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Abstract:
The architecture of the IBM Cell BE processor represents a new approach for de-

signing CPUs. The fast execution of legacy software has to stand back in order to
achieve very high performance for new scientific software. The Cell BE consists of
9 independent cores and represents a new promising architecture for HPC systems.
The programmer has to write parallel software that is distributed to the cores and exe-
cutes subtasks of the program in parallel. The simplified Vector-CPU design achieves
higher clock-rates and power efficiency and exhibits predictable behavior. But to ex-
ploit the capabilities of this upcoming CPU architecture it is necessary to provide
optimized libraries for frequently used algorithms. The Basic Linear Algebra Sub-
programs (BLAS) provide functions that are crucial for many scientific applications.
The routine ZGEMM, which computes a complex matrix–matrix–product, is one of
these functions. This article describes strategies to implement the ZGEMM routine on
the Cell BE processor. The main goal is achieve highest performance. We compare
this optimized ZGEMM implementation with several math libraries on Cell and other
modern architectures. Thus we are able to show that our ZGEMM algorithm performs
best in comparison to the fastest publicly available ZGEMM and DGEMM implemen-
tations for Cell BE and reasonably well in the league of other BLAS implementations.

1 Introduction

Matrix multiplication is used for many standard linear algebra problems, such as inverting

matrices, solving systems of linear equations, and finding determinants and eigenvalues

[Kny01]. Therefore if a new architecture wants to be successful in the scientific computing

environment it is crucial that optimized libraries for problems like matrix multiplication

and alike are freely available.

Our initial intent was to port ABINIT, a quantum mechanical ab-inito simulator [GBC+02,

GCS+00, BLKZ07], to the Cell BE architecture.1 ABINIT heavily uses the BLAS

[LHKK79, DCHH88] function ZGEMM which multiplies two complex matrices and adds

1This research is supported by the Center for Advanced Studies (CAS) of the IBM Böblingen Laboratory as

part of the NICOLL Project.



them to a third one. All input matrices and scalars are given in double precision. Differ-

ent groups have already developed optimized matrix multiplication codes for the Cell BE

architecture, but those were not meant to be used by other applications but to demonstrate

the good single-precision capabilities of the architecture [D.07]. They operate on matrices

on a fixed input size, partly use the rather uncommon block data layout for storing the

matrices and only work for single precision floating point numbers. Another possibility

would have been to use PPC64 optimized BLAS libraries [CGG02, DDE+05] like Atlas

[WD98] ot Goto [KR02]. But these libraries do not leverage the potential of the Cell BE

completely because they only use the PPC64 core.

Thus, we decided to implement a Cell optimized version of ZGEMM. In this paper we will

describe the basic algorithm we used as well as the optimization principles we had to apply

to get the current result which we will benchmark, too. This paper is organized as follows:

Section 2 contains background information on relevant aspects of the Cell Broadband En-

gine architecture, Section 3 gives an overview of the ZGEMM Fortran interface; Section 4

shows how to vectorize and optimize the naive implementation of the used algorithm, Sec-

tion 5 gives some benchmarking results and tries to explain them, Section 6 draws some

conclusions and shows directions for further improvement.

2 Cell Broadband Engine Overview
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Figure 1: Cell BE architecture

The Cell BE architecture [CD07] is a

multicore microprocessor with one gen-

eral purpose core called Power Process-

ing Element (PPE) and multiple vector

co-processing elements, called Synergistic

Processing Elements (SPE). The PPE is a

stripped-down general purpose core to ad-

minister the SPEs, which handle the com-

putational workload. It is easy to run con-

ventional software on the PPE due to its

compatibility to the PPC64 architecture.

The PPE is connected to the system mem-

ory and the SPEs via the Element Intercon-

nect Bus (EIB), a high-bandwidth circular

data bus. Each SPE hosts some local mem-

ory, called Local Store (LS), an Synergistic

Execution Unit (SXE) and a Memory Flow

Controller (MFC) which connects the SPE

to the EIB. The MFC operates indepen-

dently of the SPU, so memory transactions can be overlapped with computations. Figure

1 gives an overview of the Cell BE architecture.

