
A Communication-Avoiding Parallel Algorithm for the
Symmetric Eigenvalue Problem

Edgar Solomonik

University of Illinois at Urbana-Champaign

Department of Computer Science

Grey Ballard

Wake Forest University

Department of Computer Science

James Demmel

University of California, Berkeley

Department of Mathematics & Department of Electrical

Engineering and Computer Science

Torsten Hoefler

ETH Zurich

Computer Science Department

ABSTRACT
Many large-scale scientific computations require eigenvalue solvers

in a scaling regime where efficiency is limited by data movement.

We introduce a parallel algorithm for computing the eigenvalues

of a dense symmetric matrix, which performs asymptotically less

communication than previously known approaches. We provide

analysis in the Bulk Synchronous Parallel (BSP) model with ad-

ditional consideration for communication between a local mem-

ory and cache. Given sufficient memory to store c copies of the

symmetric matrix, our algorithm requires Θ(
√
c) less interproces-

sor communication than previously known algorithms, for any

c ≤ p1/3
when using p processors. The algorithm first reduces the

dense symmetric matrix to a banded matrix with the same eigenval-

ues. Subsequently, the algorithm employs successive reduction to

O (logp) thinner bandedmatrices.We employ two new parallel algo-

rithms that achieve lower communication costs for the full-to-band

and band-to-band reductions. Both of these algorithms leverage a

novel QR factorization algorithm for rectangular matrices.

1 INTRODUCTION
The eigenvalue decomposition of a symmetric matrix A is A =
UDUT

whereD is a diagonal matrix of eigenvalues and the columns

of the orthogonal matrix U are the eigenvectors of A. Dense sym-

metric eigensolvers typically reduce the matrix to a tridiagonal ma-

trix with the same eigenvalues, compute the eigenvalues D of this

Grey Ballard was supported by an appointment to the Sandia National Laboratories

Truman Fellowship in National Security Science and Engineering, sponsored by Sandia

Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator

of Sandia National Laboratories under its U.S. Department of Energy Contract No.

DE-AC04-94AL85000. James Demmel was supported by US Dept. of Energy, Office of

Science, Office of Advanced Scientific Computing Research, Grant DOE DE-SC0010200,

and ASPIRE Lab industrial sponsors and affiliationliates Intel, Google, Hewlett-Packard,

Huawei, LGE, NVIDIA, Oracle, and Samsung. Edgar Solomonik was supported by a

US. Dept. of Energy Computational Science Graduate Fellowship and an ETH Zurich

Postdoctoral Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’17, July 24-26, 2017, Washington DC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4593-4/17/07. . . $15.00

https://doi.org/10.1145/3087556.3087561

tridiagonal matrix [17], and, if desired, apply the orthogonal trans-

formation backwards to compute the eigenvectors U . Although al-

gorithms for tridiagonalizing a symmetric matrix require the same

asymptotic amount of work as one-sided decompositions such as

LU and QR factorization, they have a more complex dependency

structure, which makes communication-efficient parallelization

challenging. Efficient execution of scientific applications such as

electronic structure methods, which compute eigenvalue decompo-

sitions of a sequence of symmetric matrices (see, e.g. Hartree-Fock

method [21, 26]), requires scalable symmetric eigensolvers.

We analyze the scalability of parallel algorithms in a Bulk Syn-

chronous Parallel (BSP) cost model [39]. In addition to quantifying

horizontal communication (data movement between processors)

and synchronization, we augment the BSP model with an addi-

tional bandwidth cost parameter for vertical communication (data

movement between memory and cache). There are known algo-

rithms for Cholesky, LU, and QR factorization [3, 35, 38], which

for n × n input matrices on a p-processor system, have horizontal

communication complexityW = O (n2/
√
cp), require S = O (

√
cp)

synchronizations, and use M = O (cn2/p) memory per processor.

Most commonly, 2D processor grids are used by algorithms that

achieve this communication complexity for c = 1, but 3D processor

grids and more complicated schemes are needed to achieve the

complexity with any c ∈ [1,p1/3
] and obtain practical performance

improvements [35]. For Cholesky factorization, which is simpler

than LU and QR, these algorithms attain communication lower

boundsW = O
(

n3

pM1/2

)
[7] andW · S = Ω(n2) [34], for a range of

W parameterized by c .
The best previously known algorithms for solving the symmetric

eigenvalue problem directly, use 2D parallelizations and achieve the

costW = O (n2/
√
p). We introduce algorithms that reduce the hori-

zontal communication cost asymptotically by a factor of

√
c , while

using a factor of c more memory and

√
c more synchronizations, in

the same fashion as previously done for one-sided factorizations.

The new algorithms generalize of previous approaches, and the flex-

ibility offered by the parameter c increases the dimensionality of the

tuning space for symmetric eigensolver implementations. In partic-

ular, employing a large c is attractive for bandwidth-constrained
problems on massively-parallel architectures.

Our algorithms focus on reducing the symmetric matrix to thin-

ner and thinner banded matrices with the same eigenvalues. This

“successive band reduction” approach [10, 11], i.e. reducing to an

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

111

https://doi.org/10.1145/3087556.3087561

intermediate banded matrix rather than directly to tridiagonal, has

been used to reduce vertical communication and synchronization

costs [8]. Further, in practice, algorithms using a two-stage (full-

to-banded and banded-to-tridiagonal) approach [5, 25] have been

shown to outperform libraries that reduce directly to tridiagonal

(like ScaLAPACK [12]). However, a disadvantage of successive band

reduction is an increase in cost of the back transformations done

to compute eigenvectors. Unlike the forward application of trans-

formations whose computation cost scales linearly with the matrix

band-width, known algorithms for back transformations require

O (n3) operations for each intermediate band-width used.

The BSP model allows us to formulate and analyze algorithms as

compositions of a set of common building-blocks. We leverage al-

gorithms for matrix multiplication and QR factorization within our

symmetric eigensolvers. For QR factorization, we extends known al-

gorithms for tall-and-skinny matrices [16] and square matrices [38]

to be efficient for arbitrary rectangular matrices.

We use these building blocks to define algorithms for reduc-

ing a dense matrix to a banded matrix, and a banded matrix to a

thinner band-width, while preserving eigenvalues. Our main algo-

rithm combines these, using O (logp) intermediate band-widths.

The algorithm is work-efficient for computing eigenvalues, re-

quires O (n2/
√
cp) horizontal communication, O (n2

logp/
√
cp) ver-

tical communication, and O (
√
cp log

2 p) synchronizations (BSP su-

persteps). Known approaches for back-transformations to compute

eigenvectors require the same asymptotic amount of computation

for matrices of any band-width, meaning our approach may require

a computation cost of O (n2k logp/p) if k eigenvectors are needed.

We leave the analysis of back-transformation computation for fu-

ture work, but propose a potential approach to reduce the number

of intermediate band-widths needed by our symmetric eigensolver.

2 THEORETICAL COST MODEL
We use the Bulk Synchronous Parallel (BSP) model [39] with an

additional parameter to measure the cost of traffic between memory

and cache. We derive asymptotic bounds on the parallel running-

time of our algorithms for this two-level architectural model, with

consideration for both communication between processors and in

the memory hierarchy of each processor. The BSP model permits an

all-to-all communication to be done with unit synchronization cost,

which will allow us to construct BSP algorithms for general matrix

distributions and compose them without significant overhead.

We employ cost notation typically used for the α–β communica-

tion model. As all stored and communicated datasets in this paper

consist exclusively of floating-point numbers, we quantify sizes in

terms of ‘words’ (floating-point numbers of a given precision). We

model the memory hierarchy of each processor by a main ‘slow’

memory (i.e. DRAM) and a ‘fast’ memory (i.e. cache). We permit

interprocessor (horizontal) communication to move data between

main memories of different processors, and intraprocessor (vertical)

communication to move data between main memory and cache of

a single processor. Our architectural model is characterized by the

following parameters:

• p – processors on a fully-connected network,

• M – words of memory owned by each processor,

• H – words of cache owned by each processor,

• γ – time to compute a floating point operation,

• β – time to send or receive a word,

• ν – time to move a word between cache and memory,

• α – time to perform a (global) synchronization.

We bound the cost of each algorithm by measuring four quantities:

• F – number of local floating point operations performed

(computation cost),

• W – number of words of data moved between processors

(horizontal communication cost),

• Q – number of words of data moved between main memory

and cache (vertical communication cost),

• S – number of BSP supersteps (synchronization cost).

If at each superstep i ∈ [1, S], processor j performs F
j
i local opera-

tions, sends and receivesW
j
i total words, and performs Q

j
i reads

and writes to memory, then the costs of the BSP algorithm are

F =
S∑
i=1

max

j ∈[1,p]

F
j
i , W =

S∑
i=1

max

j ∈[1,p]

W
j
i , Q =

S∑
i=1

max

j ∈[1,p]

Q
j
i ,

and the BSP execution time of this algorithm is

T = Θ(γ · F + β ·W + ν ·Q + α · S).

This model does not consider overlap between communication

and computation (or between other costs), as such overlap does not

affect the overall asymptotic time.

