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COMPLEXITY ANALYSES
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all these details here 
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Let’s only see the PageRank 

comparisons (others are similar)
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max degree 

in a graph
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HIGHLIGHTS

Write conflicts

Pushing entails more write conflicts (must 

be resolved with locks or atomics.

Atomics/Locks

Pulling removes atomics or locks 

completely (TC, PR, BFS, ∆-Stepping, 

MST) or it changes the type of 

conflicts from to      (BC).

Memory accesses

Pulling in traversals (BFS, 

BC, SSSP-∆) entails more 

time and work. 
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What are push-pull 

formulations of other 

algorithms?
Can we apply the 

push-pull dichotomy 

to other graph 

algorithms? What pushing vs. 

pulling really is?

What is performance?

What is the impact of the 

programming model? 

environment? 

Is pushing or pulling 

faster? When and why?
How effective are 

the incorporated 

strategies?
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Real-world SNAP graphs [3]

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] https://snap.stanford.edu

Erdös-Rényi [2]

Road networks

Comm. graphs

Social networks

Purchase networks

Citation graphs
Web graphs

https://snap.stanford.edu/
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COUNTED EVENTS

Counted PAPI events

Cache misses (L1, L2, L3)

Reads, writes

Branches (conditional, unconditional)

TLB misses (data, instruction)

Other counted events

Issued atomics

Acquired locks

Messages (sent, received)

RMA accesses (reads, writes, atomics)
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BOMAN GRAPH COLORING + FE

orc, ljn: social networks 

rca: road network

Performance 

improvements
Fewer iterations

Fewer reads/writes

FE: Frontier-Exploit (+ 

more, check the paper)

Shared-

Memory

FE

FEFE
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Distributed-Memory 

analyses…

…a brief recap on 

Remote Memory Access 

(RMA)
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REMOTE MEMORY ACCESS (RMA) PROGRAMMING

Memory Memory

Cray

BlueWaters

put

Process p Process q

A

B
get

B

A

B

flush

A

B

Pushing/Pulling 

done with RMA
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PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed

-Memory

Collectives: combines 

pushing and pulling

Pulling incurs 

more 

communication 

while pushing 

expensive 

underlying 

locking

Msg-Passing fastest
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PERFORMANCE ANALYSIS

TRIANGLE COUNTING Distributed

-Memory

orc, ljn: social networks 

Msg-Passing now incurs 

more communication

Pushing does 

not require the 

expensive 

locking protocol 

(Cray offers fast 

remote atomics 

for integers)

RMA fastest
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