Let’s take a closer look at the SPEs now, as the performance of our implementation de-

pends solely on our ability to use their full potential. This is not always easy, as SPEs

are special cores: They are meant to fit in the gap between standard desktop PC cores and

special number crunching devices like the Graphics Processing Units (GPUs) in graphics



cards. The SPEs can not access the main memory directly, they can only operate on their

Local Store which is capable of holding 256 KiB data. One should not think of the LS

as of a cache in a standard CPU as it is not updated automatically or transparently to the

running process. To get new data into the LS one has to use the Memory Flow Controller

to issue a DMA PUT or GET transfer. The boundaries of DMA transfers from and to SPUs

have to be 16 byte aligned. DMA transfers yield the best performance when multiples of

128 byte are transferred.

The Synergistic Execution Unit is a vector processor which operates on 128 registers,

each 128 bit wide. That means when coping with double precision floating point numbers

(which are 8 byte wide) we can do two similar operations simultaneously if we manage

to put our input data in a single vector. Unfortunately the Cell BE processors available at

the time of writing are very slow when doing double precision arithmetic (1.83 GFlop/s

per SPE [WSO+06], which is 14 times lower than the single precision performance). But

this should improve with future generations of this chip. The performance cited above can

only be reached when fused multiply add instructions are used. These instruction perform

the operation c := a∗b+c or similar and therefore count as two floating point instructions

(FLOP). As all double precision arithmetic instructions need the same number of clock

cycles, these instructions yield the best floating point operation per second (Flop/s) ratio.

3 BLAS/ZGEMM

Basic Linear Algebra Subprograms (BLAS) is an widely used application programming

interface for libraries to perform basic linear algebra operations such as matrix multiplica-

tion. They were first published in 1979 [LHKK79]. Highly optimized implementations of

the BLAS interface have been developed by different vendors or groups for many archi-

tectures.

ZGEMM performs the matrix-matrix operation on input of complex numbers:

C := α · op(A) · op(B) + β · C

Where op(A) specifies if the normal, transposed or conjugated version of the matrix is to

be used. A,B and C are matrices consisting of complex numbers and α and β are complex

scalars. The Fortran interface is:

SUBROUTINE ZGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B,

LDB, BETA, C, LDC)

TRANSA and TRANSB contains the operator to be used on matrix A and B as a single

character which can be n (normal), t (transposed) or c (transposed, conjugated). op(A)
is M by K matrix, op(B) is a K by N matrix, and C is a M by N matrix. Note that M, N and K

refer to the matrices after the operators are applied, not the original input matrices. ALPHA

and BETA correspond to α and β in the equation above. LDA, LDB and LDC specify the

first dimension of the input matrices so it is possible to use ZGEMM the top-left part of the

input matrices only.

The input matrices A, B and C are stored in column major order, as they come from a

program written in Fortran. Figure 2 illustrates the meaning of the different ZGEMM pa-

rameters which deal with the representation of the input matrices.



Memory layout:

A

K

M

LDA

A

LDA M

column 1 column K

...

Figure 2: Fortran/ZGEMM Matrix rep-
resentation

The tricky part is the operator: Depending on if its

normal or not, elements which are stored sequen-

tially in memory can be in one row or one column.

As one result element is computed based on one

row of op(A) and one column of op(B), we will

always have to consider the operators for our mem-

ory access.

We investigated works that use Strassen’s or Wino-

grad’s implementation to reduce the asymptotic

complexity of the matrix multiplication [DHSS94].

However, those optimized algorithms work only

with well conditioned matrixes which we can not

guarantee in the general case. Thus, we chose to

implement a traditional O(N3) algorithm for our

ZGEMM.

4 Our ZGEMM implementation

We had to apply two important concepts to be able to design a well-performing ZGEMM

implementation: We partitioned the input data, distributed it among the available SPEs

and vectorized all calculations on order to exploit the SIMD architecture.