We simplify asymptotic cost expressions by assuming γ ≤ β .
Further, we write only vertical communication terms which are not

associated with horizontal communication or with computations

that achieve a factor of

√
H cache reuse (optimal for matrix multipli-

cation [27]). These simplifications correspond to the assumptions

on the relative communication times, ν ≤ β and the floating point

rate ν ≤ γ ·
√
H . However, general vertical communication cost

upper-bounds may be obtained from our stated results for arbitrary

ν by reinserting the term O (ν · (F/
√
H +W)).

We will provide asymptotic bounds for the BSP cost of all al-

gorithms in the paper. Sometimes, we will employ algorithms as

building blocks whose cost has been analyzed in the standard α − β
model, which is restricted to point-to-point messaging (pairwise

synchronization). These algorithms are trivially translated to the

BSP model used in this paper, which is less restrictive (allows bulk

synchronizations).

Throughout the paper, we will assume that matrix dimensions

are greater than and divisible by the number of processors. When it

is clear that the asymptotic costs would not be affected, we will also

omit floors and ceilings when subdividing the number of processors

and matrix dimensions.

3 BUILDING BLOCKS
We first state known results and provide minor extensions to quan-

tify the complexity of matrix multiplication and of QR factorization

in our cost model. These results will be critical in the cost analysis

of the new symmetric eigensolvers, which use matrix multiplication

and QR factorization as subroutines.

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

112

3.1 Matrix Multiplication
Our symmetric eigensolvers will perform matrix multiplications,

often of nonsquare matrices. We consider the BSP cost of multiplica-

tion of arbitrary rectangular matrices with any starting distribution.

Additionally, we specially consider the BSP cost of a matrix mul-

tiplication of a pre-replicated matrix with another matrix in an

arbitrary distribution. We start with the vertical communication

cost of a matrix multiplication done by a single processor.

Lemma 3.1. The multiplication of matrices of dimensionsm × n
and n × k can be done by a single processor in time,

O (γ ·mnk + ν · [mn +mk + nk]).

The Rec-Mult algorithm [22, Theorem 1] obtains the vertical

communication cost given in Lemma 3.1. We omit the usual term

O (ν ·mnk/
√
H), since we have ν ≤ γ ·

√
H .

We now consider the full BSP cost of parallel rectangular matrix

multiplication. The communication cost of square matrix multipli-

cation is well known [1, 3, 9, 14, 29, 31]. The horizontal costs of

rectangular matrix multiplication have also been analyzed within

the α–β communication model, where a recursive algorithm was

proposed [15] that attains the communication lower bound. We

show that the algorithm in [15] can be executed within the time

specified in the subsequent Lemma, for any initial load balanced

distribution of the matrices. It is possible to also design different

matrix multiplication algorithms in the BSP model with a Θ(logp)
factor less in synchronization cost, but the overall synchronization

costs of our QR and symmetric eigensolve algorithms would not

improve. We parameterize the memory used by the algorithm by a

parameterv , which controls howmany blockmatrixmultiplications

are performed.

Lemma 3.2. For any v ≥ 1, the multiplication of matrices of di-
mensionsm × n and n × k in any load-balanced starting layout can
be done in BSP time,

O

(
γ ·

mnk

p
+ β ·

[
mn + nk +mk

p

+v1/3

(
mnk

p

)
2/3

]
+ α · v logp

)
,

usingM = O
(
mn+nk+mk

p +
(
mnk
vp

)
2/3

)
memory.

Proof. We consider the cost of the recursive ‘CARMA’ algo-

rithm [15]. The algorithm assumes specific initial matrix layouts,

but does not assume any initial data is replicated. Therefore, start-

ing from load balanced layouts, the BSP time to move to the layouts

specified by CARMA is O (β · mn+nk+mk
p + α). Because the com-

putation is load balanced, the computation cost is O (γ ·mnk/p).
The latency cost of the CARMA algorithm is an upper-bound on

the number of BSP supersteps necessary to execute it. In [15], the

latency cost is shown to be O
(
mnk
pM3/2

logp
)
= O (v logp). The com-

munication cost of CARMA is presented in cases for 1D, 2D, and 3D

processor grids. We show that the postulated BSP time upper-bound

holds for all cases.

We first argue that the vertical communication cost of the lo-

cal matrix multiplications (given by Lemma 3.1) is dominated by

horizontal communication due to the assumption β ≥ ν . In the 3D

case, the operand matrix blocks are nearly square, and either one of

the operands or the output is always communicated, so horizontal

communication cost dominates vertical communication cost. In the

1D and 2D cases, each processor performs a single local matrix

multiplication, where the largest operand has size O (mn+nk+mk
p),

since it is the local block of the largest matrix.

We leverage previous analysis [15] to derive the horizontal com-

munication cost. Let d1 = min(m,n,k), d2 = median(m,n,k), and
d3 = max(m,n,k). If p < d3/d2 (1D case), then d1d2 < d1d3/p,
so the provided cost O (β · d1d2) = O (β · (mn + nk +mk)/p). If
d3/d2 ≤ p ≤ d2d3/d

2

1
(2D case), then the provided cost O (β ·√

d2

1
d2d3/p) = O (β · (mn + nk +mk)/p). Finally, if p > d2d3/d

2

1

(3D case), the provided cost O (β · [mnk/(p
√
M) + (mnk/p)2/3

]) =

O (β · v1/3 (mnk/p)2/3). □

The algorithm analyzed in Lemma 3.2 allows any initial load

balanced matrix distributions. We now consider Algorithm 3.1,

which assumes an initial distribution with replicated data and sub-

sequently can multiply certain matrices in less time than given by

Lemma 3.2. In Algorithm 3.1, one of the input matrices is stored

redundantly on c = p2δ−1
2D processor grids for any c ∈ [1,p1/3

]

(δ ∈ [1/2, 2/3]). The parameterization by δ is the same as α in [38],

while c is the same replication factor as in [35]. The parameterw
controls the number of supersteps in Algorithm 3.1.

The algorithm permits the distribution to be defined as a block-

ing of the matrices after permutation by P (1) , P (2) . Our analysis
assumes the blocking is roughly, but not necessarily exactly load

balanced, permitting both cyclic and block-cylic matrix factoriza-

tion algorithms where different processors perform updates (matrix

multiplications) with a slightly different amount of local data at

each step. We will employ Algorithm 3.1 with cyclic distributions,

for which P
(1)
i j = 1 for i = (j mod q) (m/q) + ⌊j/q⌋ and P

(2)
jk = 1

for k = (j mod q) (n/q) + ⌊j/q⌋. On each processor grid layer, the

algorithm executes a variant of the SUMMA algorithm [40], which

communicates the operand B and reduces the outputC . This variant
is chosen, since we will use the algorithm with the operandA being

larger in dimensions than B and C .

Lemma 3.3. Consider Algorithm 3.1 for multiplication of matrices
A and B of dimensionsm×n and n×k , where the initial distributions
of A and B satisfy the stated requirements for permutations P (1) and
P (2) where each block Ai j of P (1)AP (2) has dimensionsO (m/p1−δ) ×

O (n/p1−δ). Then, using M = O (mn/p2(1−δ) + (mk + nk)/(wpδ))

memory for anyw ∈ [1,p1−δ
], the algorithm can be executed in BSP

time,

O

(
γ ·

mnk

p
+ β ·

mk + nk

pδ
+ α ·w

)
,

when H ≥ mn/p2(1−δ) and the copies of A start inside cache, and
otherwise with an extra cost of O (ν · wmn

p2(1−δ)).

Proof. As required byAlgorithm 3.1,B starts in any load-balanced

distribution over the p processors. As the initial layout is load-

balanced the redistribution done on line 4 costsO (β ·nk/p+α). The
gather on line 9 and reduce-scatter on line 11 are dual communica-

tion patterns that together have cost O (β · (mk + nk)/(qcw) + α).

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

113

Algorithm 3.1 [C]← Streaming-MM(A,B, P (1) , P (2) ,Π)

Require: Given positive integers p,m,n,k,w and δ ∈ [1/2, 2/3]:

Π is a grid of q ×q × c processors with q = p1−δ
and c = p2δ−1

,

A is m × n, B is n × k . For each l ∈ [1, c], Π[i, j, l] owns all
elements in Ai j , defined by square permutation matrices P (1)

,

P (2)
, as P (1)AP (2) =



A11 · · · A1q
.
.
.

. . .
.
.
.

Aq1 · · · Aqq



.

1: B is in any load balanced layout over all p processors.

2: Let z = wc

3: Partition B into blocks: P (2)T B =



B11 · · · B1z
.
.
.

.

.

.

Bq1 · · · Bqz



.

4: Redistribute B so that each Π[i, j, l] owns k/(zq) columns of

Bjh for each h ∈ {l , l + c, . . . , l + (w − 1)c}.
5: % Execute loop iterations in parallel
6: for i ∈ [1,q], j ∈ [1,q], l ∈ [1, c] do
7: % Execute loop iterations in sequence
8: for h ∈ {l , l + c, . . . , l + (w − 1)c} do
9: Gather Bjh on Π[i, j, l]

10: Compute C̄i jh = Ai j · Bjh on Π[i, j, l]

11: Reduce-scatter Cih =
∑c
j=1

C̄i jh so that each Π[i, j, l]

owns k/(zq) columns of Cih
Require: C = A ·B is distributed so that each processor in Π owns

mk/p elements of C .

