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Abstract—Interconnection networks must meet the communi-
cation demands of current High-Performance Computing sys-
tems. In order to interconnect efficiently the end nodes of these
systems with a good performance-to-cost ratio, new network
topologies have been proposed in the last years which leverage
high-radix switches, such as Slim Fly. Adversarial-like traffic
patterns, however, may reduce severely the performance of Slim
Fly networks when using only minimal-path routing. In order to
mitigate the performance degradation in these scenarios, Slim
Fly networks should configure an oblivious or adaptive non-
minimal routing. The non-minimal routing algorithms proposed
for Slim Fly usually rely on Valiant’s algorithm to select the paths,
at the cost of doubling the average path-length, as well as the
number of Virtual Channels (VCs) required to prevent deadlocks.
Moreover, Valiant may introduce additional inefficiencies when
applied to Slim Fly networks, such as the “turn-around problem”
that we analyze in this work. With the aim of overcoming these
drawbacks, we propose in this paper two variants of the Valiant’s
algorithm that improve the non-minimal path selection in Slim
Fly networks. They are designed to be combined with adaptive
routing algorithms that rely on Valiant to select non-minimal
paths, such as UGAL or PAR, which we have adapted to the Slim
Fly topology. Through the results from simulation experiments,
we show that our proposals improve the network performance
and/or reduce the number of required VCs to prevent deadlocks,
even in scenarios with adversarial-like traffic.

Index Terms—High-Performance Interconnection Networks,
Slim Fly Topology, Routing

I. MOTIVATION

The interest in interconnection networks increases as the
size of the system grows, especially in the High Performance
Computing (HPC) systems such as the ranked in the Top 500
list [1]. These systems need to interconnect thousand of end
nodes in order to meet with the growing computing and/or
storage demands of current applications, thus larger HPC
systems will appear requiring larger interconnection networks.
If the interconnection network is unable to perform at the
speed required by applications, it may become the system
bottleneck, degrading the overall system performance.

Interconnect designers face several challenges when defin-
ing the architecture of large networks connecting tens of
thousands of end nodes. The most typical ones are to reduce
the number of elements in order to lower the network cost,
guarantee high network bandwidth and low latency, save
power consumption, and provide resiliency to link failures.
A typical design decision is to lower the network diameter to
diminish the number of network elements which also reduces

the power consumption. Following this idea, the flattened
butterfly [2], the Dragonfly [3], or the KNS [4] topologies were
proposed. These topologies, in contrast with the traditional
direct and indirect topologies, scale in cost while maintaining
their performance, by reducing the network diameter and the
number of switches. Another proposal is the Slim Fly topology
[5] which maximizes the number of end nodes for a given
switch radix and network diameter. It guarantees network
diameter two by using MMS graphs. This topology, hence,
needs fewer switches than the other topologies while offering
high communication bandwidth and low latency.

Slim Fly networks require efficient routing algorithms that
fully exploit their theoretical performance, regardless of the
traffic distribution. In general, efficient routing algorithms
compute one or multiple routes between two end nodes.
The length of these routes can be minimal (i.e., the shortest
distance between two nodes), or non-minimal. Minimal-path
(MIN) routing algorithms obtain a high performance when
traffic behaves uniformly, i.e., traffic is balanced among the
available network paths. Adversarial traffic, however, leads
MIN routing to overuse some network paths while others
remain idle. In order to balance the traffic the among available
network paths, routing algorithms, such as Valiant (VAL) [6] or
UGAL [7], select non-minimal paths according to a criterion.
Although these algorithms successfully distribute traffic in the
adversarial scenarios, this criterion can be improved consid-
ering the Slim Fly topology features. Specifically, adaptive
routing algorithms for Slim fly topologies usually rely on VAL
to select the non-minimal path. However, the VAL routing
is not specially designed for Slim Fly topologies, and it has
several issues when computing a non-minimal routes, such as
visiting switches previously visited along the same route, or
selecting non-minimal paths too long. In this paper, we analyze
these problems and propose several improvements to the VAL
routing. Furthermore, other algorithms can also benefit from
the proposals, such as UGAL or PAR [8], which can be also
adapted to fit in Slim Fly topology.

The main contributions of this paper are the following:
• We analyze the VAL routing proposed for Slim Fly

topology, identifying two problems: the “turn around
problem” of traffic flows and the overhead introduced by
non-minimal paths.