4.1 Data Partitioning

As the Local Store of an SPE space is limited to 256KiB, the goal should be to save space

and memory transfers. A first idea was to load parts of a row of op(A) and a column

of op(B) and to compute exactly one element of C. There are some problems with this:

depending on the operator, the rows (or columns) of the matrices are stored sequentially

in memory or scattered with a displacement (of LDx), forcing us to get each element

separately. This would decrease performance, as the MFC operates best with memory

chunks that are multiples of 128 byte in size.

A better idea is to load blocks instead of lines, and perform small matrix-matrix multi-

plications instead of scalar products. This gives us independence from the operator: the

decision whether rows or columns should be used in the scalar product of the matrix mul-

tiplications on the SPEs does not affect performance, as we have random access to the

Local Store. Another advantage is the number of operations. For n elements which fit in

each input buffer of our Local Store, O(n) multiply and add operations can be done with

the scalar product, but O(
√

n3) = O(n1.5) operations can be achieved with small matrix

multiplications. Of course, with more operations on the same amount of local data the

total number of memory transfers is reduced.

4.2 Work Assignment

With our partitioning approach, each part of the result matrix can be independently com-

puted with the block row of op(A) and the block column of op(B). The blocks to be



computed are simply distributed circular on the SPEs. Figure 3 illustrates the assignment

scheme for 6 SPEs. The shaded result block is computed using the shaded row in op(A)
and the shaded column in op(B).

1 2 3 4 5 6 1 2

3 4 5 6 1 2 3 4

5 6 1 2 3 4 5 6

1 2 3 4 5 6 . . .
* =

Figure 3: SPE Block assignment

We investigated the use of the PPE with an experimental implementation. The PPE has a

theoretical peak performance of 6.4 GFlop/s. Our code spawns N threads on the PPE, each

of them computes the same chunk of op(C) as an SPE does2, using a PPC970 optimized

BLAS implementation to perform the computation. Despite the given peak performance

of the SPE, we achieved only 1.7 GFlop/s with ATLAS on the PPE, which makes this

partitioning scheme suboptimal. Thus, we did not include the PPE measurements in our

benchmarks.

4.3 Vectorization

In our matrix multiplication, each element is a 128 bit complex number, consisting of 64

bit double precision floating point values for real part and imaginary part. We can safely

assume that only fused multiply add operations are used, as two elements of each matrix

are multiplied and added to the temporary scalar product. One multiply-add operation of

complex numbers a and b added to y (y = y + a · b) is split up like this for its real and

imaginary parts: yre := yre + arebre − aimbim

yim := yim + arebim + aimbre

This makes 4 fused multiply add operations, with 64 bit operands. With the SIMD-ability

of the SPU, two complex multiply-adds can be done instead of one. To use SIMD in-

structions, the real parts and imaginary parts have to be splitted and packed into separate

registers. This can be done with the SPU shuffle instruction. Now the calculation can be

done as described above, and the only thing left to do is to separate the real and imaginary

part into the result registers before we write back into C.

One little obstacle remains: The fused multiply subtract operation on the SPU spu msub(a,

b, c) calculates a · b − c, but we would need c − a · b. To achieve this without adding

further instructions to change the sign, the real part can be calculated as follows:

yre := arebre − ((aimbim) − yre)

In Figure 4 you can see how the blockwise matrix multiplication can be implemented in

C, using the SPU intrinsics. 3

2theoretically, N = 3 should be optimal
3Our code and the tests that were used to obtain the presented benchmark results can be fetched from

http://files.perlplexity.org/zgemm.tar.gz.



# d e f i n e VPTR ” ( v e c t o r do ub l e ∗ ) ”

v e c t o r char h i g h d o u b l e = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ,

1 6 , 1 7 , 1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 3} ;

v e c t o r char l o w d o u b l e = { 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ,

