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▪ Deep learning is HPC

▪ In fact, it’s probably (soon?) bigger than traditional HPC

Definitely more money …

▪ Interest in the HPC community is tremendous

▪ Number of learning papers at HPC conferences seems to be 
growing exponentially

Besides at SC18, whut!?

▪ Risk of unrealism

▪ HPC people know how to do HPC

▪ And deep learning is HPC, right?

Not quite … while it’s really similar (tensor contractions)

But it’s also quite different!
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Deep learning and HPC
Yann LeCun’s conclusion slide yesterday!
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▪ Tradeoffs between those two

▪ Very weird for HPC people – we always operated in double precision

Mostly out of fear of rounding issues 

▪ Deep learning shows how little accuracy one can get away with

▪ Well, examples are drawn randomly from some distribution we don’t know …

▪ Usually, noise is quite high …

▪ So the computation doesn’t need to be higher precision than that noise 

Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

▪ But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast compute!

▪ A humorous guide to floptimization

▪ Twelve rules to help present your (not so great?) results in a much better light
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“Statistical performance” vs. “hardware performance”
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▪ Too obvious for this audience

▪ Was very popular in 2015!

▪ Surprisingly many (still) do this
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1) Ignore accuracy when scaling up!

1) Ignore accuracy when scaling up!

Learning community’s 
self-correction

(Y. LeCun)

HPC picking up!

Scalability without 
a good baseline? 

(D. Bailey)
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▪ Training accuracy is sufficient isn’t it?
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2) Do not report test accuracy!

Source: quora.com
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▪ Report the best run – SGD is a bit fragile, so don’t worry

At the end, the minutes for the final run matter most!
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3) Do not report all training runs needed to tune hyperparameters!

flop/s!



spcl.inf.ethz.ch

@spcl_eth

▪ Tesla K20 in 2018!?

Even though the older machines would win the beauty contest!
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4) Compare outdated hardware with special-purpose hardware!

vs.
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▪ Run layers or communication kernels in isolation

▪ Avoids issues with accuracy completely ☺

Doesn’t that look a bit like GoogLeNet?
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5) Show only kernels/subsets when scaling!

vs.
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▪ Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!
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6) Do not consider I/O!
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▪ Yes, we’re talking ops today, 64-bit flops was so yesterday!

▪ If we don’t achieve a target fast enough, let’s redefine it!

And never talk about how many more of those ops one needs to find a solution, it’s all about the rate, op/s!

▪ Actually, my laptop achieves an “exaop”: 

▪ each of the 3e9 transistors switching a binary digit each at 2.4e9 Hz
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7) Report highest ops numbers (whatever that means)!

vs.
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▪ Pretty cool idea isn’t it? Hyperparameters sometimes conflict

So always tune the to show the best result, whatever the result shall be!
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8) Show performance when enabling option set A and show accuracy when 
enabling option set B!
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▪ The pinnacle of floptimization! Very hard to catch!

But Dr. Catlock Holmes below can catch it.
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9) Train on (unreasonably) large inputs!

Low-resolution cat (244x244 – 1 Gflop/example)

vs.

High-resolution cat (8kx8x – 1 Tflop/example)
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▪ Train for fixed wall-time when scaling processors

▪ so when you use twice as many processors you get twice as many flop/s!

But who cares about application speedup?
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10) Run training just for the right time!
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▪ All DL is strong scaling – limited model and limited data

▪ So just redefine the terms relative to minibatches:

▪ Weak scaling keeps MB size per process constant – overall grows (less iterations per epoch, duh!)

▪ Strong scaling keeps overall MB size constant (better but harder)

▪ Microbatching is not a problem!
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11) Minibatch sizing for fun and profit – weak vs. strong scaling.
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▪ Compare either time to solution or accuracy if both together don’t look strong!

There used to be conventions but let’s redefine them.
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12) Select carefully how to compare to the state of the art!


