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ABSTRACT

Dragonflies are recent network designs that are one of the
most promising topologies for the Exascale effort due to their
scalability and cost. While being able to achieve very high
throughput under random uniform all-to-all traffic, this type
of network can experience significant performance degrada-
tion for other common high performance computing work-
loads such as stencil (multi-dimensional nearest neighbor)
patterns. Often times, the lack of peak performance is due
to an insufficient understanding of the interaction between
the workload and the network, and an insufficient under-
standing of how application specific task-to-node mapping
strategies can serve as optimization vehicles.

To address these issues, we propose a theoretical perfor-
mance analysis framework that takes as inputs a network
specification and a traffic demand matrix characterizing an
arbitrary workload and is able to predict where bottlenecks
will occur in the network and what their impact will be on
the effective sustainable injection bandwidth. We then focus
our analysis on a specific high interest communication pat-
tern, the multi-dimensional Cartesian nearest neighbor ex-
change, and provide analytic bounds (owing to bottlenecks
in the remote links of the Dragonfly) on its expected perfor-
mance across a multitude of possible mapping strategies.

Finally, using a comprehensive set of simulations results,
we validate the correctness of the theoretical approach and
in the process address some misconceptions regarding Drag-
onfly network behavior and evaluation, (such as the choice
of throughput maximization over workload completion time
minimization as optimization objective) and the question of
whether the standard notion of Dragonfly balance can be
extended to workloads other than uniform random traffic.
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1. INTRODUCTION

High-Performance Computing (HPC) and datacenter net-
works are continuously growing in scale as larger problems
are tackled. Recent developments in large-scale simulation
and data analytics indicate that networks with more than
10,000 endpoints will soon be widely adopted. Technological
advances in switch and cabling technology enabled Drag-
onfly [13], a new economic and efficient network topology.
Dragonfly networks combine high-radix switches and a mix
of copper and electrical cables into a hierarchical two-tier
topology. Both tiers are logically fully connected, a structure
that guarantees low latency and high bisection bandwidth.

Dragonfly networks are scaled in practice to more than
5,200 nodes in Europe’s most powerful supercomputer Piz
Daint. Their theoretical scalability exceeds tens of thou-
sands of nodes while achieving nearly full bandwidth for
random uniform traffic patterns and shortest path routing.
However, for deterministic patterns, a common characteris-
tic of scientific applications, the bandwidth depends largely
on the used routing scheme (e.g., indirect random or adap-
tive) and the task-to-node mapping (e.g., random, blocked,
or block-cyclic). The exact tradeoffs between routing and
mapping for specific communication patterns are not well
understood for Dragonfly topologies.

Cartesian nearest neighbor exchanges are very common
in scientific computations [12]. They often represent a dis-
cretization of a physical system, which is modeled by a set of
elements that are arranged in a grid. A typical simulation,
e.g., a heat propagation, then solves PDEs and ODEs on this
grid to advance the simulated system forward in time. The
resulting computational structures are most often Cartesian
structures called stencils. Stencils combine neighboring val-
ues of a grid point to compute its state in the next iteration.
A distribution of this scheme requires communication in a
Cartesian structure. This pattern is so typical that parallel
programming schemes, such as the Message Passing Inter-
face, provide explicit support [9].



Any deterministic traffic pattern may exhibit poor per-
formance if the computation is mapped unfavorably to a
Dragonfly [1,3,6,13]. For example, we found that the com-
pletion time for randomly mapped stencil computations can
be between 50% to 10 times larger than the best achiev-
able completion time. Several related studies empirically
analyzed the impact of routing [6,13], topology [6] and task
mapping [3] to support applications with deterministic com-
munication patterns such as stencil. Those studies report
significant improvements for random indirect routing or ran-
dom task mapping. However, indirect routing reduces the
available global network bandwidth by utilizing more links
and random task mapping looses communication locality
because neighborhoods are spread throughout the system.
Both schemes increase the network load and the exact trade-
offs of the routing and mapping selections remain unclear in
general.

In this work, we provide a clear set of guidelines how to
configure the network for a given workload. For this, we
derive a general theoretical model of communication perfor-
mance of multi-dimensional stencil computations on arbi-
trary Dragonfly networks considering different domain de-
compositions and task placements. Our general model al-
lows us to co-design the application decomposition for the
class of Cartesian stencil applications with the ideal Drag-
onfly network configuration. In summary, we guide the user
to select the optimal values of the parameters

e domain decomposition,
e task placement (sparsity and randomization), and
e routing approach.

We also validate our theoretical results against detailed sim-
ulations of the targeted scenarios and conclude with a sum-
mary of practical recommendations on how to (1) configure
an application to run on a Dragonfly network and (2) op-
timize the design of a Dragonfly network to achieve higher
performance for the nearest neighbor exchange.

2. BACKGROUND AND RELATED WORK

Dragonfly topologies [13] are highly scalable high-radix
two-level direct networks with a good cost-performance ra-
tio, used for example in the PERCS interconnect [2] and in
the Cray Cascade [5]' and likely to be one of the options
chosen for many of the future Exascale systems.

A dragonfly is a two-level hierarchical network, where
fully-connected groups of lower-radix switches at the first
level form a virtual high-radix switch. These virtual
high-radix switches form another fully-connected graph of
groups [13]. The ports that the virtual high-radix switches
use to connect to the other virtual switches are distributed
across the physical switches that make up the virtual switch.