• We design strategies to solve the “turn-around problem”
and to reduce the length of non-minimal paths. One of



them, moreover, requires fewer virtual channels to avoid
deadlocks.

• We apply the proposed strategies to improve adaptive
routing algorithms, such as UGAL or PAR, which can
be also adapted to fit in Slim Fly topology.

• We evaluate our proposals by means of simulation
through uniform and adversarial traffic scenarios and
compare them to other routing algorithms.

The rest of the paper is organized as follows. Section
II explains the basics of the Slim Fly topology: connection
pattern, routing algorithms, and deadlock freedom. In Section
III we identify the problems that may appear in the non-
minimal routing algorithms in Slim Fly networks. In Section
IV we propose new techniques which face with the identified
problems. In Section V we evaluate our proposal through
simulation results. Section VI describes the related work.
Finally, Section VII draws some conclusions and future work.

II. THE SLIM FLY TOPOLOGY

Slim Fly topology bases its connection pattern on MMS
graphs [9], [10] to be a close-to-optimum topology that
maximizes the number of endpoints for network diameter two
and radix k′ [5]. It offers full global bandwidth, provides
resiliency, and reduces network costs, energy consumption
and latency. Compared to other topologies, Slim Fly networks
require fewer elements for a given diameter and switch radix.
Table I lists the symbols that describe this topology.

TABLE I: Symbols used to describe the Slim Fly topology

N Number of end nodes in the network
p Number of end nodes attached to a switch (concentration)
k′ Number of channels to other switches (network radix)
k Switch radix (k = k′ + p)

Ns Number of switches in the network

A. Connection pattern

The construction of a Slim Fly requires a prime power q
such that q = 4l+δ, where δ ∈ {−1, 0, 1} and l ∈ N. For such
q, a MMS graph is generated with network radix k′ = 3q−δ

2
and a number of switches Ns = 2q2. Switches are connected
among them by performing the following steps:

1) Constructing the Galois field Fq: Let Fq be the Galois
field of order q. A primitive element ξ of Fq has to be
found. ξ is an element of Fq that generates Fq , i.e., all
non-zero elements of Fq can be written as ξi mod q (i ∈
N). There exists no universal method for finding ξ, but
it can be calculated for smaller fields.

2) Constructing the generator sets X and X’: ξ is utilized
to construct the sets known as generators. Depending
on δ, these sets are generated in a different way:
• If δ = 1

– X = {1, ξ2, ξ4, ..., ξq−3}
– X ′ = {ξ, ξ3, ξ5, ..., ξq−2}

• If δ = −1
– X = {1, ξ2, ξ4, ..., ξ2l−2, ξ2l−1, ξ2l+1, ..., ξ4l−3}

– X ′ = {ξ, ξ3, ξ5, ..., ξ2l−1, ξ2l, ..., ξ4l−4, ξ4l−2}
All operations applies modulo q, e.g., ξ4l−2 means ξ4l−2

mod q.
3) Connecting switches: The set of all switches is a Carte-

sian product: {0, 1} × Fq × Fq . Switches are divided
into two subgraphs: the composed of switches (0, x, y)
and the composed of switches (1,m, c). Switches are
connected using the following equations [10]:

switch (0, x, y) is connected to (0, x, y′) iff y − y′ ∈ X (1)

switch (1,m, c) is connected to (1,m, c′) iff c−c′ ∈ X ′ (2)

switch (0, x, y) is connected to (1,m, c) iff y = mx+ c (3)

4) Attaching end nodes: Each switch should be connected
to p ≈ k′

2 end nodes to ensure full global bandwidth [5].
The following example details the construction of a small

Slim Fly for q = 5. As q = 5 = 4 × 1 + 1, l is
1, δ is 1, the network radix is k′ = 3×5−1

2 = 7, and
Ns = 2 × 52 = 50. The Galois field is F5 = {0, 1, 2, 3, 4}
and the primitive element is ξ = 2. This primitive ele-
ment generates all elements of F5 (1 = 24 mod 5, 2 =
21 mod 5, 3 = 23 mod 5, 4 = 22 mod 5). The generator sets
are X = {1, 22 mod 5, ..., 25−3 mod 5} = {1, 4} and X ′ =
{2, 23 mod 5, ..., 25−2 mod 5} = {2, 3}. Then, Equations 1,
2, and 3 are applied to connect switches. Fig. 1 exemplifies
the result of this process. Equation 3 connections are omitted
for the sake of clarity. Finally, three or four end nodes can be
attached to switches (p ≈ 7

2 ) which results in a network with
150 or 200 end nodes, respectively.

