
Node-Based Memory Management for
Scalable NUMA Architectures

International Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2012)

Stefan Lankes1, Thomas Roehl2, Christian Terboven2, Thomas Bemmerl1

1Chair for Operating Systems, RWTH Aachen University
2Center for Computing and Communication, RWTH Aachen University

Outline

n  Motivation
n  Illustration of a common memory management
n  Design of the node-based memory management
n  Critical analysis
n  Future prospects
n  Benchmark results
n  Conclusions and outlook

2 Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

Scalable	 NUMA	 Interconnect	

Storage	
Subsystem	

Network	 Interface	

Node	 3	 Node	 4	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 1	 Node	 2	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 5	 Node	 6	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Node	 7	 Node	 8	

Node	 11	 Node	 12	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 9	 Node	 10	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Node	 15	 Node	 16	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 13	 Node	 14	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Performance Characteristics
(NumaScale-Cluster)

0

1000

2000

3000

4000

5000

6000

7000

threads on
node 0

threads on
node 1

threads on
node 2

threads on
node 3

1 thread 2 threads 4 threads

4 Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

m
em

or
y

ba
nd

w
id

th
 [M

B
/s

]

n  2 systems with 2 AMD QuadCores of type 8378 combined via
NumaConnect

n  all data on node 0

Eight-Socket Configuration
(Westmere-EX)

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

5

CPU0 CPU1

CPU2 CPU3

CPU6 CPU7

CPU4 CPU5

chipset chipset

chipset chipset

Performance Characteristics
(Westemere-EX)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

threads on
node 0

threads on
node 1

threads on
node 5

threads on
node 7

1 thread 2 threads 4 threads 8 threads 16 threads

6 Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

m
em

or
y

ba
nd

w
id

th
 [M

B
/s

]

n  8 Intel Xeon CPU E7-8850 (Westmere-EX)
n  8 * 10 Cores / 8 * 20 Cores via HyperThreading
n  all data on node 0

Common Memory Management
Process/thread creation

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

7

Node 0

MEM0

CPU0

Node n

MEMn

CPUn

1st level
page table

Interconnect

First memory access!
Page fault!

2nd level
page table

n  Pointer to the 1st level page
table is also part of the process
control block

n  All threads use the identical
address space

à  Same entry point on all cores

Page Table per Node
Basic idea

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

8

Node 0

MEM0

CPU0

Node n

MEMn

CPUn

1st level
page table

Interconnect

2nd level
page table

1st level
page table

2nd level
page table

First memory access!
Page fault!

Page Table per Node
Replication of read-only regions

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

9

Node 0

MEM0

CPU0

Node n

MEMn

CPUn

1st level
page table

Interconnect

2nd level
page table

1st level
page table

2nd level
page table

First memory access!
Page fault!

Page Replication

R
O

R
O

Advantages & Disadvantages

n  Pro:
à Reflecting actual hardware at mapping layer
à After duplication only accesses to local memory
à Easy preparation of applications to use mprotect()

n  Contra:
à Memory overhead

»  One page table per NUMA node
»  Duplicated pages

à Replication time
à Searching for mappings at all NUMA nodes

 (page fault, mprotect(), free())

10 Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

Avoid PGT-Traversal at Mapping
Search

n  Current Approach
à Searching for mappings at all NUMA nodes
à On which node should we start?

n  Under development
à Use node-distance based search

»  Does not guarantee less work
à Add new management structure

»  Derived page table stores virtual address-to-nodemask
mappings

»  Needs 2 page table traversals per search,
»  First resolve location, then address
»  Increases memory footprint

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

11

Scalable	 NUMA	 Interconnect	

Storage	
Subsystem	

Network	 Interface	

Node	 3	 Node	 4	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 1	 Node	 2	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 5	 Node	 6	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Node	 7	 Node	 8	

Node	 11	 Node	 12	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 9	 Node	 10	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Node	 15	 Node	 16	

N
U
M
A	
In
te
rc
on

ne
ct	

Node	 13	 Node	 14	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Core	 Core	

Memory	

Detection of Performance Issues

n  Page tables include access/dirty bits to record memory accesses.
à  Usable to detect performance issues?

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

13

Node 0

MEM0

CPU0

Node n

MEMn

CPUn

1st level
page table

Interconnect

0

2nd level
page table

1st level
page table

2nd level
page table

re
m

ot
e

ac
ce

ss

no
 lo

ca
l a

cc
es

s

Common usage of the access /
dirty bits

n  Normally used to realize demand paging.
à Approximation of Least Recently Used (LRU)
à Classical concept

»  Managing of two lists of active and inactive page frames
»  State transition realized via access bits
»  Doubling the number of accesses via a reference bit to move

pages from the inactive to active list.