Over allw iterations of indexh, we getO (β · (mk+nk)/(qc)+α ·w) =

O (β · (mk + nk)/pδ + α ·w).
Thew local matrix multiplications take time,

O

(
γ ·

mnk

p
+ ν ·

(
wmn

p2(1−δ)
+
mk + nk

pδ

))
,

by Lemma 3.1. However, if the entire matrix A starts in cache,

which is possible if H ≥ mn/p2(1−δ)
, it suffices to read only the

entries of Bjh from memory into cache and write the entries of

C̄i jh out to memory. In this case, the vertical communication cost

is O (ν · mk+nk
qc) = O (ν · mk+nk

pδ
). This term is dominated by the

interprocessor communication term since β ≥ ν . The memory

usage corresponds to the storage necessary for each block:Ai j , Bjh ,

and C̄i jh ,M = O
(

mn
p2(1−δ) +

mk+nk
wpδ

)
. □

3.2 QR Factorization
We will use QR factorization within our symmetric eigensolver al-

gorithms to obtain orthogonal transformations that introduce zeros

when applied to the symmetric matrix. The vertical communication

cost of executing a sequential QR factorization is proportional to

that of matrix multiplication.

Lemma 3.4. The QR factorization of anm×n matrixAwithm ≥ n
can be done sequentially in time, O (γ ·mn2 + ν ·mn).

The sequential Communication-Avoiding QR (CAQR) algorithm

achieves the vertical communication cost given above [16]. The

Householder representation, lower trapezoidalm × n matrixU and

upper-triangular n × n matrix T so that Q = I − UTUT
, may be

obtained with the cost of Lemma 3.4 using Householder reconstruc-

tion [6].

We first consider parallel QR factorization of square matrices.

Lemma 3.5. The QR factorization of an n × n matrix A distributed
in any load-balanced layout can be computed usingM = O

(
n2

p2(1−δ)

)
memory for any δ ∈ [1/2, 2/3] in BSP time,

O

(
γ ·

n3

p
+ β ·

n2

pδ
+ α · pδ

)
.

The QR algorithm given by [38] in the BSP model achieves the

costs given in Lemma 3.5. The vertical communication cost was

not analyzed in [38]. However, the algorithm consists purely of

distributed matrix multiplications or QR factorizations, which by

Lemma 3.1 and Lemma 3.4 have a vertical communication cost

proportional to the matrix sizes. As the analysis in [38] assumes all

matrices that participate in multiplication or QR factorization are

communicated, due to ν < β , the horizontal communication cost

dominates the vertical communication costs associated with these

operations.

We now adapt the QR algorithm from [38] to handle rectangular

matrices with a desirable asymptotic cost (the embedding used

in [38] is inefficient for tall-and-skinny matrices). Our adaptation

is based on a binary QR reduction tree, with QR factorizations of

nearly square matrices done at every node in the tree performed

using the algorithm from [38]. An approach employing a QR re-

duction tree using Givens rotations goes back to [23], a blocked

flat tree approach (optimal sequentially) was presented in [24], and

a parallel block reduction tree approach was given earlier in [13].

Our approach is closest to the TSQR algorithm [16], except a set of

up to qmax processors works on each tree node.

Algorithm 3.2 computes the QR factorization of anm ×n matrix,

outputting the first n columns of the orthogonal Q factor, as well

as the n × n upper-triangular matrix R. The algorithm assumes the

existence of a sequential routine ‘QR’ and a parallel routine for

(nearly) square matrices ‘square-QR’.

Theorem 3.6. Algorithm 3.2 can compute the QR factorization
of anym × n matrix A withm ≥ n in a load-balanced layout, using

M = O
((

nδm1−δ

p1−δ

)
2
)
memory for any δ ∈ [1/2, 2/3], in BSP time,

O

(
γ ·

mn2

p
+ β · *

,

mδn2−δ

pδ
+
mn

p
+
-
+ α ·

(
np

m

)δ
log

2 p

)
.

Proof. We assume without loss of generality that m/n and p
are powers of two. Let T (m̄) be the cost of Algorithm 3.2 for an

m̄ × n matrix using p processors. Note thatm corresponds to the

number of rows in the original input matrix, while m̄ will be used

to refer to the number of rows at a given recursive step. We select

the maximum number of processors to be used in base-case square

QR factorizations to be qmax =
pn
m log(p)1/δ , in order to minimize

synchronization cost while achieving an optimal horizontal com-

munication cost.

The cost of the sequential base case of Algorithm 3.2 is, by

Lemma 3.4,T
bs1

(m̄) = O (γ ·m̄n2+ν ·m̄n).When reaching the square

base case (dimension 2n × n, sincem/n is a power of two), we em-

ploy the square QR algorithm [38] with up to qmax =
pn
m log(p)1/δ

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

114

Algorithm 3.2 [Q,R]← rect-QR(A,Π)

Require: Given positive integers p,m,n,qmax and δ ∈ [1/2, 2/3]:

Π is a set of p processors, A ism × n,m/n and p are powers of

two, and each Π[i] ownsmn/p elements of A.
1: if p = 1 then Compute [Q,R] = QR(A) sequentially and exit.

2: if m ≤ 2n then Compute [Q,R] = square-QR(A,Π[1 :

min(p,qmax)]) and exit.

3: Let r = min(p, ⌈m
2n ⌉) and partition A =

[
AT

1
· · · ATr

]T
so

that each Ai ism/r × n
4: % Execute loop iterations in parallel
5: for i ∈ [1, r] do
6: [Wi ,Ri] = rect-QR(Ai ,Π[(i−1) (p/r)+1 : i (p/r)])

7: [Z ,R] = rect-QR

([
RT

1
· · · RTr

]T
,Π

)
8: Partition Z =

[
ZT

1
· · · ZTr

]T
so that each Zi is n × n

9: % Execute loop iterations in parallel
10: for i ∈ [1, r] do
11: Compute Qi =WiZi using Π[(i−1) (p/r) + 1 : i (p/r)]
Require: A = Q · R where Q =

[
QT

1
· · · QT

r
]T

ism × n with

orthogonal columns, R is n × n and upper-triangular, both are

distributed in load balanced layouts across Π.

processors. We can bound the cost of this QR by Lemma 3.5. We

break the cost into two cases:T
bp
(p̄) = T

bp1
(p̄) when p̄ < qmax and

T
bp
(p̄) = T

bp2
when p̄ ≥ qmax, where

T
bp1

(p̄) = O (γ · n3/p̄ + β · n2/p̄δ + α · p̄δ),

T
bp2
= O

(
γ ·

mn2

p log(p)1/δ
+ β ·

mδn2−δ

pδ logp
+ α ·

(np
m

)δ
logp

)
.

The square QR algorithm requires that the matrix be embedded

into a slanted panel [38]. This can be done generally by using a

somewhat larger matrix, but in all except the first recursive call,

the 2b × b matrix will have the structure of two stacked upper-

triangular matrices. The rows of these upper-triangular matrices

can be interleaved to produce a slanted panel without embedding

into a larger matrix.

The recursive calls on line 6 always immediately encounter one

of the base-cases. The only time base cases can have a matrix with

dimension other than 2n × n is during the invocations on line 6 at

the first recursive step of the algorithm, and only whenm > 2np.
Therefore, we consider this first recursive step of Algorithm 3.2

separately. The cost of the first recursive step, when m > 2np,
includes

• the cost of a potential redistribution, O (β ·mn/p + α),
• the cost of the invocations on line 6 (which lead to base

cases), T
bs1

(m/p), since r = min(p, ⌈m/2n⌉) = p,
• the cost of the matrix multiplications on line 11, which are

done concurrently, each by a single processor, isO (γ ·mn2/p+
ν ·mn/p).

Therefore, the total BSP time of the algorithm form > 2np is

T (m) = T (np) +T
bs1

(m
p

)
+O

(
γ ·

mn2

p
+ β ·

mn

p

)
= T (np) +O (γ ·mn2/p + β ·mn/p + α).

The cost of this initiale step form > 2np is no greater than the cost

in the theorem. Subsequent recursive calls into line 11 or the case

whenm ≤ 2np, the matrix multiplications done on line 11 involve

matrices of size at most 2n×n, each executed usingpn/m̄ processors.