Fig. 1: Basic Slim Fly topology diagram.

B. Routing in Slim Fly topology

Slim Fly connection pattern has a single minimal path
between a source end node S attached to a switch SwS and
a destination end node D attached to a switch SwD [5].
The minimal-path routing (MIN) algorithm, hence, consists
of three routing cases:

1) 0-hop path: SwS = SwD. Packets are sent directly to
the destination, end node D.

2) 1-hop path: SwS 6= SwD and SwS is connected to
SwD. Packets are routed to SwD.



3) 2-hop path: SwS 6= SwD and SwS is not connected
to SwD. Packets are routed to a middle switch SwM
connected with SwD and SwS . Then, they travel from
SwM to SwD. Note that between each pair of switches
SwS-SwD, there is only a single switch SwM because
network diameter is two. Fig. 2 displays the minimal
path between SwS and SwD.

Fig. 2: Minimal and non-minimal paths in a Slim Fly topology.
Virtual channels avoid deadlocks in each hop.

MIN routing achieves high performance under uniform
traffic patterns, since traffic flows are balanced fairly among
the available routes. Unfortunately, adversarial traffic causes
an overuse of some network ports so that non-minimal routing
algorithms are required using alternative routes.

Non-minimal path routing is based on the Valiant Random
Routing (VAL) algorithm [6]. For each packet, VAL first
selects a random intermediate switch SwI different from SwS
or SwD to route packets before moving to SwD. Fig. 2
illustrates the non-minimal path between SwS and SwD
through SwI . Packets follow a minimal path when traveling
to both SwI and to SwD, thus packets may perform 2, 3, or
4 hops, depending on whether switches SwS , SwD, and SwI
are directly connected. Non-minimal paths are always one hop,
at least, longer than the minimal ones.

C. Deadlock Freedom

Slim Fly topology offers path diversity allowing multiple
routes between two end nodes at the cost of containing
physical cycles that may lead to deadlock situations in the
network [11]. Nevertheless, deadlocks can be avoided using
virtual channels (VCs) [5]. In a n-hop path between two end
nodes, packets performing hop k are assigned to VC k − 1,
where 1 ≤ k ≤ n. Fig. 2 exemplifies a minimal path consisting
of two hops, so that two VCs are required to prevent deadlocks,
and a non-minimal path consisting of four hops, thus applying
this policy requires four VCs.

III. PROBLEM STATEMENT

As we have described above, adaptive routing algorithms
in Slim Fly networks use non-minimal routes to alleviate the

link overuse under adversarial traffic scenarios. Specifically, an
adversarial traffic pattern occurs when p end nodes attached to
a switch send packets through the same link (p is the switch
concentration, see Table I). This situation provokes network
contention for the access to that link, limiting the accepted
traffic load per end node to 1

p . This traffic pattern affects
especially minimal-path routing because Slim Fly networks
offer only one possible minimal-path between two end nodes.
Thus, minimal paths have to cross through the contended links
and switches.

Fig. 3: Example of Adversarial Traffic in a Slim Fly network.

Fig. 3 illustrates an adversarial traffic scenario in a portion
of a Slim Fly network. SwS has attached three end nodes 0,
1 and 2 (i.e., p = 3), which send packets at full link speed to
the three end nodes A, B and C attached to SwD. Because
of Slim Fly connection pattern, a single minimal path exists
between SwS and SwD through switch SwM (see Section
II-A). Therefore, these traffic flows share the bandwidth of
the links along the minimal path from switch SwS to switch
SwD. Assuming that all links are able to deliver traffic at the
same speed, both links connecting SwS to SwM and SwM to
SwD operate at full speed. However, links connecting SwS
to its nodes work at 1

p of their maximum speed because the
link between SwS and SwD cannot absorb more traffic. On
the other hand, links connecting SwD to its nodes also work
at one third ( 1p = 1

3 ) of their maximum speed because the
incoming traffic from SwM is distributed among them.