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

14

Inactive
referenced=0

Inactive
referenced=1

Active
referenced=0

Active
referenced=1

access
no

access

Transfer to the Node-based
Memory Management

n  Usage of two reference bits
à One to signalize local and one to signalize remote memory

accesses

n  Abstract of the new state graph

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

15

Inactive
referenced=00

Active
referenced=00

Active
referenced=01

Inactive
referenced=01

remote
access

no
access

performance
issue

Jacobi solver as Application
Benchmark

n  Solving of
n  Iterative rule:

n  Abstract code for the new memory management
(sequential) initialization of A, b and x0
forbid write access to A and b

while(!found_solution)
 parallel for over the iterative rule

allow write access to A and b

n  Straightforward implementation

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

16

A ⋅ x = b,A ∈ Rn×n,b∈ Rn, x ∈ Rn

xi
m+1 =

1
ai,i

bi − ai, j x j
m

j≠i
∑

$

%
&&

'

(
))

Jacobi solver as Application
Benchmark

n  Solving of
n  Iterative rule:

n  Abstract code
(sequential) initialization of A, b and x0
forbid write access to A and b

while(!found_solution)
 parallel for over the iterative rule

allow write access to A and b

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

17

A ⋅ x = b,A ∈ Rn×n,b∈ Rn, x ∈ Rn

xi
m+1 =

1
ai,i

bi − ai, j x j
m

j≠i
∑

$

%
&&

'

(
))

Jacobi solver as Application
Benchmark

n  Solving of
n  Iterative rule:

n  Abstract code
(sequential) initialization of A, b and x0
forbid write access to A and b thread binding

while(!found_solution)
 parallel for over the iterative rule

allow write access to A and b

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

18

A ⋅ x = b,A ∈ Rn×n,b∈ Rn, x ∈ Rn

xi
m+1 =

1
ai,i

bi − ai, j x j
m

j≠i
∑

$

%
&&

'

(
))

Jacobi solver as Application
Benchmark

n  Solving of
n  Iterative rule:

n  Abstract code
(sequentialideal) initialization of A, b and x0
forbid write access to A and b thread binding

while(!found_solution)
 parallel for over the iterative rule

allow write access to A and b

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

19

A ⋅ x = b,A ∈ Rn×n,b∈ Rn, x ∈ Rn

xi
m+1 =

1
ai,i

bi − ai, j x j
m

j≠i
∑

$

%
&&

'

(
))

Jacobi solver
(Westmere-EX)

20

matrix size: 5120 x 5120
iterations: 20000

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

0 20 40 60 80 100 120 140 160

no pinned threads, seq.
initialization

pinned threads, seq.
initialization

pinned threads, ideal
initialization

usage of a page table per
node

no pinned
threads, seq.
initialization

pinned
threads, seq.
initialization

pinned
threads, ideal
initialization

usage of a
page table
per node

80 threads 144,609 69,247 33,543 44,77
160 threads 91,067 62,864 27,517 27,746

Conclusions and Outlook

n  Memory management can reflect the actual hardware
n  First performance results are promising
n  Reduction of overhead by

à usage of virtual address-to-node mapping
à bundling of NUMA nodes

n  Introduce possibilities to detect performance issues
n  Simple integration into existing programming models

#pragma omp parallel for shared(A,B,C)
 readonly(A,B)

for (i=0; i<0; i++)
 C[i] = A[i] + B[i];

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

21

Thank you for your kind attention!

Stefan Lankes

Chair for Operating Systems
RWTH Aachen University
Kopernikusstr. 16
52056 Aachen, Germany

www.lfbs.rwth-aachen.de
contact@lfbs.rwth-aachen.de

Backup slides

Related Work

n  Page placement strategies are extensively
investigated
à Page placement via hints

»  Affinity-On-Next-Touch
–  Proposals: Nordergraaf & van der Pas
–  Variations: Shermerhorn, Goglin et al., Bircsak at al.

»  Template library of locality management (Majo & Gross)
à (Semi)automatic page placement

»  profile-guided automatic page placement (Mueller et al.)
»  dynamic page migration via counting remote memory

accesses
–  Memory controller extensions: SGI Origin
–  Compiler extensions: Nikolopoulos et al.

n  However, it exists room for optimizations.

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

24

Page Table per Node
Basic idea

n  One page table per node
n  Context switch: Load node-local page table
n  Page fault

à Page not mapped: allocate new page and map locally
à Page mapped remotely:

»  RW page: duplicate mapping
»  RO page: duplicate page and map clone locally

n  New system call to create a process, which uses our
node-based memory management,
à Per default, the processes use the traditional concept.

n  Via mprotect the page replication could be implicitly
en- or disabled for certain memory regions.

25 Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

Overhead
(Westmere-EX)

unmodified
Linux kernel (3.3.8)

page table
per node

time to allocate
a page

1.666µs 6.671µs

time to protect
a page

0.00005µs 0.032µs

time to replicate
a page

___ 4.479µs

time to unprotect
a page

0.0001µs 0.148µs

time to replicate
a reference

___ 1.445µs

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

26

Test platform
-  8 Intel Xeon CPU E7-8850 (Westmere-EX)
-  8 * 10 Cores / 8 * 20 Cores via HyperThreading

Overhead
(NumaScale-Cluster)

unmodified
Linux kernel (2.6.37)

page table
per node

time to allocate
a page

2.810µs 3.143µs

time to protect
a page

0.034µs 0.110µs

time to replicate
a page

___ 26.956µs

time to unprotect
a page

0.195µs 2.787µs

time to replicate
a reference

___ 6.044µs

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

27

Test platform
-  2 systems with 2 AMD QuadCores of type 8378 combined

via NumaConnect

Jacobi solver
(NumaScale-Cluster)

28

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Ti
m

e
[s

]

no pinned threads, seq. Initialization
pinned threads, seq. initialization
pinned threads, par. initialization
usage of a page table per node

Number of threads
matrix size: 3072 x 3072
iterations: 20000

Node-Based Memory Management for Scalable NUMA Architectures
Stefan Lankes | Chair for Operating Systems | June 29, 2012