By Lemma 3.2 with v = (pn/m̄)2−3δ
, these matrix multiplications

(done concurrently) take time, TMM (m̄) =

O

(
γ ·

m̄n2

p
+ β ·

(
m̄n

p
+
m̄δn2−δ

pδ

)
+ α ·

(
pn

m̄

)
2−3δ

logp

)
and useM = O

((
nδ m̄1−δ

p1−δ logp
)

2
)
memory. When combined with

the concurrent recursive calls on line 11 on matrices of size 2n × n
with pn/m̄ processors and the recursive call on line 7 on a matrix

of size m̄/2 × n with all p processors, we obtain the following BSP

time recurrence for m̄ ≤ 2np,

T (m̄) =T (m̄/2) +T
bp
(pn/m̄) +TMM (m̄),

whereTb (pn/m̄) is a base case where up toqmax processors perform

the QR. We consider the two cases (for m̄ ≤ 2np),

T (m̄) =T (m̄/2) +TMM (m̄) +



T
bp1

(pn/m̄) : pn/m̄ < qmax

T
bp2

: pn/m̄ ≥ qmax

Since qmax =
pn
m log(p)1/δ , and m̄ decreases by a factor of two at

each step, up to the first (1/δ) log logp recursive steps make the

call on line 6 with more than qmax processors. The computation and

communication cost of these calls are no greater than that of matrix

multiplication (part of TMM (m̄)), while the synchronization cost

increases geometrically, up to the latency cost in T
bp2

. Therefore,

the recurrence is asymptotically equivalent to (for m̄ ≤ 2np),

T (m̄) = T (m̄/2) +TMM (m̄) +T
bp2

=T (m̄/2) +O

(
γ ·

(
m̄n2

p
+

mn2

p log(p)1/δ

)
+ β ·

(
m̄n

p
+
m̄δn2−δ

pδ
+
mδn2−δ

pδ logp

)
+ α ·

(
pn

m

)δ
logp

)
.

Since, m̄ ≤ 2np, one of the base-cases is reached after logp steps,

and so the above time is the one postulated in the theorem. □

Alternate communication-efficient formulations of a rectangular

QR algorithm are also possible (for instance by combining column-

recursion [20] with communication-efficient matrix multiplication,

see [32]). We would like to work with the Householder represen-

tation to apply orthogonal transformations efficiently in our sym-

metric eigensolver algorithms, so we give the following corollary.

Corollary 3.7. The Householder representation of the m × n
orthogonal matrix Q computed by Algorithm 3.2, Q = (I −UTUT

1
),

where U1 is the lower triangular top n × n block of U , while T is
upper-triangular andUTU = T−1 +T−T , can be obtained with the
same cost and memory usage as in Theorem 3.6.

Proof. The Householder representation U ,T can be obtained

stably by executing [U1,W1] = LU(Q1 − S) where Q1 is the top

n × n block of Q and S is a diagonal sign matrix, then computing

U = QW −1

1
and T = W1U

−T
1

[6]. The matrices U1,W1, U
−1

1
, and

W −1

1
can be obtained by a parallel non-pivoted LU factorization

algorithm augmented to subtract S as in [6], which makes the

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

115

matrix diagonally dominant. The LU algorithms in [37] and [35]

both obtain the desired costs. We use the former in our analysis.

When executed using pn/m processors, the algorithm in [37]

takes BSP time,O (γ ·mn2/p+β ·mδn2−δ /pδ +α · (np/m)δ). This cost
was presented in [37], modulo analysis of vertical communication

cost, but as the algorithm is based purely on parallel multiplication

of square matrices, the vertical communication cost is dominated

by the horizontal communication cost. The algorithm also outputs

the inverses of the triangular factors [37], so matrix multiplications

suffice to computeU = QW −1

1
and T =W1U

−T
1

. These can be done

using all the processors in time,O (γ ·mn2/p+β ·mδn2−δ /pδ+α)with

M = O
((

nδm1−δ

p1−δ

)
2
)
memory. As these costs and memory usage

are no greater than in Theorem 3.6, we arrive at the postulated

conclusion. □

4 SYMMETRIC EIGENSOLVERS
Algorithms for blocked computation of the eigenvalue decomposi-

tion of a symmetric matrix via a tridiagonal matrix were studied

by [18, 19, 28]. These algorithms reduce an n × n symmetric matrix

A to a matrix B with band-width b and the same eigenvalues as A
via a series of k = (n − b)/b orthogonal transformations,

B = QT
1
· · ·QT

k AQk · · ·Q1,

where each Qi is representable in terms of b Householder vectors,

aggregated in a trapezoidal matrix Ui , as Qi = (I −UiTiU
T
i).

A key property employed by these algorithms is that each two-

sided trailing matrix update of blocked Householder transforma-

tions may be done as a rank-2b symmetric update. To compute

the two-sided transformation QTXQ where X = XT
and Q =

(I −UTUT), we can write

QTXQ =(I −UTTUT)X (I −UTUT)

=X +UVT +VUT , (4.1)

where V = 1

2
UTTUTXUT − XUT . This form of the update is

cheaper to compute than the explicit two-sided update and is easy

to aggregate by appending additional vectors toU (to aggregate the

Householder form itself requires computing a largerT matrix). Since

the trailing matrix update does not have to be applied immediately,

but only to the columns which are factorized, this two-sided update

can also be aggregated and used in a left-looking algorithm. For

instance, to multiply QTXQ by a matrix Y , we can compute

QTXQY = XY +UVTY +VUTY . (4.2)

Returning to algorithms that compute a series of k two-sided

transformations, we note that when computingV2 fromU2 (to apply

Q2), we need to multiply U2 by a submatrix of QT
1
AQ1, which can

be done without applying Q1, using the above form. Left-looking

algorithms which generalize this idea and employ a delayed trailing

matrix update have been used to reduce directly to tridiagonal form

(b = 1) [18].

However, there are disadvantages to reducing the symmetric

matrix directly to tridiagonal form, since it requires that a vector

be multiplied by the trailing matrix for each computation of Vi of
which there are n − 2. These matrix-vector multiplications require

O (n) synchronizations and O (n) transfers of the trailing matrix

between memory and cache (so long as it does not fit into cache).

Figure 1: A depiction of matrices used in Algorithm 4.1 for
two subsequent recursive steps.

These disadvantages motivated approaches where the matrix is not

reduced directly to tridiagonal form, but rather to banded form,

which allows for b > 1 Householder vectors to be computed via

QR at each step without needing to touch the trailing matrix from

within the QR. After such a reduction to banded form, it is then

necessary to reduce the bandedmatrix to tridiagonal form. However,

this can be significantly less expensive because the trailing matrix

is banded and requires less work and vertical communication to

update than during the full-to-banded reduction step.

Such amulti-stage reduction approachwas introduced by [10, 11]

with the aim of achieving BLAS 3 reuse. These algorithms can

reduce the banded matrix to tridiagonal or perform more stages

of reduction, employing multiple intermediate band-widths. Per-

forming more stages of successive band reduction can improve the

synchronization cost of the overall approach, from O (n) as needed
if reducing to tridiagonal form directly, to O (

√
p) as shown by [8].

ELPA [5] is a distributed-memory library implementing a two-step

reduction approach, motivated by reducing vertical communication

cost. ELPA employs the parallel banded-to-tridiagonal algorithm

introduced by [30]. Performance studies by [5] have demonstrated

that this approach is particularly beneficial for large matrices.

We first introduce an algorithm for reducing a full dense matrix

to banded form, with up to O (p1/6) less horizontal communication

than previously known schemes. We subsequently introduce an

algorithm for reducing a banded matrix to a smaller band-width,

again with less communication than known approaches. Both of

these reduction algorithms use a parallel routine ‘QR’, which per-

forms QR factorization and outputs the Householder representation

(U , T) of the Q factor. We then give a combined, 2.5D symmetric

eigensolver algorithm, that uses the first algorithm to reduce the

dense symmetric matrix to band-width
n

max(p2−3δ , logp)
, then uses

O (logp) calls to our band-to-band reduction, to arrive at a band-

width of n/p, which is small enough to allow for efficient sequential

computation of eigenvalues. The resulting symmetric eigensolver

has the same BSP complexity as QR factorization (Lemma 3.5), mod-

ulo logarithmic factors in the number of processors for the vertical

communication and synchronization costs.

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

116

Algorithm 4.1 [B]← 2.5D-Full-to-Band(A,U (0) ,V (0) ,Π,b)

Require: Given nonnegative integers p,n,m,b and δ ∈ [1/2, 2/3],

z = (bpδ /n) (1−δ)/δ : Π is a grid of q × q × c processors where

q = p1−δ
and c = p2δ−1

and b mod q = 1, A is an n-by-n

symmetric matrix, U (0)
and V (0)

are n-by-m matrices where

U (0)
is trapezoidal (zero in top right upper b-by-b triangle) and

V (0)
is dense, A (stored as a nonsymmetric matrix), U (0)

, and

V (0)
are distributed cyclically over Π[:, :,k] for each k ∈ [1, c].

1: if n ≤ b then
2: Compute B = A +U (0)V (0)T +V (0)U (0)T

and exit.