The effects of adversarial traffic can be mitigated by a
routing algorithm that chooses different paths other than
those overused, even though the length of the alternative
paths is non-minimal. For this purpose, Slim Fly networks
utilize Valiant routing algorithm (VAL) [6] which is able to
generate non-minimal paths, used instead of minimal paths.
Specifically, VAL routing selects randomly an intermediate
switch SwI that can be traversed by means of a non-minimal
path from switch SwS to SwD. This alternative route is used
to balance traffic flows avoiding overused link, at the cost of
doubling the path length and the amount of VCs required to
avoid deadlocks (Fig. 2 shows that non-minimal routes use
four VCs to prevent deadlocks). VAL routing computes paths
with two, three, and four hops, depending on whether switches
SwS , SwD and SwI are directly connected in the network.
This means that, in the worst case, four VCs are required to
assure deadlock prevention, no matter the average path length.
Most importantly, the overuse of VCs prevent them from being
used for other purposes such as congestion control or quality-
of-service (QoS), among others [12].



We have identified that VAL routing applied to Slim Fly
networks has several flaws that make the computing of non-
minimal routes inefficient. The first one is that packets fol-
lowing non-minimal routes may visit the same switch twice
(turning around and going back through the same route).
Consequently, more VCs are required (one per additional hop)
to prevent deadlocks, and latency overhead is generated to
packets following this route. Furthermore, as packets suffering
this problem arrive/leave the switch from/to the same port,
switches should implement a crossbar able to forward a packet
from a port to itself. Fig. 4 shows a routing situation when
the turn-around problem appears.

Fig. 4: Turn-around problem for packets in Slim Fly networks
with VAL Routing.

Before sending a packet from SwS to SwD, VAL routing,
first, selects a random intermediate switch SwI . Then, SwS
forwards it to SwI through SwA, a switch in the middle
of the minimal route from SwS to SwI . Next, packet is
routed minimally from SwI to SwD (i.e., other two hops
are required), so that it visits again switch SwA. Although
Fig. 4 exhibits the turn-around problem in a four-hop path, it
could also happen in a three-hop path when SwI is directly
connected both to SwS . In this case, as VAL routing chooses
randomly an intermediate switch, it may happen that SwI
(placed just one hop ahead) is selected as an intermediate
switch. Then, the packet is sent from SwS to SwI and then,
send back to SwS to reach finally switch SwD. This is a
corner-case that may happen when using VAL routing in Slim
Fly networks.

Another issue that may affect the efficiency of VAL routing
in Slim Fly networks is the average path length of the non-
minimal routes (and so the number of required VCs in average
to prevent deadlocks). In some situations, VAL routing is
inefficient when computing alternative, non-minimal routes.
For instance, Fig. 2 shows that VAL routing needs four hops to
perform a non-minimal route from SwS to SwD, but we have
described that it should be possible to reach SwD with two
hops (minimal route) and three hops. The latter option would
provide shorter non-minimal routes in average, and would also
save one VC, compared to four-hop routes.

Therefore, VAL routing problems must be overcome in Slim
Fly networks in order to avoid unnecessary non-minimal routes
that increase packet latency and the number of required VCs
to prevent deadlocks. Moreover, VAL routing improvements
would also benefit adaptive routing algorithms that compute
non-minimal routes using VAL, such as UGAL and PAR.

IV. IMPROVEMENTS DESCRIPTION

This section details two proposals for improving non-
minimal and adaptive routing algorithms in Slim Fly networks.
The first proposal faces the turn-around problem described
in Section III. We call this technique no-turn-around Valiant
(VALnta). VALnta routing detects this problem when a packet
is moving to its intermediate switch. If the intermediate switch
visited by the packet is directly connected to the destination
switch, then the packet is routed immediately to that switch,
without considering other alternative paths. The information
required by the VALnta routing technique can be included in
the routing tables at switches. For instance, in the situation
shown in Fig. 4, SwS or SwA can send a packet to SwD.
If we apply VALnta routing, that packet is sent directly from
SwA to SwD, instead of visiting SwI . Then, a packet from
SwS is routed using two hops instead of four hops, and a
packet from SwA just requires one hop to reach SwD.