Dragonflies can be uniquely described by means of three
parameters: p, the number of nodes connected to each
switch, a, the number of switches in each first level group,
and h, the number of channels that each switch uses to con-
nect to switches in other groups. For certain values of these
parameters it can be shown that close to ideal throughput
can be achieved for uniform traffic.

Tn both cases, with modifications with respect to the orig-
inal design by [13].

In a Dragonfly, shortest paths between pairs of nodes are
unique. The longest possible shortest path is made up of
a traversal of a local (L) link in the first level group to get
to the switch that has a global (R) link towards the desti-
nation group, a traversal of the R link and a second local
link traversal in the destination group to get to the switch
directly connected to the destination node. Figure 1 illus-
trates the topological layout of a Dragonfly network and the
meaning of the (p, a, h) parameters.

Group 0 Group 1

«--- Remote links
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Figure 1: Example of a (p = 2,a = 3,h = 1) Dragonfly
topology. Every switch is connected to p = 2 nodes, there
are ¢ = 3 switches in every group and every switch has h = 1
links connecting it to switches outside its group.

However, this lack of shortest path diversity can lead to an
extreme degradation in performance for certain adversarial
traffic patterns [3,6]. One option to alleviate this degrada-
tion is to use Valiant’s algorithm [17]. This algorithm routes
a packet to a randomly chosen intermediate node first, be-
fore routing it to the actual destination. The expectation is
that, by using a different random intermediate node for each
packet, the original nature of the traffic is shifted towards
a uniform random distribution of traffic. However, this is
done at the expense of longer paths and results in roughly a
doubling of the load for an original traffic that is sufficiently
dense (such as originally random uniform traffic [4]).

The longer paths in Valiant routing also have the disad-
vantage of requiring the use of additional virtual channels
to guarantee deadlock freedom. In particular, the Valiant
routing variant for dragonflies as described in [13], which
we will call Valiant [Kim:2008], requires 3 virtual channels
(instead of 2 for shortest paths) for the L links and 2 virtual
channels (instead of 1 for shortest path) for the R links, to
guarantee deadlock freedom [2]. Valiant [Kim:2008] can be
described as follows: when a source s in first-level group S
sends a message to destination d in first-level group D, an
intermediate misroute group is chosen (I). A minimal route
(consisting of at most one L and one R hop) is taken to ar-
rive to a switch in group I. Once the packet arrives to this
intermediate group I, the packet follows the unique mini-
mal route from the arriving switch at I to the destination d
(requiring at most two L hops and one R hop).

The nearest neighbor exchange (NNE) is a common ex-
change pattern in many HPC applications. This pattern
arises as the result of a decomposition of the domain of a
problem into smaller elements. The computation for each el-
ement depends on a number of neighboring elements, where
the neighborhood definition is dependent on both the spe-
cific problem and the specific way of performing the decom-
position. In this work, we will consider Cartesian decom-
positions along a variable number of dimensions, and ad-



ditionally we will consider that an element only exchanges
data with elements with which it shares a D — 1-dimensional
contact plane. We will also make the assumption that the
amount of exchanged data needed is proportional to the size
of the D — 1-dimensional contact plane.

A large fraction of HPC applications make use of the
multi-dimensional nearest neighbor exchange pattern [12].
Relevant examples are Cactus [8], which uses a grid decom-
position to solve Einstein’s equations to study astrophysical
phenomena, GTC [14] (Gyrokinetic Toroidal Code), which
solves the gyrophase-averaged Vlasov-Poisson equations on a
3D toroidal domain, LBMHD [18] (Lattice Boltzmann meth-
ods for the problem of magneto-hydrodynamics (MHD)),
which uses either a 2D or 3D lattice, or MILC, a 4D lattice
QCD code. These are only a small, but relevant fraction
of the many codes which, with variations, rely on efficient
nearest neighbor exchanges to achieve performance.

A recent paper [3] analyzed the performance achieved
in dragonfly networks when executing such communication
patterns with several task-placements and routing schemes
(shortest path and Valiant). This work showed how a ran-
domization of the task placement using shortest path routing
achieved similar performance to a contiguous task placement
using Valiant routing. Another work [11] also explored, for
other patterns, the alternative of Valiant routing and of ran-
domized task placement, and concluded that, while random-
ization improves performance over a naive contiguous place-
ment, the performance achieved is still low when compared
to the peak obtained for uniform random traffic, both with
direct and indirect routing. Neither of this works studied in
detail how the domain decomposition and a structured task
placement influences the NNE performance on a dragonfly,
and neither has provided a model that is able to predict NNE
performance given the topology parameters, the domain de-
composition, and the task placement onto a dragonfly.

3. THEORETICAL ANALYSIS

In order to explore the optimization opportunities for
multi-dimensional near neighbor communication patterns in
Dragonfly networks, we will provide theoretical estimates
for the performance of applications executed as a set of con-
current tasks exhibiting arbitrarily shaped Cartesian multi-
dimensional nearest neighbor communication patterns and
being executed on a system interconnected via arbitrary
Dragonfly networks. We will explore different task place-
ment strategies as well as the trade-off between increased
performance and network utilization. The end goal is to
be able to determine guidelines as to how to map such ap-
plications onto the different nodes in the system such that
communication performance is maximized.

This section provides the step by step derivation of these
guidelines and is fairly technical. The reader that is inter-
ested mainly in the end result should read Section 3.2 where
we introduce the main notations and then skip directly to
Section 3.5.

3.1 Arbitrary workload performance in
Dragonflies

We consider an arbitrary workload given by a traffic de-
mand matrix 7', with as many columns and rows as concur-
rent tasks perform the workload. Each element tsq of the
matrix represents the total number of bytes sent by task s
to task d. We denote by T the normalized traffic demand

matrix, where every element f.4 is the corresponding ele-
ment in T divided by the total number of bytes send by
source task s.