3: Subdivide A =

[
A11 AT

21

A21 A22

]
where A11 is b-by-b

4: Subdivide U (0) =



U
(0)
1

U
(0)
2


and V (0) =



V
(0)

1

V
(0)

2


where U

(0)
1

and

V
(0)

1
are b-by-m

5: Compute

[
Ā11

Ā21

]
=

[
A11

A21

]
+U (0)V

(0)
1

T
+V (0)U

(0)
1

T

6: % Compute QR of matrix panel
7: [U1,T ,R]← QR(Ā21,Π[:, 1 : z, :])

8: ComputeW = A22U1 +U
(0)
2

(V
(0)

2

T
U1) +V

(0)
2

(U
(0)
2

T
U1)

9: Compute V1 =
1

2
U1 (T

T (UT (WT))) −WT
10: ReplicateU1 and V1 so that they are distributed cyclically over

Π[:, :,k] for each k ∈ [1, c]

11: % Recursively reduce the trailing matrix to banded form
12: B2 = 2.5D-Full-to-Band(A22, [U

(0)
2
,U1], [V

(0)
2
,V1],Π,b)

13: B =



Ā11 RT 0

R
B2

0


Ensure: B is a symmetric n-by-n matrix with band-width b and

the same eigenvalues as A +U (0)V (0)T +V (0)U (0)T
.

4.1 Full-to-Band Reduction
Algorithm 4.1 reduces a symmetric n-by-n matrix A to band-width

b using replication of data and aggregation. It achieves a horizon-

tal communication cost ofW = O (n2/pδ), when the amount of

available memory on each processor is M = O (n2/p2(1−δ)). The
algorithm is left looking, meaning it updates the next matrix panel

(line 5) immediately prior to performing the QR of the panel. Fig-

ure 1 displays the key matrices employed in Algorithm 4.1, specifi-

cally the third and fourth steps of recursion.

The algorithm replicates the matrix A and aggregates as well as

replicates the updatesU (0)
and V (0)

(these update matrices should

havem = 0 columns for the initial invocation of Algorithm 4.1) over

c = p2δ−1
layers of q2 = p2(1−δ)

processors. In the definition of

the algorithm and the analysis we assume that c and q are integers

for any given p. Each of these replicated matrices is stored in a 2D

cyclic distribution on each processor grid layer, adhering to the

layout assumptions of Algorithm 3.1. A cyclic layout yields local

blocks which can be used within sequential routines the same way

as done in a blocked layout. The assumption b mod q = 1 ensures

that whenever each new panel ofU and V is replicated (U1 and V1

on line 10), they can be concatenated to previously replicated panels

while maintaining a perfectly load balanced cyclic distribution.

Algorithm 4.1 performs the update correctly since, first, the

computation ofW = ĀU where Ā = QTAQ (line 8) follows the

identity Eqn. (4.2). Further, as computed on line 9, V takes the

desired form,

V =
(

1

2

UTTUT − I
)
WT =

1

2

UTTUT ĀUT − ĀUT ,

the same one as the aggregated update matrix derived in Eqn. (4.1).

Consequently, the eigenvalues of the original matrix are preserved

in the resulting banded matrix due to the ensured condition on

the result of the tail recursion, which performs the update and

factorization of the trailing matrix. In the base case, the matrix

dimension is less than or equal to the desired matrix band-width,

whichmeans it suffices to perform the aggregated update and return

the result, which would appear in the lower right block of the full

bandedmatrix.We now analyze the execution time of Algorithm 4.1.

Lemma 4.1. Algorithm 4.1 can reduce any symmetric n-by-n ma-
trix (input in any evenly-distributed layout and with n ≥ p) to
a banded matrix with the same eigenvalues and any band-width
n/pδ ≤ b ≤ n/ logp, using M = O (n2/p2(1−δ)) memory for any
δ ∈ [1/2, 2/3], when H > 3n2/p2(1−δ) , in BSP time,

O

(
γ ·

n3

p
+ β ·

n2

pδ
+ α · pδ log

2 p

)
.

If H ≤ 3n2/p2(1−δ) , then there is an additional vertical communica-
tion cost of O (ν · (n/b)n2/p2(1−δ)).

Proof. Since b ≥ n/pδ , we assume without loss of general-

ity that b mod p1−δ = 0. We also note that since b ≥ n/pδ ,

z = (bpδ /n) (1−δ)/δ ≥ 1. We note that the dimensions of A, U (0)
,

and V (0)
at any recursive step will always be less than the dimen-

sion of the original matrix, n. Algorithm 4.1 assumes A,U (0)
, and

V (0)
are initially replicated. Since each b × b block of these matri-

ces is distributed cyclically and since b mod q = 0 (q = p1−δ
), the

submatrix extraction and concatenation done between recursive

steps, can preserve perfect load balance without communication. To

satisfy initial assumptions of the first invocation of Algorithm 4.1,

we need to replicate the A matrix. Since, by assumption, it is dis-

tributed over all processors initially, the replication can be done

with O (n2/q2) = O (n2/p2(1−δ)) horizontal communication cost.

At each recursive step, Algorithm 4.1 performs aQR factorization,

several matrix multiplications, and replicatesU1 andV1. EachO (n)×
b QR factorization is done using a processor subgrid of dimensions

p1−δ × z × p2δ−1
with a total of zpδ = p (b/n) (1−δ)/δ processors

(picked to minimize both communication and synchronization)

using Algorithm 3.2. By Theorem 3.6 and the fact that z ≥ 1, it

takes BSP time,

O

(
γ ·

n1/δb3−1/δ

p
+ β ·

nb

pδ
+ α ·

b

n
pδ log

2 p

)
,

usingM = O
((

bδ n1−δ

(zpδ)1−δ
)

2
)
= O

((n (b/n) (2δ−1)/δ

p1−δ

)
2
)
memory.

The two matrix multiplications on line 5 and the five matrix

multiplications on line 8 (done right to left), all correspond to an

O (n)×O (n) replicated matrix multiplied by anO (n)×b rectangular

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

117

matrix. By Lemma 3.3, with w = max(1,bp2−3δ /n), using M =

O (n2/p2(1−δ) + nb/(wpδ)) = O (n2/p2(1−δ)) memory, the time to

compute these matrix multiplications is, if U (0)
and V (0)

start in

cache,

O

(
γ ·

n2b

p
+ β ·

nb

pδ
+ α ·w

)
.

In general (for any cache size), there is an additional cost of

O (ν ·
(n/b)n2

p2(1−δ)). The memory usage needed for these matrix multipli-

cations is greater than that needed for the QR factorizations done

by each set of processors. Since n1/δb3−1/δ < n2b the computation

cost of these matrix multiplications also dominates that of the QR

factorizations.

The matrix multiplications needed to compute line 9 from right

to left either operate on anO (n) × b matrix and a b × b matrix, like

W · T , or result in a b × b matrix, like UT · (WT). By Lemma 3.2

any matrix multiplication where two of the matrix dimensions are

b and one is O (n), with v = p2−3δ
, takes BSP time,

O

(
γ ·

nb2

p
+ β ·

[
nb

p
+
n2/3b4/3

pδ

]
+ α · p2−3δ

logp

)
.

Since b ≤ n/ logp, the above communication cost is never greater

than that of the larger matrix multiplications, i.e. n2/3b4/3/pδ ≤

nb/pδ . The synchronization cost of the QR factorizations dominates

that of of the matrix multiplications.

Replicating U1 and V1 over c subsets of q2
processors (line 10)

can be done in time, O
(
β · nb/p2(1−δ) + α

)
.

Therefore, the cost over all n/b − 1 recursive steps when all

replicated matrices fit into cache (when H > 3n2/p2(1−δ)
) is the

total cost postulated in the theorem. In the second scenario (when

H < 3n2/p2(1−δ)
), the algorithm incurs an extra additive factor of

O
(
(n/b) wn2

p2(1−δ)

)
in vertical communication cost. The memory usage

is dominated by the replicated matrix multiplication (invocation of

Lemma 3.3 above), which is also as stated in the theorem. □

4.2 Band-to-Band Reduction
We now consider algorithms for reducing a banded matrix to a

smaller band-width, while preserving eigenvalues. We start by re-

calling a parallel algorithm designed for small band-widths [8], then

present Algorithm 4.2, which is designed to exploit additional par-

allelism given larger starting band-widths. Algorithm 4.2 describes

the QR factorizations and applications necessary to reduce a sym-

metric banded matrix A from band-width b to band-width h = b/k
via bulge chasing. The algorithm eliminates n/h trapezoidal panels

via QR factorization, each of which generate bulges of nonzeros

in the trailing matrix. Each bulge is subsequently chased down

the band by O (n/b) eliminations again done by QR factorizations.

Every new panel elimination is done immediately after the previ-

ously generated bulge is chased twice (including its initial panel

elimination). Figure 2 depicts the QR factorizations necessary to

eliminate a trapezoidal panel and chase two bulges generated from

eliminating the first two panels, which are done concurrently in

the algorithm. This type of pipelined successive band reduction

approach was first considered by [10, 11]. The CA-SBR algorithm

in [8] is similar, but assigns each processor a set of bulge chases at

Figure 2: QR factorizations and updates in iterations (i, j) ∈
{(3, 1), (2, 3), (1, 5)} (left) and (i, j) ∈ {(3, 2), (2, 4), (1, 6)} (right)
of Algorithm 4.1 with k = 2. These two sets of iterations are
executed concurrently by processor groups Π̂1, Π̂3, and Π̂5

(left) and Π̂2, Π̂4, and Π̂6 (right), respectively. Only the unique
part of the trailing matrix update is shown, while the pseu-
docode performs both symmetric reflections of it. Each ma-
trix V is labeled with the iteration in which it is computed.

each pipeline step, rather than performing each bulge chase with a

set of processors as done in Algorithm 4.2.