VALnta routing can be implemented easily in commercial
networks, such as those using routing tables in the switches. In
these types of networks, the topology is discovered by means
of control messages, so that the network manager entity is
aware of the topology connection pattern and the available
routes among the end nodes. Then, that entity can compute
minimal and non-minimal paths and detect those paths visiting
the same router twice, populating routing tables accordingly
to prevent the turn-around problem.

The second proposal extends VALnta routing with function-
ality to reduce the number of hops of non-minimal paths. We
call this technique three-hop Valiant (VAL3h). VAL3h reduces
the number of hops in non-minimal routes to a maximum of
three, and it also avoids the turn-around problem.

Specifically, VAL3h selects the intermediate switch ran-
domly as the original Valiant (hereafter, VALori) does and
forwards the packet to that switch. However, instead of being
forwarded to this intermediate switch in the second hop, the
packet is forwarded minimally to its final destination switch.
This route only has three hops, unless the current switch is
directly connected to the destination switch. In this case, the
packet performs two hops. Algorithm 1 describes this routing.

Algorithm 1 Three-hop Valiant

1: if Swcurrent 6= SwS then
2: Route minimally to SwD . Destination switch
3: else
4: Route minimally to SwI . Intermediate switch

Fig. 5 illustrates the route followed by a packet when it
performs a three-hop path selected by VAL3h in comparison
with a four-hop path performed by VALori or VALnta. In this
scenario, end node S connected to SwS is the source of the
packet, end node D connected to SwD is the destination, and
SwI is the intermediate switch selected randomly. We omit the
information regarding the used VCs per route, since it is equal
to the number of hops. Note that four-hop routes require four
VCs to prevent deadlocks, while three-hop routes will require



three VCs. Regardless of the path, the packet reaches SwA in
the first hop, since it is used in the minimal route from SwS
to SwI . In the second hop, however, VAL3h selects a minimal
route to reach SwD through SwC which is minimal and it is
shorter (three hops) than that selected by VALori and VALnta
(four hops).

Fig. 5: A three-hop path performed by VAL3h and a four-hop
path performed by the other VAL variants.

The implementation of VAL3h in commercial networks is
very similar to that of VALnta. We only need to compute
three-hop routes and populate the routing tables accordingly.
The restrictions required by VALnta, explained before, will
be also included in the computing algorithm to prevent the
turn-around problem.

As VAL3h forwards packets minimally after the first hop,
the non-minimal path diversity of the routing algorithm is
slightly reduced. However, Slim Fly networks still offer
enough path diversity to thee-hop routes, so that routing
efficiency is not dramatically affected. Moreover, reducing the
average path length to three hops also reduces the number of
VCs required to prevent deadlocks to three. As we show in
the evaluation section, it is worth the price to pay in terms of
reducing routing efficiency for the gain obtained using fewer
VCs to prevent deadlocks.

V. EVALUATION

This section evaluates our proposals by means of simulation
experiments in several Slim Fly network configurations, com-
pared to other routing algorithms. The experiments have been
performed in a simulator based on the OMNeT++ framework
[13], which has been extended to include the Slim Fly topol-
ogy, as well as minimal and non-minimal routing algorithms.
This simulator models a pipelined switch architecture whose
buffers are placed at input ports [14]. Input port buffers size is
128 KB and packet MTU is 4KB). We model credit-based flow
control at VC level and virtual cut-through switching policy.
Link bandwidth is configured to offer 40 Gbps. Cables length
is assumed to be 5 meters and link propagation delay is 25
ns (assuming a delay of 5 ns/m). The internal crossbar has
a 2.5 speedup to prevent contention within switches. Output
port arbiters implement the iSlip [15] algorithm.

We show in Table II the Slim Fly configurations used
in the experiments. These configurations have enough end

node concentration to ensure full global bandwidth without
overdimensioning the network.

TABLE II: Evaluated network configurations

# Name q ξ k’ p Ns k N

1 SlimFly-19 10 13 2 19 10 338 29 3380
2 SlimFly-29 15 19 3 29 15 722 44 10830

To make a fair comparison with our proposals, we have eval-
uated several techniques. In non-minimal path algorithms, we
distinguish between the policy which decides if packets follow
a minimal or non-minimal path, and the policy which select
the non-minimal path followed. The following combinations
of routing algorithms have been evaluated:
• Minimal-path routing (MIN) is configured with two VCs

to prevent deadlocks.
• Non-minimal path routing (Valiant routing):

– Original VAL (VALori) is configured with four VCs
to prevent deadlocks (see Section II-B).