Escl - tsd/ztsd (1)
d

The goal of this subsection is to formalize the effective in-
jection throughput that will be sustainable at the nodes by
estimating the demand that the workload will impose on the
network. We will denote this effective injection bandwidth
for node n by Bp .g. If a link in the network receives more
demand than it can sustain, then all sources whose messages
periodically use that link will see their effective throughput
eventually decreased. The intensity of the decrease will be
such that the originally overloaded link be required to sus-
tain a new demand no greater than that link’s bandwidth.

The exact distribution of demand to network links will
intrinsically be linked to the routing approaches used in the
network. Therefore, the routing approach will in turn be
a significant factor that will determine the effective perfor-
mance of the network. For the Dragonfly, we will consider
two routing approaches:

1. Dragonfly direct routing, where messages are always
sent through the network across shortest paths;

2. Dragonfly indirect routing, where messages are always
sent through the network across indirect paths and the
indirect paths between any given (source,destination)
pair are used in the same proportion.

Let us consider the entire duration of a workload, or, for
ongoing workloads, a large enough amount of time such that
all sources inject a statistically significant amount of traffic
in the network, i.e., an amount of traffic that roughly obeys
the distribution expressed by T'. We define the demand exer-
cised on a given link as being the total number of bytes that
need to cross that link in the considered amount of time.

Let us consider a remote link R;; connecting the Dragonfly
group G; to the Dragonfly group G;. The demand Ag’dire”
of that link under the direct routing approach will be equal
to the total fraction of traffic sent by sources in G; that have
as a destination any of the tasks in Gj.

A%,direct _ Z Z £sd . Bl‘;eff- (2)
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The demand Afj’indire” of the same link under the indi-
rect routing approach has two distinct components. The
first component consists in traffic sent by sources in G; to
any destination outside of G; and Gj, using G; as an inter-
mediate routing point. The second component consists in
traffic sent by sources anywhere outside of G; and G; that
is sent to destinations in G; using G; as an intermediate
routing point.
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where P(i 2 j) denotes the probability that the indirect
route via group p is chosen when routing from group 4 to

group j.



Concerning the demand imposed on the intra-group links,
In contrast to the inter-group network structure, current
Dragonfly systems do not exhibit a unique intra-group struc-
ture (e.g., the original Dragonfly design uses a standard full
mesh, the PERCS interconnect uses a non-uniform (from
the bandwidth and latency points of view) full mesh while
the Cray Cascade interconnect uses a two dimensional Ham-
ming graph). This, coupled to the fact that in practice it is
generally the inter-group bottlenecks that determine over-
all system performance, would make thoroughly analyzing
the intra-group demand an unnecessarily complex endeavor.
Nonetheless, we will take into account the possibility of bot-
tlenecks shifting inside the groups and will analyze this sce-
nario in detail in Section 4.3.

We will assume that all nodes and switches in the network
are identical and thus we can denote by:

e Bp — the injection bandwidth available to any node
in the network,

e B; — the bandwidth of each local link,
o Br — the bandwidth of each remote link.

We will further make a simplifying assumption that the
workload does not induce or is not allowed to induce un-
fairness in the system, that is, every node will be able to
effectively inject the same amount of traffic as any other
node. Then, Bp.g can also be considered uniform across
nodes and we can introduce the notion of relative demand §
as being the demand A defined above divided by the effec-
tive injection bandwidth Bp cg.

6;’{_,direct :A?_,direct BP o
R ijndirect fg indirec/t , (4)
51‘;'7 :Aij’ /Bp et
This leads to the following bounds on the effective band-
width:
BP,eH < BP7
Bpx < BL/5", (5)
Bpeg < BR/5R.

The throughput limitation that the network imposes on
the nodes can thus be formally expressed by Eq. (6) for
direct routing and Eq. (7) for indirect routing.

direct . B Br
<
Bp g < min | Bp, max (5L-direct)” ‘max (§R-direct) (6)
Llinks Rlinks
indirect . By
<
BP,CH = min BP’ max (5L,indircct) max (SR mdlrcct
Llinks Rlinks

(7
Eq. (6) and (7) coupled to the load formulations (Eq. (2)
and (3)) and to a particular traffic demand matrix allow us
to predict network performance for arbitrary workloads in
arbitrary dragonflies.

3.2 Formal description of targeted workloads

The workload we focus on in this work are is the multi-
dimensional Cartesian nearest neighbor communication. We
will assume that the concurrent tasks are solving a problem

pertaining to a d-dimensional domain that is intrinsically
split (along directions parallel to the coordinate axes) into
equally sized d-dimensional elements in a way that is consis-
tent with the domain’s structure (e.g., if the domain is larger
in one dimension, it will have proportionally more elements
along that dimension). The number of elements in each di-
mension is given by a vector a € N, for a total number of
elements || = IT¢_; . The assignment of the elements to
computation tasks is also done along a Cartesian grid, such
that the number of tasks in each dimension is given by a dif-
ferent vector 8 € N%. Every task will thus be assigned one
or several elements, the number of elements per dimension
assigned to each task being a divided element by element
by B. The total number of tasks is |8| = I¢_; 8. Any
task can be naturally identified via a d-dimensional vector
z € N% such that 0 < 2 < Bk,V1 < k < d. These concepts
are illustrated in Fig. 2 for a two-dimensional application
domain.