Lemma 4.2. Ann×n symmetric matrix (input in any load-balanced
layout) of band-width b ≤ n/p can be reduced to one with the same
eigenvalues and band-width b/2, using M = O (nb/p) memory, in
BSP time,

O

(
γ ·

n2b

p
+ β · nb + ν ·

n2

p
+ α · p

)
.

Proof. We consider the cost of one step of the CA-SBR algo-

rithm [8]. A redistribution from any initial layout costsO (β ·nb+α).
The analysis in [8] shows that the cost of reducing from bandwidth

b to b/2 has the computation, horizontal communication, and syn-

chronization costs, as well as the memory usage postulated in the

lemma. The algorithm consits of a bulge chase pipeline, executed

in O (p) parallel steps, in which each processor works on O (n/p)
columns, chasing O (n/(pb)) bulges O (n/(pb)) times, for a total of

O (n2/(p2b2)) bulge chases. Since each bulge chase consists of a

QR factorization and a matrix multiplication, with matrices of size

O (b) ×O (b), by Lemma 3.1 and Lemma 3.4, the vertical communi-

cation cost is O (ν · b2) for each bulge chase. Summing the costs of

the bulge chases over all parallel steps yields the postulated total

cost. □

We now consider the cost of Algorithm 4.2. Its primary inno-

vation is to perform each QR factorization and update in parallel

using a subset of processors, leveraging both pipelined parallelism

across different bulge chases as well as parallelism within a bulge

chase. When the band-width becomes smaller, fewer processors are

used to execute each bulge chase.

Lemma 4.3. Algorithm 4.2 can reduce an n × n symmetric ma-
trix (input in any evenly-distributed layout) of band-width b ≥
n/p to one with the same eigenvalues and band-width b/k , using
M = O ((n1−δbδ /p1−δ)2) memory for any δ ∈ [1/2, 2/3] and any

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

118

Algorithm 4.2 [B]← 2.5D-Band-to-Band(A,Π,b,k)

Require: Given positive integers b,p,n,k and h = b/k with n mod

b ≡ 0 and b mod k ≡ 0: A is a banded symmetric matrix of

dimension n with band-width b ≤ n, Π̂j ⊂ Π is the jth group

of p̂ ≡ pb/n processors for j ∈ [1,n/b].

1: Set B = A
2: Let B[(j − 1)b + 1 : jb , (j − 1)b + 1 : jb] be replicated in Π̂j over

(bp/n)2δ−1
subsets of (bp/n)2(1−δ) processors.

3: % Iterate over panels of B
4: for i ∈ [1,n/h − 1] do
5: % Π̂j applies chase j of bulge i as soon as Π̂j−1 executes chase

(j − 1)
6: for j = 1 : ⌊(n − ih − 1)/b⌋ do
7: % Define row and column offsets
8: Let o

blg
= (i − 1)h + (j − 1)b, oqr.r = oblg

+ h
9: if j = 1 then oqr.c = oqr.r − h, ov = 0

10: else oqr.c = oqr.r − b, ov = b − h, oup.c = oqr.c + h

11: % Define index ranges needed for bulge chase
12: nr = min(n − oqr.r,b),nc = min(n − oup.c,h + 3b)
13: Iqr.rs = oqr.r + (1 : nr), Iqr.cs = oqr.c + (1 : h)
14: Iv.rs = ov + (1 : nr), Iup.cs = oup.c + (1 : nc)
15: % Perform a rectangular parallel QR factorization
16: [U ,T ,R]← QR(B[Iqr.rs, Iqr.cs], Π̂j [1 : ph/n])

17: B[Iqr.rs, Iqr.cs] =

[
R
0

]
, B[Iqr.cs, Iqr.rs] =

[
R
0

]T

18: % Perform trailing matrix updates
19: W = B[Iup.cs, Iqr.rs]UT , V = −W

20: V [Iv.rs, :] = V [Iv.rs, :] + 1

2
U (TT (UTW [Iv.rs, :]))

21: B[Iqr.rs, Iup.cs] = B[Iqr.rs, Iup.cs] +UVT

22: B[Iup.cs, Iqr.rs] = B[Iup.cs, Iqr.rs] +VUT

Ensure: B is a banded matrix with band-width h and the same

eigenvalues as A

k ≤ 1 + p2−3δ , in BSP time,

O

(
γ ·

n2b

p
+ β ·

n1+δb1−δ

pδ
+ α ·

kδn1−δpδ

b1−δ
logp

)
.

Proof. The cost of each inner loop iteration (loop on line 6) can

be derived from the costs of the matrix multiplications and QR done

inside it. Let the pair (i, j) correspond to the the ith iteration of

the outer loop and jth iteration of the inner loop. Figure 2 displays

the QR factorizations and updates computed during a few such

iterations. Each iteration computes a QR factorization of a matrix

with dimensions at most (b − h) × h, B[Iqr.rs, Iqr.cs] on line 16 with

p̄ = pb/(nk (1−δ)/δ) processors. The BSP time to compute such a

QR factorization is by Theorem 3.6 for δ ∈ [1/2, 2/3],

O

(
γ ·

bh2

p̄
+ β ·

bδh2−δ

p̄δ
+ α · p̄δ log(p̄)

)
= O

(
γ ·

nb2

k3−1/δp
+ β ·

nδb2−δ

kpδ
+ α · kδ−1 (pb/n)δ logp

)

The amount of memory needed for this QR factorization is given

in Lemma 3.6 as

M = O
(
(hδb1−δ /p̄1−δ)2

)
= O ((n1−δbδ /(p1−δk (2δ−1)/δ))2).

The matrix multiplications to form the V matrix are on lines 19

and 20, while those to perform the updates are on lines 21 and 22.

The matrix multiplications on line 20 should be done from right to

left. We can then observe that the most costly matrix multiplications

in Algorithm 4.2 are B[Iup.cs, Iqr.rs]U on line 19 and the updates

UVT
andVUT

on lines 21 and 22. In the first case, a (3b−h)× (b−h)
is multiplied by a (b −h) ×h matrix, while the updateUVT

involve

(3b − h) × h matrix multiplied by an h × (b − h) matrix (VUT
is

just the transpose of the former). In both cases, by Lemma 3.2 with

v = p̂2−3δ /(k − 1) (we subtract one from k to make sure v ≥ 1), the

BSP time to compute the matrix multiplications using p̂ processors

is

O

(
γ ·

b2h

p̂
+ β ·

b2

kp̂δ
+ α ·

p̂2−3δ

k
logp

)
= O

(
γ ·

nb2

kp
+ β ·

nδb2−δ

kpδ
+ α ·

(pb/n)2−3δ

k
logp

)
,

with a memory footprint of M = O (b2/p̂ + (b2h/(vp̂))2/3) =

O ((b/p̂1−δ)2) = O ((n1−δbδ /p1−δ)2), which is greater than the

memory needed to perform the QR factorizations. The other matrix

multiplications have strictly lower cost and the cost of redistribu-

tions necessary for all of these matrix multiplications is included

in the horizontal communication cost of Lemma 3.2. As A and B
are stored in load balanced layouts, each processor subset can ob-

tain the submatrix which it factorizes and the submatrix which it

updates at every iteration with O (b2/p̂) horizontal communication.

Thus, the overall cost for each iteration of Algorithm 4.2 is the

sum of the two different costs above,

O

(
γ ·

nb2

kp
+ β ·

nδb2−δ

kp
+ α · kδ−1 (pb/n)δ logp

)
.

For a given outer loop (line 4) iteration i , each j loop iteration

(line 6) is done by a different processor group. The total number of

inner loop iterations is roughly (n/h) (n/b)/2 and they are pipelined
among n/b groups of processors, up to n/(2b) of them working

concurrently on different bulge chases at any given time. Conse-

quently, the algorithm can be executed in O (n/h) phases, where
at the ith phase, min(i − 1, (n − ih)/(2b)) processor groups chase
bulges concurrently and the ith panel is eliminated. At each phase,

a synchronization and data exchange is required between the QR

factorization and trailing matrix updates computed by adjacent

active processor groups. Therefore, the BSP cost of each recur-

sive step of the algorithm corresponds to the cost of computing

O (n/h) = O (kn/b) inner loop iterations using one processor group,

which corresponds to the cost postulated in the lemma. □

4.3 Complete Symmetric Eigensolver
Algorithm 4.3 combines our algorithms for full-to-band reduction

(Algorithm 4.1) with multiple subsequent stages of band-to-band

reduction (Algorithm 4.2) and band-halving steps of the CA-SBR

algorithm from [8], which we refer to as CA-BR. Algorithm 4.1

reduces the symmetric matrix to one with band-width at most

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

119

Algorithm 4.3 [D]← 2.5D-Symmetric-Eigensolver(A,Π)

Require: Given positive integers p, n, and δ ∈ [1/2, 2/3] with

n mod b ≡ 0, A is a symmetric matrix of dimension n.
1: Let b = n

max(p2−3δ , logp)
, k = 2, and ζ = (1 − δ)/δ

2: Execute B = 2.5D-Full-to-Band(A, {}, {},Π,b)
3: for i = 0 : log

2
(bpδ /n) − 1 do

4: Let Π̄ = Π[1 : p/kiζ]

5: Gather B onto Π̄
6: Execute B = 2.5D-Band-to-Band(B,b/ki , Π̄,k)

7: Let Π̄ = Π[1 : pδ]

8: for i = 0 : log
2
(p1−δ) − 1 do

9: Execute B = CA-BR(B,n/(pδki), Π̄,k)

10: Gather B onto a processor and compute its eigenvalues D
Ensure: D is a vector containing the eigenvalues of A

n/ logp. Algorithm 4.2 is then used to successively half the band-

width to n/pδ . Subsequently, the CA-BR algorithm (same function

signature as 2.5D-Band-to-Band) is used to reduce the band-width

to n/p. At that point, the matrix is small enough for one processor

to compute the eigenvalues efficiently.