– No-turn-around VAL (VALnta) configured with 4
VCs to prevent deadlocks.

– Three-hop VAL (VAL3h) configured with 3 VCs to
prevent deadlocks.

• The UGAL-L adaptive routing algorithm selects minimal
or non-minimal routes, depending on the queue occu-
pancy of the local switch when packets reach the switch
in the first hop. Specifically, UGAL selects the minimal
path if Qmin ≤ 2 × Qval + T , where Qmin is the
queue occupancy of the VC where the packet will be
stored if the minimal path is selected; Qval is the queue
occupancy of the VC where the packet will be stored
if the non-minimal path is chosen; and T is a constant
threshold utilized to favor minimal paths [8]. If this
inequality is unsatisfied, UGAL-L selects a non-minimal
path using VAL. Specifically, the modeled UGAL-based
routing algorithms are the following:

– UGAL-Lori uses VALori. It is configured with four
VCs to prevent deadlocks.

– UGAL-Lnta uses VALnta. It is configured with four
VCs to prevent deadlocks.

– UGAL-L3h uses VAL3h. It is configured with four
VCs to prevent deadlocks.

• Progressive Adaptive Routing (PAR) [8] selects minimal
or non-minimal path based on the queue occupancy of the
local switch, as UGAL-L does. However, when packets
are routed minimally, we have adapted PAR to Slim Fly
topology to reevaluate the minimal-path decision when
packets are in their second hop1. If the non-minimal
path is better then the minimal one, PAR routes the
packet using VAL, otherwise, the packet stays on the
minimal path. This revaluation implies that packets can
follow longer paths, thus and additional VC is necessary

1In Dragonfly networks, PAR reevaluates the path only when packets are
moving within the source group.



to prevent deadlocks. The non-minimal path routes are
established according to the VAL variants:

– PARori uses VALori. It is configured with five VCs
to prevent deadlocks.

– PARnta uses VALnta. It is configured with five VCs
to avoid deadlocks.

– PAR3h uses VAL3h. It is configured with five VCs
to prevent deadlocks.

The following sections show the results of these routing
algorithms in the network configurations defined in Table II,
under uniform and adversarial traffic patterns. In all experi-
ments we measure the average packet latency in ns and the
accepted traffic normalized against the maximum bandwidth
of the sum of all the end nodes maximum generation rate. The
traffic load generated in the network is incremental, so that we
increase the end node generation rate from 10% of the link
speed to 100%, and simulate 10 load points. For each traffic
load point, the network warms up for 2 ms. The performance
metrics are recorded in steady state during 1 ms.

A. Results with uniform traffic

Fig. 6 shows experiment results of the routing algorithms
described above for the network configurations #1 and #2 (see
in Table II), under the uniform (random) traffic pattern. This
well-known traffic workload consists of each end node gener-
ating packets to random destinations. Note that the variations
in performance between Fig. 6a and Fig. 6b are around 5%
for a network three times bigger in size.
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Fig. 6: Random traffic scenario.

MIN routing achieves the best performance, regardless of
network size, because traffic distribution is balanced among
all links. In this traffic conditions, the fastest route to choose
is usually the minimal one. On the contrary, the three VAL-
like routing algorithms always obtain the worst performance
because forwarding packets to an intermediate switch, by
default, reduces the network performance when traffic is well
balanced (because packets require more network resources to
perform the extra hops).

Despite their low performance, there are differences among
them that it is worth mentioning. VALori gets slightly worse
results than VALnta in both network configurations, but the
difference decreases considerably as the network size grows,
due to the turn-around problem becomes less likely for this
traffic pattern as the network size grows. VAL3h, nevertheless,
always outperforms VALori and VALnta, and it maintains this
difference in the three network sizes. VAL3h routes are shorter
than VALori and VALnta, reducing the overhead introduced
for the intermediate switch forwarding. Moreover, VAL3h

requires three VCs to prevent deadlocks, while VALori and
VALnta require four VCs.