0,=18, B,=6, y,=3, \,=2

=4

2, A,

8, v4

Application domain

=16, B,
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Tasks in a Task
Dragonfly

group Element [ ]

Figure 2: Application domain for a two-dimensional nearest
neighbor exchange. The domain admits an intrinsic decom-
position into identical elements (the small squares in the
figure) along the axes of the Cartesian domain. This de-
composition is characterized by the two-dimensional vector
a which in the example figure takes the value o = (16, 18).
The application is run as a set of concurrent tasks that is
each assigned a Cartesian subset of the element grid (the
2 x 3 rectangles in the figure). Each subset assigned to a
task has the same size along every dimension (in the figure,
size 2 in the first dimension and size 3 in the second). The
sub-decomposition is determined by a second vector [ that
determines how many tasks there are in each dimension (in
the figure, 8 = (8,6)).

The inter-task communication pattern considered is the
nearest neighbor exchange of distance 1 on the d-dimensional
Cartesian grid, where a task that is identified by the vector
x communicates with a task identified by the vector y if and
only if x and y share d — 1 coordinates, while the remaining
coordinate values zj and yi satisfy the relationship (8x +
zr — yr) mod By = 1. We will call two such tasks neighbors
along the k dimension. We thus define the indicator function



I/I;,y which takes a value of 1 if tasks corresponding to = and
y are neighbors along the k£ dimension and 0 otherwise, as
follows:

1 if(ﬂk+1’k—yk) modﬂkZI
and Vi £ k,x; = y; (8)
0 otherwise.

ko _
Va,y =

A very important design choice is the exact manner in
which to map the application domain to the network topol-
ogy. We will consider two task-to-node mapping strategies.
The first assumes a regular grouping of tasks in the groups
of the Dragonfly. A set of tasks corresponding to a Carte-
sian application sub-domain is assigned to any given group
such that this sub-domain will contain v € N? tasks along
each of the d axes. This leads to a total of |y| = I{_;yk
tasks in each Dragonfly group. We further define the vector
X in N* as the coordinate by coordinate ratio of 8 and 7:
V1 < k < d, M\ = [Br/v]- Tt entails that |\| = TTf_; \x
Dragonfly groups will be needed to host the entire set of
tasks. The second strategy will assume a random place-
ment of tasks within the Dragonfly, keeping however the
task count per group to the same |gammal value as in the
Cartesian case, to allow for fair comparison.

This formalization of the traffic pattern allows us to
explore two important performance affecting factors: the
shape of the Cartesian intra-group sub-domains (in terms of
number of dimensions and ratios between sizes along each
dimension) and the level of fragmentation of the placement
(the proportion of nodes used to host the workload in every
Dragonfly group).

To make the total number of situations more tractable,
we will also operate under the assumption that, the assign-
ment of tasks to nodes within a group is random (under the
constraint that a node will be assigned at most one task),
as is the assignment of Cartesian groups of tasks to specific
Dragonfly groups.

3.3 Performance evaluation metrics

Two typical metrics are used for evaluating the perfor-
mance of a fixed-size workload (where a fixed amount of data
needs to be exchanged across the network) such as the near-
est neighbor exchange. One metric is the completion time,
i.e., the time between the moment when the first message
enters the network and the moment when the last message
is delivered. The second is the average effective throughput,
defined as the total number of bytes exchanged divided by
the completion time and averaged across the total number
of communicating tasks.

Finally, as we are dealing with different shapes of the ap-
plication domain (as expressed by the a vector) and different
ways of partitioning the domain into tasks (as expressed by
the B vector), the messages exchanged between tasks will
vary in size. Specifically, they will be proportional to the
size of the surface separating the communicating tasks. This
entails that messages exchanged along the k-th axis, when
such an exchange takes place, will have a size p given by

— .Hf_i Qi _ @& 9

3.4 Nearest neighbor communication perfor-
mance in dragonflies

Two sets of factors determine the theoretical performance
of a workload: the tsq coefficients of the normalized traffic

demand matrix and the P(i & j) routing probabilities in
the case of indirect routing.

Given the indirect routing assumption stated in 3.1 the
value of the latter is

1
ah—1"

For the nearest neighbor exchange, we compute the traf-
fic matrix as follows. We denote by my the proportion of
messages (out of a task’s entire communication workload)
sent to a neighbor along the k-th axis. Due to the way we
perform the decomposition of the domain into elements, the
way we assign elements to tasks and the way we define the
neighborhood of a task (8), it follows that a given task either
does not exchange any messages along axis k (when fr = 1),
or it exchanges messages across two surfaces. If we denote
by 1condition the indicator function that takes a value of 1
when the condition is true and a value of 0 otherwise, then
the value of this ratio is

Pi5j) = (10)

bk - Lg>1
250 i Apsa

la| | Bk
pote e g,

d a .
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These proportions are completely determined by the o and
[ domain and decomposition characterization d-dimensional
vectors.

Taking into account that if 8 = 2 for some k, then two
tasks that are neighbors along axis £ communicate across
two surfaces, we obtain:

mg =

d
tsa = Zmi . uzyd (14 Ip,=2) (12)

i=1

Cartesian placement.

For the case where the tasks assigned to any fixed group
form a Cartesian sub-domain we defined the ~ parameter
vector characterizing the mapping of tasks to groups. For
a fixed value of v, we have all the information necessary
to compute the demand that the workload induces in the
network as described by Egs. (2) and (3).