For every 2.5D-Band-to-Band step that reduces the band-width

by a factor of k , Algorithm 4.2 reduces the number of processors

used by kζ where ζ = (1 − δ)/δ . The parameter ζ is chosen to

be (1 − δ)/δ so that the per-stage horizontal cost term O (nb/pδ)

does not increase at each recursive step, since n(b/k)/(p/kζ)δ =

nb/pδ . Decreasing the number of active processors in this way also

keeps the synchronization cost equal at every stage. Overall, we

now obtain a parallel algorithm that has horizontal communica-

tion of O (n2/pδ), vertical communication of O (n2
logp/pδ), and

O (pδ log
2 p) synchronizations. Modulo logarithmic cost factors in

vertical communication and synchronization, this amounts to the

same communication cost as the best known algorithms for LU and

QR factorization [3, 35, 38].

Theorem 4.4. Algorithm 4.3 computes the eigenvalues of a sym-
metric n-by-n matrix (input in any evenly-distributed layout), using
M = O (n2/p2(1−δ)) memory for any δ ∈ [1/2, 2/3], in BSP time,

O

(
γ ·

n3

p
+ β ·

n2

pδ
+ ν ·

n2
logp

pδ
+ α · pδ log

2 p

)
.

Proof. The cost of the gather/redistribution of B onto Π̄ is

dominated by the subsequent 2.5D-Band-to-Band invocation. The

cost of computing the eigenvalues of B sequentially at the end is

O (γ · n3/p + β · n2/p + α), since the band-width is n/p [8]. We

employ Lemma 4.1 with b = n
max(p2−3δ , logp)

to obtain the cost of

2.5D-Full-to-Band. The computation, horizontal communication,

and synchronization costs are the same for 2.5D-Full-to-Band as

the ones postulated in Theorem 4.4. The vertical communication

cost term incurred for small cache sizes, O (ν · (n/b)n2/p2(1−δ)) is

bounded by O (ν · [n2/pδ + n2
logp/p2/3

]) = O (ν · n2
logp/pδ).

We now consider the memory footprint and cost of the invoca-

tions of 2.5D-Band-to-Band. By Lemma 4.3 with k = 2, the memory

usage isM = O ((n1−δ ¯bδ /p̄1−δ)2), where ¯b = b/ki where p̄ = p/kiζ

at iteration i . We observe that (n1−δ ¯bδ /p̄1−δ)2 = O (n2/p2(1−δ)) for

Algorithm W (β) Q (ν) S (α)

ScaLAPACK [12] n2/
√
p n3/p n logp

ELPA [4] n2/
√
p - n logp

CA-SBR [8] n2/
√
p n2

logn/
√
p
√
p (log

2 p + logn)
Theorem 4.4 n2/pδ n2

logp/pδ pδ log
2 p

Table 1: Asymptotic costs for computing eigenvalues, with
δ ∈ [1/2, 2/3]. All variants have O (n3/p) computation cost.

all iterations i , because at each subsequent iteration ¯b decreases byk

while p̄ decreases by kζ , and so ¯bδ /p̄1−δ ≤ bδ /p1−δ ≤ nδ /p1−δ
for

all i , since k (1−δ)ζ /kδ = k (1−δ)
2/δ /kδ ≤ k1−δ /kδ ≤ 1. The cost of

each band reduction with starting band-width
¯b and p̄ processors

is by Lemma 4.3 with k = 2,

O

(
γ ·

n2 ¯b

p̄
+ β ·

n1+δ ¯b1−δ

p̄δ
+ α ·

n1−δ p̄δ

¯b1−δ
logp

)
.

The computation cost clearly decreases with each iteration i . The

horizontal communication cost is O (nb/pδ) = O (n2/(pδ logp))
(since b ≤ n/ logp) at each iteration, since

¯b1−δ

p̄δ
=

(b/ki)1−δ

(p/kiζ)δ
=
b1−δ

pδ
.

Therefore, over all O (logp) iterations, the bandwidth cost of the

SBR invocations is O (n2/pδ). Finally, the synchronization cost

is
n1−δ p̄δ

¯b1−δ logp = O (pδ logp) at each iteration, since p̄δ /¯b1−δ =

pδ /b1−δ
. Thus, the overall synchronization cost is as postulated.

The time for CA-BR using pδ processors starting from band-

width n/pδ and reducing it to n/p is via Lemma 4.2, O (γ · n3

p2δ +

β · n
2

pδ
+ ν ·

n2
logp
pδ

+ α · pδ logp). Computing the eigenvalues of a

matrix with band-width n/p sequentially costs O (γ · n
3

p) [8]. □

A disadvantage of this multi-stage approach arises when eigen-

vectors are required in addition to eigenvalues. The cost of the back-

transformations scales linearly with the number of band-reduction

stages (each stage requiresO (n2) memory andO (n3) computation).

We leave the consideration of eigenvector construction for future

work. To reduce the number of band-reduction stages when δ < 2/3,

one can use k = p2−3δ
with each invocation of 2.5D-Band-to-Band,

but this results in a greater synchronization cost. It may also be

possible to improve the 2.5D-Band-to-Band algorithm by using

aggregation as in the 2.5D-Full-to-Band algorithm.

5 CONCLUSION
Table 1 provides a comparison of communication and synchroniza-

tion costs to previous work. Our new direct method for computing

the eigenvalues of a symmetric matrix, performs up to p1/6
less

horizontal communication than alternatives. The vertical communi-

cation cost (Q) for ScaLAPACK assumes H < n2/p and arises from

the matrix-vector multiplications computing V for each column.

For CA-SBR, Q is inferred from Lemma 4.2. For ELPA, we assume

the full-to-band step reduces to band-width b =
√
H , in which

case either (when

√
H > n/p) the banded matrix fits in cache, or

ν ·Q = O (ν · [n3/(pb) + nb2
]) = O (γ · F/

√
H) [4].

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

120

The new 2.5D-Symmetric-Eigensolver algorithm trades off a

variable amount of extra work, synchronization, and memory usage

for a lower communication cost. Implementations of the algorithms

in this paper permit optimizations such as

• alternating between left-looking partial updates and com-

plete trailing matrix updates in Algorithm 4.1,

• smaller bulge width in Algorithm 4.2 to increase parallelism

in the bulge chase pipeline,

• lookahead [2, 36] (overlapping QR with updates).

Our analysis shows that a carefully parameterized collage of

parallel algorithms and optimizations yields asymptotic cost im-

provements with minimal overhead. We combine approaches (2.5D

algorithms, aggregation, successive band reduction) that have been

successful on modern architectures [5, 6, 33], so our innovations

should pave the path for practical improvements in scalability of

applications computing singular values or eigenvalues of matrices.

REFERENCES
[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. 1995. A

three-dimensional approach to parallel matrix multiplication. IBM Journal of
Research and Development 39 (September 1995), 575–582. Issue 5.

[2] Ramesh C Agarwal and Fred G Gustavson. 1988. A parallel implementation of

matrix multiplication and LU factorization on the IBM 3090. In Proceedings of the
IFIP WG, Vol. 2. 217–221.

[3] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. 1990. Communication com-

plexity of PRAMs. Theoretical Computer Science 71, 1 (1990), 3 – 28.

[4] Thomas Auckenthaler. 2012. Highly scalable eigensolvers for petaflop applications.
Ph.D. Dissertation. Universität München.

[5] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, and P. Willems.

2011. Developing algorithms and software for the parallel solution of the sym-

metric eigenvalue problem. Journal of Computational Science 2, 3 (2011), 272 –
278. https://doi.org/10.1016/j.jocs.2011.05.002 Social Computational Systems.

[6] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and E. Solomonik.