UGAL-L and PAR routing algorithms partially rely their
performance on the path decision and, in this scenario, the
fewer non-minimal paths selected, the better. UGAL-L also
experiments some improvements (7%) when using our tech-
nique UGAL-L3h. Between UGAL-Lori and UGAL-Lnta the
differences are small, but UGAL-L3h performance is always
better, regardless the network size. Regarding the PAR vari-
ants, PARori, PARnta, and PAR3h achieve virtually identical
results among them, and also compared to UGAL-L3h and
MIN. Note that PAR3h requires four VCs to prevent deadlocks,
while PARori, and PARnta require five VCs.

UGAL-L3h and MIN routing are the best options among the
others under uniform traffic scenarios. MIN requires two VCs
in order to prevent deadlocks, while UGAL-L3h requires three
VCs. However, MIN routing algorithm suffers a significant
performance degradation when adversarial traffic is used, as
the next section explains.

B. Results with adversarial traffic

This section shows experiment results of the routing al-
gorithms described above for the network configurations #1
and #2 (see in Table II), under adversarial traffic pattern.
As described in Section III, an adversarial traffic pattern
overuses some links connecting switches and provokes packet
contention for their access. Every end node receives an amount
of traffic that it is able to consume, in contrast with hot spot
scenarios, which create network congestion.

We have evaluated the adversarial traffic defined by Algo-
rithm 2. This algorithm, creates an adversarial traffic where
every flow performs two hops, for the values of A and B.
Parameters A and B depend on the Slim Fly parameters q
and ξ (see Table III).

The idea behind this algorithm is that the end nodes
connected to a switch send traffic to the end nodes of another
switch in the other sub-graph of the Slim Fly network (see



Algorithm 2 Adversarial generator

1: for all swsrc ∈ [0 . . . NS) do
2: if swsrc < q2 then . (0,x,y) subgraph
3: swdest ← ((swsrc +A) mod q2) + q2

4: else . (1,m,c) subgraph
5: swdest ← (swsrc +B) mod q2

6: for all endNode ∈ [0 . . . p) do
7: endNodesrc ← swsrc × p+ endNode
8: endNodedest ← swdest × p+ endNode
9: adversarial[endNodesrc]← endNodedest

TABLE III: Parameters used in Algorithm 2

q ξ A B

7 3 4 3
11 2 1 10
13 2 2 11
17 3 3 14
19 3 6 13

Section II-A), i.e., end nodes from switches (0, x, y) send
packets towards end nodes of switches (1,m, c), and vice
versa. If A and B are set with other values, it creates an
adversarial traffic where some flows perform two hops, but
others only perform one hop.

Fig. 7 displays the network performance results under the
adversarial traffic pattern defined above. MIN routing obtains
the lowest performance as it is roughly affected by adversarial
traffic. As Section III, MIN routing performance is limited
by 1

p , so that MIN performance is 1
10 = 0.1 (i.e., 10% of

the maximum load) for network configuration #1 (p = 10),
and 1

15 = 0.07 (i.e., 7% of the maximum load) for network
configuration #2 (p = 15).

VALnta and VALori obtain always the best performance
regardless the network size. VAL3h performance, in contrast, is
reduced as network size grows due to the bias to 4-hop routes
reduces path diversity and also the obtained performance. On
the other hand, UGAL-L3h performance is identical to that of
UGAL-Lnta and UGAL-Lori, but using three VCs to prevent
deadlocks instead of four VCs. PAR is better than UGAL-L
when using the same Valiant variant. Overall, in this scenario
the best algorithm is VALnta, but PAR3h and UGAL-L3h are
also a valid options if we consider the uniform traffic results.
In general, UGAL-L3h introduces less computing overhead
than PAR3h, because path reevaluation is unnecessary, and it
only requires three VCs to prevent deadlocks.

VI. RELATED WORK

Interconnection network routing algorithms have been
widely studied because topology performance strongly de-
pends on them. Routing algorithms can be classified depending
on whether the path is minimal or non-minimal. Another
routing taxonomy classifies them into deterministic, oblivious,
and adaptive. Deterministic algorithms always choose the same
path between two nodes, ignoring path diversity and not
balancing traffic. Oblivious algorithms choose a route without
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Fig. 7: Bad-case traffic scenario.

considering the network state to balance the load among
network paths. They can potentially improve the performance
at the cost of adding additional complexity that could lead
to performance degradation. Adaptive algorithms select the
path in function of the state of the network. These algorithms,
theoretically, should outperform the others, if properly de-
signed, but they introduce some overhead in the computation
of additional paths.