Indeed, in the case of direct routing, we would need to esti-
mate the sum of the individual demands induced by sources
in a Dragonfly group ¢ sending to destinations in another
Dragonfly group j on the remote link connecting the groups.
Similarly to how we assigned coordinate vectors to tasks,
we can now assign coordinate vectors to groups of Cartesian
sub-domains of tasks. A group g will be assigned a coor-
dinate vector ¢ in N%, where every coordinate xy satisfies
0 <y < M\, V1 < k < d. Similarly to the neighborhood
relationship for tasks defined by (8) we can define a neigh-
borhood relationship for groups as

1 if()\k—kx};—_xi) mod)\kzl

ﬂf;j = and VI # k,xz; = 2] (13)
0 otherwise.

If two groups are neighbors along direction k, then the

traffic exchanged across the common boundary is the aggre-
gate traffic sent to one neighbor along dimension k by all



the tasks forming that boundary. Given the shape of the
task domain, there are exactly (14 L, —2) - ||/~ tasks on
the boundary. Eq. (14) shows the resulting direct routing
demand.

R,direct R,direct
0, - Ai]' /BP,eff

D Dt
s€G; deGj (14)
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k=1

In the case of indirect routing, we start by expressing
gRvindirect from Eq. (3) and (4).
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The two triple sums each evaluate to the same value for
reasons that are linked to the symmetry of the communica-
tion pattern. Indeed, the amount of traffic sent by tasks in
a group ¢ to tasks in all groups p # 4,j (first triple sum)
is equal to the aggregate external nearest neighbor traffic
of ¢ minus the traffic that ¢ sends to group j if ¢ and j are
neighbors along some dimension. Similarly, the amount of
traffic sent by all groups p # 7,j to tasks in group j (sec-
ond triple sum) is equal to the aggregate external nearest
neighbor traffic received by j minus the traffic that ¢ sends
to group j if i and j are neighbors along some dimension.
Due to the fact that from the point of view of any individual
sub-domain of tasks mapped to a group, the communication
pattern is symmetric (same messages received and sent along
each dimension), the two triple sums are equal.

The aggregate nearest neighbor traffic sent (or received)
by any group is equal to 2 Ezzl(w/% ~my - 1y, >1) where
the indicator function only serves to take into account the
corner case where the intra-group domain would be so large
along dimension k that it would completely cover the entire
application domain along that direction and thus eliminate
any inter-group traffic along that dimension. Eq. (16) shows
the resulting indirect routing demand.

d

dsﬁindired — (4 Z("Y'/’}/k -my ]1)\k>1)
k=1 (16)
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To be able to now derive performance estimations (via
Eq. (7)) we maximize the demand to determine the strongest
bottleneck. For direct routing, using the fact that Eq. (13)
implies that task domains mapped to two groups can only be
neighbors in at most one direction and Eq. (14), we obtain

the bound in Eq. (17)

max (8,5 °") = max((Lao1 + Tag=2) - |/ i) (17)
Similarly, Eq. (18) shows the bound obtained when max-
imizing indirect routing induced demand

d
rr;e;x(éi‘fndlrem =4 (/v - mie - Ta>1)/(ah — 1), (18)
’ k=1

As expressed by Eq. (7), maximizing performance is equiv-
alent to minimizing the maximum demand. The previous
equations express the maximum demand when the choice
of a v vector defining the mapping of tasks to the system
topology has already been made. The same equations can
however also be used to reason about what the mapping
vectors ~y, 8 themselves should be such that performance is
maximized. This can be achieved by shifting the maximiza-
tion domain to include the domain of possible values for
and § as well (in addition to the values of k).

Random placement.

The second placement strategy we analyze is one where
elements are assigned at random to nodes in the system
under the constraints of having at most one element assigned
to a given node and exactly 0 or || elements per group. This
leads to there being exactly |A| groups hosting tasks.

Given an arbitrarily chosen group that does host tasks,
and given a certain dimension k and direction in which the
tasks exchange messages, there will be exactly v messages
that the tasks in the group need to exchange. Due to the
placement strategy described above, each of these 7 mes-
sages have an equal chance to be destined to tasks in each of
the |A| groups, including the source group itself. In the case
of direct routing, according to Eq. (6), what we are inter-
ested in is the expected maximum remote link demand. To
estimate it, we first notice that the problem of assigning mes-
sages to destination groups is an instance of the well known
balls-and-bins problem [10], where messages are the balls
(nbans = |77]) and the groups are the bins (nins = |A|) What
we are interested in is the expected number of balls that the
bin that has the most balls will have. As proven in [7,16],
for large balls-to-bins ratios, this is given by Eq. (19).

Nballs . log Nbins
Nbins 108 10g Nbins
This leads to the expected maximum demand induced by
messages exchanged in the chosen direction of the chosen
dimension k to be:

(19)

o _logA (20)

[l Toglog [A|
Summing over all dimensions and both directions we ob-
tain
d

_log|A[
6R dlrect
1%11311(@( Z " loglog [A| I

_ . log|Al (21)
~ A loglog [A] Zm

_ | log|)|

Al loglog|A|”
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the random placement model to be somewhat poorer than

that of the Cartesian placement model.

3D unbalanced
Domain decomposition into tasks (B vector)

(c) Completion time (lower is better)

3D balanced

This applies when the ratio of messages to groups is large.

correlated with the decomposition type, and as such the same figure shows the clusters of decompositions that share similar
Since this is not necessarily the case in several of the config-

per domain decomposition is highlighted by means of horizontal lines. This best case performance is shown to be highly
characteristics.