2014. Reconstructing Householder Vectors from Tall-Skinny QR. In Proceedings
of the 28th IEEE International Symposium on Parallel and Distributed Processing
(IPDPS ’14). 1159–1170. https://doi.org/10.1109/IPDPS.2014.120

[7] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2011. Minimizing

Communication in Numerical Linear Algebra. SIAM J. Matrix Anal. Appl. 32, 3
(2011), 866–901. https://doi.org/10.1137/090769156

[8] Grey Ballard, James Demmel, and Nicholas Knight. 2015. Avoiding Communica-

tion in Successive Band Reduction. ACM Transactions on Parallel Computing 1, 2,

Article 11 (Feb. 2015), 37 pages. https://doi.org/10.1145/2686877

[9] Jarle Berntsen. 1989. Communication efficient matrix multiplication on hyper-

cubes. Parallel Comput. 12, 3 (1989), 335–342.
[10] C. Bischof, B. Lang, and X. Sun. 2000. Algorithm 807: The SBR Toolbox – Software

Successive Band Reduction. ACM Trans. Math. Software 26, 4 (Dec 2000), 602–616.
[11] C. Bischof, B. Lang, and X. Sun. 2000. A Framework for Symmetric Band Reduc-

tion. ACM Trans. Math. Software 26, 4 (Dec 2000), 581–601.
[12] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

1997. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, USA. Also available

from http://www.netlib.org/scalapack/.

[13] Rudnei Dias da Cunha, Dulcenéia Becker, and James Carlton Patterson. 2002.

New parallel (rank-revealing) QR factorization algorithms. In Euro-Par 2002
Parallel Processing. Springer, 677–686.

[14] Eliezer Dekel, David Nassimi, and Sartaj Sahni. 1981. Parallel Matrix and Graph

Algorithms. SIAM J. Comput. 10, 4 (1981), 657–675.
[15] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger.

2013. Communication-Optimal Parallel Recursive Rectangular Matrix Multipli-

cation. In Proceedings of the 27th IEEE International Symposium on Parallel and
Distributed Processing (IPDPS ’13). 261–272. https://doi.org/10.1109/IPDPS.2013.80

[16] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. 2012.

Communication-optimal Parallel and Sequential QR and LU Factorizations. SIAM
Journal on Scientific Computing 34, 1 (2012), A206–A239. https://doi.org/10.1137/

080731992

[17] Inderjit S. Dhillon, Beresford N. Parlett, and Christof Vömel. 2006. The Design

and Implementation of the MRRR Algorithm. ACM Trans. Math. Software 32, 4
(Dec. 2006), 533–560. https://doi.org/10.1145/1186785.1186788

[18] Jack J Dongarra, Danny C Sorensen, and Sven J Hammarling. 1989. Block reduc-

tion of matrices to condensed forms for eigenvalue computations. J. Comput.

Appl. Math. 27, 1 (1989), 215–227.
[19] Jack J Dongarra and Robert A van de Geijn. 1992. Reduction to condensed form

for the Eigenvalue problem on distributed memory architectures. Parallel Comput.
18, 9 (1992), 973 – 982. https://doi.org/10.1016/0167-8191(92)90011-U

[20] E. Elmroth and F. Gustavson. 1998. New serial and parallel recursive QR fac-

torization algorithms for SMP systems. In Applied Parallel Computing. Large
Scale Scientific and Industrial Problems., B. Kågström et al. (Ed.). Lecture Notes in

Computer Science, Vol. 1541. Springer, 120–128.

[21] V. Fock. 1930. Näherungsmethode zur Lösung des quantenmechanischen

Mehrkörperproblems. Zeitschrift für Physik 61, 1-2 (1930), 126–148. https:

//doi.org/10.1007/BF01340294

[22] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. 1999. Cache-Oblivious

Algorithms. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS ’99). IEEE Computer Society, Washington, DC, USA,

285.

[23] Gene H Golub, Robert J Plemmons, and Ahmed Sameh. 1986. Parallel block
schemes for large-scale least-squares computations. University of Illinois Press.

171–179 pages.

[24] Brian C. Gunter and Robert A. Van De Geijn. 2005. Parallel Out-of-core Compu-

tation and Updating of the QR Factorization. ACM Trans. Math. Software 31, 1
(March 2005), 60–78. https://doi.org/10.1145/1055531.1055534

[25] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. 2011. Parallel Reduction to

Condensed Forms for Symmetric Eigenvalue Problems Using Aggregated Fine-

grained and Memory-aware Kernels. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’11).
ACM, New York, NY, USA, Article 8, 11 pages. https://doi.org/10.1145/2063384.

2063394

[26] D. R. Hartree. 1928. The Wave Mechanics of an Atom with a Non-Coulomb

Central Field. Part I. Theory and Methods. Mathematical Proceedings of the
Cambridge Philosophical Society 24 (1 1928), 89–110. Issue 01. https://doi.org/10.

1017/S0305004100011919

[27] Hong Jia-Wei and H. T. Kung. 1981. I/O complexity: The red-blue pebble game.

In Proceedings of the thirteenth annual ACM symposium on Theory of computing
(STOC ’81). ACM, New York, NY, USA, 326–333.

[28] Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ortí, Robert van de

Geijn, and Field G. Van Zee. 2006. Accumulating Householder Transforma-

tions, Revisited. ACM Trans. Math. Software 32, 2 (June 2006), 169–179. https:
//doi.org/10.1145/1141885.1141886

[29] S. Lennart Johnsson. 1993. Minimizing the communication time for matrix

multiplication on multiprocessors. Parallel Comput. 19 (November 1993), 1235–

1257. Issue 11.

[30] B. Lang. 1993. A Parallel Algorithm for Reducing Symmetric Banded Matrices to

Tridiagonal Form. SIAM Journal on Scientific Computing 14, 6 (1993), 1320–1338.

https://doi.org/10.1137/0914078

[31] W. F. McColl and A. Tiskin. 1999. Memory-Efficient Matrix Multiplication in the

BSP Model. Algorithmica 24 (1999), 287–297. Issue 3.
[32] Edgar Solomonik. 2014. Provably Efficient Algorithms for Numerical Tensor Algebra.

Ph.D. Dissertation. University of California, Berkeley.

[33] Edgar Solomonik, Abhinav Bhatele, and James Demmel. 2011. Improving Commu-

nication Performance in Dense Linear Algebra via Topology Aware Collectives.

In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, Article 77,

11 pages. https://doi.org/10.1145/2063384.2063487

[34] Edgar Solomonik, Erin Carson, Nicholas Knight, and James Demmel. 2014.

Tradeoffs Between Synchronization, Communication, and Computation in Par-

allel Linear Algebra Computations. In Proceedings of the 26th ACM Sympo-
sium on Parallelism in Algorithms and Architectures. ACM, 307–318. https:

//doi.org/10.1145/2612669.2612671

[35] Edgar Solomonik and James Demmel. 2011. Communication-Optimal Parallel

2.5D Matrix Multiplication and LU Factorization Algorithms. In Euro-Par 2011
Parallel Processing. Lecture Notes in Computer Science, Vol. 6853. Springer Berlin

Heidelberg, 90–109. https://doi.org/10.1007/978-3-642-23397-5_10

[36] Peter Strazdins. 2001. A comparison of lookahead and algorithmic blocking

techniques for parallel matrix factorization. International Journal Parallel and
Distributed Systems and Networks 4, 1 (2001), 26–35.

[37] A. Tiskin. 2002. Bulk-Synchronous Parallel Gaussian Elimination. Journal of
Mathematical Sciences 108 (2002), 977–991. Issue 6. https://doi.org/10.1023/A:

1013588221172

[38] A. Tiskin. 2007. Communication-efficient parallel generic pairwise elimination.

Future Generation Computer Systems 23, 2 (2007), 179 – 188.

[39] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[40] R. A. Van De Geijn and J. Watts. 1997. SUMMA: Scalable Universal Matrix

Multiplication Algorithm. Concurrency: Practice and Experience 9, 4 (1997), 255–
274.

SESSION 3 SPAA’17, July 24-26, 2017, Washington, DC, USA

121

https://doi.org/10.1016/j.jocs.2011.05.002
https://doi.org/10.1109/IPDPS.2014.120
https://doi.org/10.1137/090769156
https://doi.org/10.1145/2686877
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1145/1186785.1186788
https://doi.org/10.1016/0167-8191(92)90011-U
https://doi.org/10.1007/BF01340294
https://doi.org/10.1007/BF01340294
https://doi.org/10.1145/1055531.1055534
https://doi.org/10.1145/2063384.2063394
https://doi.org/10.1145/2063384.2063394
https://doi.org/10.1017/S0305004100011919
https://doi.org/10.1017/S0305004100011919
https://doi.org/10.1145/1141885.1141886
https://doi.org/10.1145/1141885.1141886
https://doi.org/10.1137/0914078
https://doi.org/10.1145/2063384.2063487
https://doi.org/10.1145/2612669.2612671
https://doi.org/10.1145/2612669.2612671
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1023/A:1013588221172
https://doi.org/10.1023/A:1013588221172

	Abstract
	1 Introduction
	2 Theoretical Cost Model
	3 Building Blocks
	3.1 Matrix Multiplication
	3.2 QR Factorization

	4 Symmetric Eigensolvers
	4.1 Full-to-Band Reduction
	4.2 Band-to-Band Reduction
	4.3 Complete Symmetric Eigensolver

	5 Conclusion
	References