2 4 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1} ;

v e c t o r double r r e ={0 ,0} , r im ={0 ,0} , t r e , t im , s r e , sim ;

f o r ( k =0; k < k l e n ; k ++ , aa += a s t e p , bb += b s t e p ) {
f im = s p u s h u f f l e ( ∗ (VPTR aa ) , ∗ (VPTR ( aa+ a t s t e p ) ) , l o w d o u b l e ) ;

gim = s p u s h u f f l e ( ∗ (VPTR bb ) , ∗ (VPTR bb ) , l o w d o u b l e ) ;

f r e = s p u s h u f f l e ( ∗ (VPTR aa ) , ∗ (VPTR ( aa+ a t s t e p ) ) , h i g h d o u b l e ) ;

g r e = s p u s h u f f l e ( ∗ (VPTR bb ) , ∗ (VPTR bb ) , h i g h d o u b l e ) ;

t r e = spu nmsub ( fim , gim , s r e ) ;

t im = spu madd ( f r e , gim , sim ) ;

s r e = spu msub ( f r e , gre , t r e ) ;

sim= spu madd ( fim , gre , t im ) ;

}

r r e = s p u s h u f f l e ( s r e , sim , h i g h d o u b l e ) ;

r im = s p u s h u f f l e ( s r e , sim , l o w d o u b l e ) ;

∗ (VPTR cc ) = s pu a d d ( ∗ (VPTR cc ) , r r e ) ;

∗ (VPTR ( cc + 1 ) ) = s pu a d d ( ∗ (VPTR ( cc + 1 ) ) , r im ) ;

Figure 4: Inner loop of the blockwise matrix multiplication, implemented in C

5 Benchmarks

This section provides a performance evaluation of our implementation and a qualitative

and quantitative comparison to BLAS implementations on other modern architectures.
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Figure 5: Performance Comparison

The current Cell BE chip’s SPEs

are capable of issuing one dou-

ble precision arithmetic instruc-

tion every six clock cycles. This

instruction needs another seven

cycles until the result is avail-

able in the target register. But

if we assume to execute a very

large number of data-independent

double precision operations we

would get a cycles per instruc-

tion (CPI) value of 6. Consid-

ering FMADD operations and a

vector size of two, the theoretical

peak performance of a single Cell

BE CPU with 8 SPE and a clock



rate of 3.2 GHz is

Rpeak =
3.2 ∗ 109 Hz

6
· 8 SPE · 4 Flop/SPE = 17.07 GFlop/s

This is the number in theory, in practical tests (back to back execution of fused multiply

add instructions with no data dependencies) we were able to measure up to 14.5 GFlop/s.

This number is said to be the Cell BE double precision peak performance. [WSO+06]

Even though our implementation supports arbitrary matrices, we benchmarked square ma-

trices to enable easy comparisons to other publications. We used ppu-gcc, version

4.1.1 with the flags -O3 -mabi=altivec -maltivec to compile all PPE code and

spu-gcc, version 4.1.1 with -O3 for the SPE code. The Cell BE specific benchmarks

were run on a 3.2 GHz IBM QS20 Cell Blade, which contains 2 Cell BE processors with 8

SPEs per processor and two 512 MiB RAM banks and a Playstation 3 running at 3.2 GHz

with 200 MiB memory. Both systems run Linux 2.6 (with IBM patches applied).
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In our first benchmark (Figure 5),

we compare the performance of

netlib.org’s refblas ZGEMM with

the IBM DGEMM implementa-

tion4 and our optimized imple-

mentation for different matrix

sizes.

The results show that the our im-

plementation performs very well

on Cell BE CPUs. Even though

we tried to tune refblas by us-

ing different numactl configu-

rations (numactl controls which

CPU uses which memory bank),

we were not able to achieve more

than one Gflop. This is due to the

fact that the current compilers do not automatically generate code for the SPUs. Thus,

the refblas implementation used only the rather slow PPC core. We outperform the IBM

DGEMM implementation by large for all different matrix sizes and our code scales very

well to up to 16 SPUs. We can also reproduce similar performance on the specialized

Playstation 3 (PS3) hardware (only 6 SPEs are accessible with Linux).

Another optimization technique that has been proposed [CRDI07] is to overlap memory

(DMA) accesses with computation. However, this increases the code complexity signif-

icantly. To evaluate the potential benefit, we removed all the memory (DMA) accesses

from our implementation to simulate the overlap. This invalidates the results but provides

an upper bound to the performance-gain due to overlap. Figure 6 shows the compari-

son to our implementation. Our experiments show that we could gain up to one Gflop/s

performance with this overlap technique.

