use node-distance based search 

»  Does not guarantee less work 
à Add new management structure 

»  Derived page table stores virtual address-to-nodemask 
mappings 

»  Needs 2 page table traversals per search, 
»  First resolve location, then address 
»  Increases memory footprint 
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Detection of Performance Issues 

n  Page tables include access/dirty bits to record memory accesses. 
à  Usable to detect performance issues? 
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Common usage of the access / 
dirty bits 

n  Normally used to realize demand paging. 
à Approximation of Least Recently Used (LRU) 
à Classical concept 

»  Managing of two lists of active and inactive page frames 
»  State transition realized via access bits 
»  Doubling the number of accesses via a reference bit to move 

pages from the inactive to active list. 
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Transfer to the Node-based 
Memory Management  

n  Usage of two reference bits 
à One to signalize local and one to signalize remote memory 

accesses 

n  Abstract of the new state graph  
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Jacobi solver as Application 
Benchmark 

n  Solving of 
n  Iterative rule: 

n  Abstract code for the new memory management 
(sequential) initialization of A, b and x0 
forbid write access to A and b 

while(!found_solution) 
 parallel for over the iterative rule 

allow write access to A and b  

n  Straightforward implementation 
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Jacobi solver as Application 
Benchmark 

n  Solving of 
n  Iterative rule: 

n  Abstract code 
(sequential) initialization of A, b and x0 
forbid write access to A and b thread binding 

while(!found_solution) 
 parallel for over the iterative rule 

allow write access to A and b 
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Jacobi solver 
(Westmere-EX) 

20 

matrix size: 5120 x 5120 
iterations:  20000 
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Conclusions and Outlook 

n  Memory management can reflect the actual hardware  
n  First performance results are promising 
n  Reduction of overhead by  

à usage of virtual address-to-node mapping 
à bundling of NUMA nodes 

n  Introduce possibilities to detect performance issues 
n  Simple integration into existing programming models 

#pragma  omp parallel for shared(A,B,C) 
  readonly(A,B) 

for (i=0; i<0; i++)  
 C[i] = A[i] + B[i]; 
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Related Work 

n  Page placement strategies are extensively 
investigated 
à Page placement via hints 

»  Affinity-On-Next-Touch  
–  Proposals: Nordergraaf & van der Pas 
–  Variations: Shermerhorn, Goglin et al., Bircsak at al. 

»  Template library of locality management (Majo & Gross) 
à (Semi)automatic page placement 

»  profile-guided automatic page placement (Mueller et al.) 
»  dynamic page migration via counting remote memory 

accesses  
–  Memory controller extensions: SGI Origin 
–  Compiler extensions: Nikolopoulos et al. 

n  However, it exists room for optimizations. 
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Page Table per Node 
Basic idea 

n  One page table per node 
n  Context switch: Load node-local page table 
n  Page fault  

à Page not mapped: allocate new page and map locally 
à Page mapped remotely:  

»  RW page:  duplicate mapping 
»  RO page:  duplicate page and map clone locally 

n  New system call to create a process, which uses our 
node-based memory management, 
à Per default, the processes use the traditional concept.   

n  Via mprotect the page replication could be implicitly 
en- or disabled for certain memory regions. 
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Test platform 
-  8 Intel Xeon CPU E7-8850 (Westmere-EX) 
-  8 * 10 Cores / 8 * 20 Cores via HyperThreading 



Overhead 
(NumaScale-Cluster) 

unmodified 
Linux kernel (2.6.37) 

page table 
per node 

time to allocate 
a page 

2.810µs 3.143µs 

time to protect 
a page 

0.034µs 0.110µs 

time to replicate  
a page 

___ 26.956µs 

time to unprotect  
a page 

0.195µs 2.787µs 

time to replicate 
a reference 

___ 6.044µs 
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Test platform 
-  2 systems with 2 AMD QuadCores of type 8378 combined 

via NumaConnect 



Jacobi solver 
(NumaScale-Cluster) 
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