Figure 3: Comparison of the measured effective throughput, communication data volume, and completion time for a balanced
dragonfly topology under indirect routing for a collection of all possible application domain decompositions into 64 tasks. The
z axis of every subfigure shows the § vector defining the decomposition. For a fixed 3 vector, several task-to-node placement
strategies are benchmarked to illustrate the variability of achievable performance. For figure c), the best completion time

urations we take into account, we can expect the accuracy of
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Figure 4: Comparison of the completion time (estimated and measured) for a balanced dragonfly topology under direct

routing for a collection of all possible task-placements « for a 3-dimensional 8 =

tasks (Figure a)) and a 8 =

(8,8,4) nearest neighbor exchange of 256

(16, 8, 8) nearest neighbor exchange of 1024 tasks (Figure b)). The z axis lists the task-placements

from least-fragmented (each group is fully occupied) to most-fragmented (each group contains the minimum number of nodes
that still allows for the workload to be scheduled on the Dragonfly system) and within each fragmentation level, every possible
~ placement whose || corresponds to the fragmentation level. The first row of the = axis labels defines v while the second

row defines .

Random placement and random indirect routing are two
solutions to similar issues arising in Dragonfly networks,
each with its advantages and disadvantages. Using the two
techniques in conjunction would yield very little benefit be-
yond the benefits already attainable by employing one or
the other separately, and additionally incur the drawbacks
of both strategies. Thus, there is little motivation for model-
ing performance for indirectly routed randomly placed work-
loads and therefore we will restrict our analysis of randomly
placed nearest neighbor exchanges to the direct routing case.

3.5 Summary

In this Section we have introduced a formal performance
model for nearest neighbor communication over Dragonfly
networks, under i). Cartesian and ii). random task place-
ment and using a). direct or b). Valiant [Kim:2008] indirect
routing. The end results of this analysis are the following.

For Cartesian placement and direct routing, we have
shown (Eq. (17) and (6)) that effective injection bandwidth
is limited by

Br

Bp g < . 22
Pt S s (o + Ianme) P ) )

By substituting ms using Eq. (11) we obtain the optimiza-
tion criterion for this configuration: optimal performance is
obtained by minimizing

Il Br - Tgyp>1
m 1 1 . . 23
k&x (Ixn,>1+ 1y, =2) - o o (23)

For Cartesian placement and Valiant [Kim:2008] indirect
routing, we have shown (Eq. (18) and (7)) that effective
injection bandwidth is limited by

Br

maxy,5(4 3, ([7/9 - mu - Tag>1)/(ah — 1))
(24)

BP,eff S

By substituting my using Eq. (11) we obtain the optimiza-
tion criterion for this configuration: optimal performance is
obtained by minimizing

d
max [Z <]1>\k>1 : %' . 7@9 .;lfk>1>:| . (25)

.8 ]

For random placement and direct routing, we have shown
(Eq. (21) and (6)) that effective injection bandwidth is lim-
ited by

B
Bren < |v|R log|A| ] (26)
maxy,s [W : 10g10gm]
Optimal performance is thus obtained by minimizing
[yl _log|Al
- 27
w5 ey 20

Thus, the analytical model we introduce has a two-
fold use. First, in the context of one of the three (rout-
ing,placement) strategies described, it provides straightfor-
ward criteria allowing the selection of the most efficient as-
signment of domain elements to tasks (8) and assignment
of tasks to network nodes (y,\). Second, due to its capabil-
ity to estimate not only the circumstances in which perfor-
mance is maximized but also actual expected performance,
the model allows selecting the (routing, placement) strategy
itself. Thus, overall, it allows for the identification of the
complete configuration of a workload such that that work-
load completes in a minimum amount of time.

4. SIMULATION RESULTS

The results that we present in this section were obtained
by means of a simulation framework that is able to accu-
rately model custom networks (including Dragonflies) at a
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Valiant [Kim:2008] indirect routing for a collection of all possible task-placements ~ for a 3-dimensional 8 =
(16, 8, 8) nearest neighbor exchange of 1024 tasks (Figure b)). The z

(8,8,4) nearest

axis lists the task-placements from least-fragmented (each group is fully occupied) to most-fragmented (each group contains
the minimum number of nodes that still allows for the workload to be scheduled on the Dragonfly system) and within each
fragmentation level, every possible v placement whose || corresponds to the fragmentation level. The first row of the z axis

labels defines v while the second row defines A.

flit level [15]. The simulator is characterized by a high level
of customization and modularity, allowing the configuration
of the desired model in detail. Given that the parameter
space to explore was already very large, we have chosen a
fixed representative system scale of 1056 end nodes. Specifi-
cally, we have chosen a system interconnected by a balanced
DF(4,8,4) Dragonfly network, where groups are made up
of a = 8 switches interconnected in a fully connected mesh
and each switch has p = 4 nodes attached and h = 4 ports
towards other groups. The routing approaches used were
direct routing and Valiant [Kim:2008].

The traffic pattern is that of a single, 1D, 2D or 3D, near-
est neighbor exchange as described in Section 3.2. The ap-
plication domain was considered to be made up of 227 el-
ements shaped according to the vector a = (512,512, 512).
The per-element per-neighbor message size was chosen to be
1 KB.

4.1 Optimal application domain to task map-
ping
We will start by exploring the trade-offs that are associ-
ated with the selection of the 8 vector, expressing the map-
ping of application domain elements to computational tasks.
The selection is done along two dimensions:

1. The total number of tasks.

2. The shape of the element sub-domain assigned to a
task. By shape we refer to whether the sub-domain
is uni, bi or tri-dimensional as well as to the ratios
between the elements of .