Routing algorithms and network topologies are usually
evaluated under adversarial traffic patterns in order to know
the performance in extreme situations [16]. The work where
Slim Fly was introduced identifies an adversarial case [5].
Moreover, another work tried to generate an adversarial traffic
based on the average path length, but without success for Slim
Fly networks [17]. However, as far as we know the study of
Slim Fly routing algorithms is still open to explore. For the
time being, Slim Fly networks have been tested under Valiant
and Universal Globally Adaptive Load-Balancing (UGAL)
[5]. Valiant’s algorithm is a non-minimal oblivious routing
whose aim is balance the network traffic regardless of the
traffic distribution [6]. UGAL [7] is a non-minimal adaptive
routing that selects a minimal or a non-minimal path based
on queue occupancy, avoiding congested channels by using
less-congested alternative routes. UGAL-L is the local version
that considers the queue length of the local switch. UGAL-
G, by contrast, is the global version that compares the queue
occupancy in all switches in the network, thus it cannot



implemented in real systems.
Dragonfly topology [3], in contrast with Slim Fly topology,

has a wider background related to oblivious and adaptive rout-
ing. As both topologies have some similarities, the solutions
proposed for the Dragonfly may be portable for the Slim Fly,
although some adjustments are required. In that sense, four
indirect adaptive routing are proposed [8]: Credit Round Trip
(CRT), Progressive Adaptive Routing (PAR), Piggyback (PB),
and Reservation (RES). Furthermore, other works suggested
also the use of a history-window approach in Dragonfly
networks [18]. Most of them try to select better paths based
on the status of global channels, which Slim Fly lacks, thus
they are not interesting for Slim Fly topology. PAR algorithm,
nevertheless, posses a reevaluation mechanism that can be
extrapolated to Slim Fly, but eliminating the concept of group,
which is specific for Dragonfly networks.

The idea of modifying the Valiant’s algorithm was also used
for Dragonfly networks [18], although this proposal is specific
for that topology and it cannot be extrapolated to Slim Fly.
This modification only solves some adversarial situations only
appearing in Dragonfly networks under specific traffic cases.

VII. CONCLUSION

Slim Fly networks maximize the number of end nodes
in a cluster for a given diameter and switch radix, offering
high performance, low latency, reduced power consumption
and saving network costs. However, Slim Fly performance
may be spoiled by adversarial traffic patterns. Adversarial
traffic scenarios can be mitigated by a routing algorithm that
balances the traffic among the available paths in the network,
such as the Valiant (VAL) algorithm. This algorithm, however,
presents some drawbacks when selecting non-minimal paths:
the overuse of network resources (e.g., virtual channels) and
the turn-around problem which causes packets visiting the
same switch twice. We have proposed in this paper several
improvements to non-minimal (VAL) and adaptive (UGAL and
PAR) routing algorithms in order to avoid the problems men-
tioned above. Simulation results under uniform and adversarial
traffic scenarios demonstrate that the proposed techniques
are able to reduce the average length of the non-minimal
routes, reducing the number of required virtual lanes to prevent
deadlocks. As a future work, we plan to extend this idea to
other cost-effective low-diameter topologies [19].
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“The k-ary n-direct s-indirect family of topologies for large-scale
interconnection networks,” The Journal of Supercomputing, vol. 72,
pp. 1035–1062, Mar. 2016.

[5] M. Besta and T. Hoefler, “Slim Fly: A Cost Effective Low-Diameter
Network Topology,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, New Orleans,
LA, USA, November 16-21, 2014 (T. Damkroger and J. Dongarra, eds.),
pp. 348–359, IEEE, Nov. 2014.

[6] L. G. Valiant, “A Scheme for Fast Parallel Communication,” SIAM J.
Comput., vol. 11, no. 2, pp. 350–361, 1982.

[7] A. Singh, Load-Balanced Routing in Interconnection Networks. PhD
thesis, Standford University, Mar. 2005.

[8] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large
scale interconnection networks,” in 36th International Symposium on
Computer Architecture (ISCA 2009), June 20-24, 2009, Austin, TX, USA
(S. W. Keckler and L. A. Barroso, eds.), pp. 220–231, ACM, 2009.

[9] B. D. McKay, M. Miller, and J. Širáň, “A Note on Large Graphs of
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