4The current IBM BLAS implements no ZGEMM. Thus, we used DGEMM for comparison, because of its

similarity to ZGEMM
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Our next benchmark compares

the Cell BE and our opti-

mized implementation (currently

the fastest available) with dif-

ferent modern High Performance

Computing (HPC) architectures.

We chose a variety of differ-

ent systems to be able to eval-

uate the suitability of the Cell

BE for scientific calculations us-

ing ZGEMM as an example. The

different systems and their peak

floating point performances are

described in the following. We

leveraged all available processing

units (CPUs/Cores) that share a

common system memory (are in

the same physical node). Thus

we compare our multi-core Cell

BE implementation with other

multi-core BLAS implementa-

tions. The test systems are

described in the following: a

node in Big Red has two dual-

core PowerPC 970 MP proces-

sors (2.5GHz) with 8GB RAM

per node. The peak-performance

(with FMADD) is 40 GFlop/s and

we ran the IBM ESSL library. We

used the Goto BLAS [KR02] li-

brary 1.19 on Odin, a dual CPU

dual-core Opteron running at 2

GHz with a peak performance of

16 GFlop/s, and Sif, a dual CPU

quad-core 1.86 GHz Intel Xeon

with 59.5 GFlop/s peak. The theoretically fastest tested system, Jeltz, as two quad-core

Intel Xeon 3.0 GHz and a peak performance of 96 GFlop/s. Jeltz runs Mac OS X Tiger

and we used the vendor supplied vecLib for our experiments. The absolute performance

results for all those systems are plotted in Figure 5.

Due to memory and CPU time limits, not all matrix sizes could be run on all systems

(e.g., the PS3 had only 200 MiB). Our benchmarks show that the current generation Cell

BE is not really suited to perform double precision floating point calculations because

it is largely outperformed by systems in the same and lower price-range. However, the

specialized low-cost Playstation 3 makes a big difference in this price-performance game

but its limited memory might be a big obstacle to scientific use.



Those absolute value comparisons do not allow any qualitative comparisons between the

different libraries. The main problem is the high variance in peak performance. To com-

pare our implementation to other BLAS libraries, we normalized the measured perfor-

mance to the peak performance of the architecture to get an estimate of the efficiency of

use of the floating point units. We expect a pretty high efficiency on the standard super-

scalar and cache-based architectures due to the high spatial and temporal locality in matrix

multiplication algorithms and decades of development. However, the Cell BE represents

a completely new approach of the “explicit cache” (Local Store). Additionally to that, the

Cell architecture introduces additional overheads for loading the code to the SPUs. The

relative performance results are presented in Figure 7. The highly optimized Goto BLAS

implementation delivers the best performance on the available architectures. IBM’s En-

gineering and Scientific Subroutine Library (ESSL) delivers good performance in Power

PPC. Our implementation which explores a new CPU architecture is performing very well

in comparison to the well established ones and even better than Apple’s Veclib.

6 Conclusion and Future Work

Since scientific simulations heavily rely on optimized linear algebra functions we pre-

sented in this article an optimized ZGEMM implementation for the IBM Cell BE processor.

As a part of the BLAS package, the ZGEMM routine performs a complex matrix–matrix

multiplication. We discussed the strategies to distribute data and to exploit the double

precision floating point elements of the SPEs.

The benchmarks showed that the performance of our ZGEMM algorithm achieves up to 70%

of the peak performance and scales linearly from 1 to 16 SPEs. We assume that our code

will also perform well on the next generation Cell BE which supports a fully-pipelined

double precision unit that does not stall 6 cycles after every instruction. We compared the

algorithm with the IBM DGEMM implementation since there is no ZGEMM implementation

available for Cell. We also showed that even without applying double buffering techniques,

the SPEs can be used efficiently under the condition that the number of calculations grow

faster with problem size than the access to memory.

Our ZGEMM implementation shows the best performance of all publicly available ZGEMM

or DGEMM implementations for Cell BE. Thus, our work may serve as guideline for imple-

menting similar algorithms.
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