As Eq. (9) shows, the larger the number of tasks the
smaller the communication footprint per task will be. Also,
regarding the sub-domain shape, similar dimensions of the
task sub-domain lead to similar contact surfaces in each di-
mension, and therefore to more balanced sizes of the mes-
sages exchanged along each axis. Given the broad range in
which the workload size can vary when choosing different el-
ement to task mappings, we will consider for this subsection

both the effective completion time of the communication
pattern, which is the most of interest performance indica-
tor, and the effective throughput, which is often used as a
performance indicator in practice.

We will start by choosing a fixed number of tasks, || = 64,
and analyzing all possible element to task mappings. For
a given element-to-task mapping, we will include multiple
configurations with respect to parameters such as task-to-
node mapping strategy, but we will not analyze them in
detail in this subsection. What we will focus on is what
performance can be obtained for a fixed 8 vector in the best
case. The measured performance is illustrated in Fig. 3;
the measured effective throughput is shown in Figure 3a the
total volume of exchanged data is shown in Figure 3b and
the effective completion time is shown in Figure 3c.

Several conclusions can be drawn from this experiment.
First, we notice that there is a clear correlation between
the best achievable completion time and the domain-to-task
mapping (Figure 3c). Indeed, mappings that preserve a
higher number of dimensions on the one hand and a bal-
anced distribution of tasks across dimensions on the other
perform consistently better than mappings that are at the
other end of the spectrum. The completion time of the best
mapping is more than twice as small as the completion time
of the worst mapping, with several performance levels for
intermediate mappings.

Second, the most widely used metric to measure network
performance is the throughput that the network can sustain.
However, if we were to have based our performance analysis
on this measure, our conclusions would have been the exact
opposite. Indeed, as shown in Figure 3a, judging strictly by
maximum achievable throughput, the best type of mapping
is, by a significant margin, exactly the type that actually
takes the longest to complete. Using throughput to mea-
sure performance is thus questionable in this context, where
the high throughput is actually a direct consequence of the
mapping requiring significantly larger volumes of exchanged
data (Figure 3b) to account for the significantly larger con-
tact surfaces between communicating tasks.



10000

1000

W Theoretical Prediction - Random Placement
B Simulation Time - Random Placement
B Simulation Time - Cartesian Placement

Completion time [us]
=

5}

1

32

64 tasks

16 8 4 2

32 16 8 32
256 tasks 1024 tasks

Tasks per group (ly|)

Figure 6: Comparison of the completion time (estimated and measured) for a balanced dragonfly topology under direct routing
and random task placement for three 3-dimensional nearest neighbor exchanges (8 € {(4,4,4), (8,8,4), (16,8,8)}). The z axis
lists the 3 exchanges from left to right (identifying them by the total number of tasks |3]), and within each exchange lists
several levels of fragmentation from least-fragmented (each group is fully occupied) to most-fragmented (each group contains
the minimum number of nodes that still allows for the workload to be scheduled on the Dragonfly system). For each of these
configurations, the completion time of the same workload, but this time Cartesian-mapped and indirectly routed, is also shown
to allow comparison between the two strategies. The y axis has a logarithmic scale.

Finally, although the correlation between best case com-
pletion time and element-to-task mapping strategy (8
choice) is clear, the variability in the performance achieved
for a fixed element-to-task mapping is extremely high. In
fact, it is much higher than the variability across element-
to-task mappings. This makes the choice of the task-to-node
mapping (v choice) of the utmost importance.

4.2 Optimal task to network topology map-
ping and validation of theoretical esti-
mates

Across tested decompositions of the application domain,
the best performance was obtained for a domain that is as
close to a cube as possible (a 3 vector with elements as close
to equal as possible). Furthermore, from a 7-choice induced
variability point of view, the different 5 choices exhibited a
similar behavior. Thus, in this subsection we will set the de-
composition of the application domain to the decomposition
closest to a cube and benchmark all possible task-to-node
placements (y choices) under the fixed 8 vector.

We will consider, in place of the 64 task decomposition, a
256 and a 1024 task decomposition of the same domain to
be able to examine the scale dependence of the results we
obtain. For the former, we will consider 8 = (8,8,4) while
for the latter we will consider 8 = (16,8, 8).

For the vector v, which completely defines a Cartesian
task-to-node mapping, we will limit our analysis to values
for which the individual elements divide the corresponding
[ elements. For each choice, we measure the completion
time of the workload and compare it against the theoret-
ical predictions of the model introduced in Section 3. In
addition to validating our theoretical framework, by ana-
lyzing all possible v values, we are able to study the im-
pact of the shape of the domains chosen to be mapped to
individual groups, as well as the impact of workload frag-
mentation across the network. The measured and predicted

performance is shown in Figure 4 for direct routing and in
Figure 5 for Valiant [Kim:2008] indirect routing.

In order to be able to compare the predicted limitation of
the effective bandwidth induced by remote link bottlenecks
to measured performance, for this experiment we consider a
high enough bandwidth for the local links, such that the bot-
tleneck does not shift towards them, especially for mappings
with high fragmentation.

The main conclusion we can draw from the simulation re-
sults is that the theoretical framework is able to accurately
capture the behavior of the system. This is particularly true
for Cartesian task placements under both direct (Figure 4)
and indirect (Figure 5) routing, where the predictions of the
model are practically indistinguishable from the measure-
ments. An immediate consequence of this fact is that the
model can be used in a standalone fashion not only to select
the best configuration to run a particular workload but can
also to produce accurate estimates of the absolute perfor-
mance of arbitrary configurations.

