
FINAL: Flexible and Scalable Composition
of File System Name Spaces

Michael J. Brim, Barton P. Miller
University of Wisconsin

Vic Zandy
IDA Center for Computing Sciences

ROSS 2011
May 31, 2011

2

Background: Single System Image (SSI)

Unified view of distributed system resources
o allow applications to access resources as if local
o simplifies development of applications, tools, and

middleware

Examples:
o unified process space: BProc, Clusterproc
o unified file space: Unix United
o distributed operating systems: LOCUS, Sprite,

Amoeba, MOSIX, GENESIS, OpenSSI, Kerrighed

3

TBON-FS: SSI for Group File Operations

TBON-FS client views unified file name space
o constructed from independent file servers
o target: SSI for 10k – 100k servers

Group file operation idiom: gopen()
o Open files in directory as a group ⇒ gfd
o Apply file operations on gfd to entire group

TBON-FS employs Tree-Based Overlay Network
o provides scalable group file operations via TBON multicast

communication and data aggregation

Scalable Distributed Monitoring: ptop

Avg. %MEM
4096 processes

4,096
files

>1,000,000
files

/proc/uptime /proc/loadavg
/proc/stat /proc/meminfo

/proc/$pid/stat

/proc/$pid/statm

/proc/$pid/status

5

TBON-FS: Problematic Scenario

Prototype used server isolation
o /tbonfs/$server/…

o leads to non-scalable group creation

We can do better!!

mkdir group_dir

foreach member (/tbonfs/*/path/to/file) {

server = …

symlink $member group_dir/file.$server

}

Custom ptop Name Space

Automatic groups:
o host files (4)
o process files (3)

Strategy:
o Create group directories

containing files from all
hosts/processes

/ptop/
/hosts/

/loadavg/
/host1
/…
/hostn

/meminfo/…
/stat/…
/uptime/…

/procs/
/stat/

/hostpid1
/…
/hostpidn

/statm/…
/status/…

7

Goal: Scalable SSI Name Spaces

Let clients specify name space
o name space suited for client needs
o automatic creation of natural groups
o easy creation of custom groups

Efficient, distributed name space composition
o avoid traditional SSI scalability barriers of

centralization or consensus

8

Name Space Composition @ Scale

Lots of prior work in name space composition
omounts and union mounts
o private name spaces for custom views & security
o global name spaces that aggregate resources

Ill-suited to composing 10k – 100k spaces
o inefficient composition

opair-wise operations (e.g., mount)
o fine-grained directory entry manipulation

o inflexible structure and semantics

9

Desired Composition Properties

Flexibility: describe a wide range of compositions

Clarity: simple, intuitive semantics

Efficiency & Scalability:
o avoid centralized, pair-wise composition
o use TBON for distributed composition

10

File Name space Aggregation Language

Two primary abstractions
1. Tree: a file name space
2. File Service: access to local/remote file system(s)

A set of tree composition operations
o get or prune a sub-tree
o path extend a tree
o combine two or more trees

11

Assume name spaces are traditional directory trees

Name Space Abstraction
o rooted tree of named vertices
o edges for parent dir, children

Tree is essentially a name space view
o independent of underlying file service name spaces

o each vertex associated with (service, path)

o views are immutable

FINAL Abstractions: Tree

/

etc usr

bin lib

cc

mtab

12

FINAL Abstractions: File Service

File service provides:
o access to a physical name space
o operations on files in that name space

o e.g., stat(), open(), read(), write(), lseek()

Define service instance by name, returns snapshot view
okey-value pairs for service options
oExamples:

local()

nfs(host=server, mount=path)

9P(srv=file, mount=path)

FINAL Path Operations (1)

Path p

Tree t

subtree(t,p)

prune(t,p)

14

FINAL Path Operations (2)

extend(t,p)

Path p

Tree t

15

FINAL Composition Operations (1)

Path p

Tree t

graft(prune(t,p),
subtree(t,p),
p)

16

merge({Treek}, conflict_fn)

o Deep merge of all trees in input set
o Conflict function called with vertices sharing same path,

returns vertices to add to result tree

FINAL Composition Operations (2)

/

etc

mtab

/

usr

bin lib

cc

/

etc usr

bin lib

cc

mtab

17

merge({Treek}, overlay)

o Precedence to first tree containing shared path

FINAL Composition Operations (3)

/

usr

lib

/

etc usr

bin lib

cc

mtab

/

etc usr

bin

cc

mtab

O : original name space
N : new file system name space
R : result name space

o Standard mount
o replace sub-tree at path P

R = graft(prune(O,P), N, P)

o Bind mount
o make sub-tree at path P1 also visible at P2

R = graft(prune(O,P2),
subtree(O,P1), P2)

Composition Examples: OS mounts
O

N

R

P

R

P1
P2

19

O : original name space
N : new file system name space
R : result name space

o Union mount
o lay N over sub-tree at path P

R = graft(prune(O,P),
merge({subtree(O,P),N},

overlay),

P)

Composition Examples: OS mounts
O

N

R

P

20

TBON-FS + FINAL

Client mounts views of TBON-FS service
graft(local(), tbonfs_svc(final_spec), mountpt)

TBON-FS service
o merge() all server name spaces

o conflict function currently hard-coded

o each server name space constructed from FINAL
specification given by client
o specs can depend on local context
o results in similar name spaces across servers

Example: Automatic File Groups
Client FINAL

T = tbonfs_svc(hosts,
srv_final)

root = graft(local(), T,
“/tbonfs/config”)

Server FINAL

E = subtree(local(),“/etc”)
G = subtree(E,“/group”)
P = subtree(E,“/passwd”)
GP = merge({G,P},overlay)
root = GP

/tbonfs/
/config/

/group/
/host1
/…
/hostn

/passwd/
/host1
/…
/hostn

Example: Server-local Context

o Handle heterogeneity
across servers by hiding
name space differences

o Ex: Batch Job System
o temporary file staging area

Server FINAL

T = subtree(local(), “/tmp”)
if(T == NULL)

T = subtree(local(),
“/scratch”)

if(T == NULL)
T = subtree(local(),

getenv(HOME))
root = extend(T,“/tmp”)

/tbonfs/
/tmp/…

Example: Cloud Management
o Group distributed hosts by

resources provided
o OS version and CPU type
o Resource amounts

–Disk, Memory, # CPUs

Server FINAL

L = local()
os = getenv(OSTYPE)
arch = getenv(MACHTYPE)
OA = extend(L, “/$os/$arch”)
root = OA

/cloud/
/Linux/

/x86/
/path/

/hosti
/…
/hostk

/x86_64/…
/ppc32/…
/ppc64/…

/WinXP/$arch/…
/Win7/$arch/…

24

Performance Considerations

Improving efficiency of FINAL operations
o immutable view semantics imply tree copies

o views implemented as versioned trees

o deep merges can be costly
o lazy evaluation of specifications as new paths are accessed

TBON-FS name space caching
o client only has mount paths
o servers cache accessed portion of name space
o potential for improved lookup latency through caching of

merged name space within TBON

25

Performance Evaluation

Measured:
1. Time to construct name space @ mount
2. Time to gopen()

3. Effect on group file ops → none, as expected

26

Conclusion

TBON-FS targets SSI for 10k – 100k servers

FINAL provides flexibility to customize name space
o helps improve efficiency of file group definition

FINAL compositions are scalable
o use trees to compose trees
o server name spaces constructed in parallel