For random task placement (Figure 6), the predictions
follow well the evolution of the performance across tested
configurations, but the model experiences nonetheless fairly
large deviations compared to the absolute measured values.
This is due to the fact that the statistical analysis the model
is based on in this case relies on the assumption of exchang-
ing a large number of messages relative to the number of
occupied Dragonfly groups |A| and this is not always the
case in all tested configurations. That being said, the per-
formance trends are captured faithfully and the decision of
which configuration suits a particular workload best can still
be taken based solely on the model.

Finally, Figure 6 also shows that, for all tested configura-
tions, random task placement with direct routing is consis-
tently outperformed by Cartesian task placement with indi-
rect routing. Indeed, on the configurations that we bench-
marked, the former took between 3 and 15 times more time
to complete for a fixed f and y configuration.
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4.3 Dragonfly balance for nearest neighbor
exchanges

To conclude this section, we revisit the notion of Dragon-
fly balance in the context of nearest neighbor exchanges. A
Dragonfly system is considered balanced if the limitation on
effective injection bandwidth imposed by the three system
bandwidth parameters Bp, By and Bg is the same under
uniform random all-to-all traffic. Ensuring this property
translates in a straightforward manner into a set of con-
straints on what the bandwidth per each type of link should
be.

For traffic patterns that do not have a uniform random
all-to-all structure and that exhibit poor performance in bal-
anced Dragonfly systems under direct routing, it is generally
assumed that a uniform distribution of load in the network
can be achieved via indirect routing, and that for this new
load distribution, the balance of the Dragonfly is the same
as in the case of uniform traffic.

In the case of the nearest neighbor exchange, we study
the balance between the local and remote link bandwidth.
We look at two extreme cases, one where the bandwidth
of the local links is set to a very high value, such that the
throughput limitation is the effect of solely a remote link
bottleneck, and the other where the dragonfly is balanced
for uniform traffic. Figure 7 shows that in the latter case,
the bottleneck has clearly shifted towards the local links.
As such, we benchmarked several L. bandwidth values to
identify what the tipping point is in terms of bandwidth,
and implicitly what the balance of the Dragonfly is when
considering nearest neighbor traffic.

What we observe is that while for the mapping strategies
that exhibit low levels of fragmentation, the balance of the
system is very close to the uniform traffic balance, as we
move toward more fragmented and more efficient mappings,
the local bandwidth required to balance the traffic pattern
increases as well, becoming up to a factor of 4 larger in the
most fragmented case.

4.4 Guidelines for application-network joint
configuration and design

In Section 3.5 we have summarized the analytical perfor-
mance model introduced in this work, which has the ability
to i) determine the configuration options that would enable
a Cartesian nearest neighbor exchange to achieve optimum
performance on a Dragonfly network and ii) estimate that
level of optimum performance. In the current section, we
have shown this model to be accurate in both aspects.

Thus, this model can be used in practice as follows. For
each of the three (routing,placement) strategies, i.e., Carte-
sian placement with direct routing, Cartesian placement
with indirect routing, random placement with direct rout-
ing, one would use the model (namely Eq. (23), Eq. (25)
and Eq. (27) respectively) to determine the configuration of
the workload parameters 3, v and A. Then, one would use
these parameters to determine for each (routing,placement)
strategy (via Eq. (22), Eq. (24) and Eq. (26) respectively)
the expected completion time for the workload, and select
the strategy with the lowest one.

Concerning the optimization of the network design, the
previous subsection has shown that the generally accepted
guidelines for designing balanced, near optimal performance
Dragonfly networks [13] (mainly derived from the uniform
traffic context), do not typically hold in the context of Carte-
sian nearest neighbor exchanges. Indeed, the intra-group
aggregate bandwidth should be over-provisioned (relative to
the balanced case), for optimal performance by as much as
a factor of 4.

S. CONCLUSIONS

In this work we analyze communication workload perfor-
mance in systems where the interconnect fabric is a Drag-
onfly network. We introduce a theoretical framework that
is able to identify the bottlenecks that appear in the net-
work under arbitrary workloads (specified via their traffic
demand matrix), assuming either direct or indirect routing



approaches, as well as to determine how those bottlenecks
impact the effective injection throughput of the nodes.

With the help of this framework, we analyze Cartesian
multi-dimensional nearest neighbor exchanges, a communi-
cation pattern that is prevalent in multiple high performance
computing applications. Using the resulting theoretical es-
timates, as well as a wide array of simulations results that
validated and augmented the analytical model, we quan-
tify the performance of different nearest neighbor workloads
coupled to a variety of mapping strategies. We are able to
pinpoint mapping-related performance trends such as the
advantages of workload fragmentation and of assigning con-
vex application sub-domains with low surface-to-volume ra-
tios to Dragonfly groups. This enables us to co-design ap-
plication decomposition, routing, and mapping in order to
achieve optimal overall performance.

Finally, we were able to unveil common misconceptions
regarding Dragonfly network design and evaluation: For ex-
ample, we showed that optimizing for throughput and not
workload completion time is often misleading. Furthermore,
the notion of system balance that is often cited as a Drag-
onfly design parameter is not always directly applicable to
all workloads.

We present a network-application co-design effort between
one of the most promising topology because its scalability
and cost, the Dragonfly, and one of the most widely used
communication patterns in scientific applications, the Carte-
sian nearest neighbor exchange. Our theoretical models cap-
ture important application and network characteristics and
can be solved optimally. We showed substantial performance
improvements of up to 10x and expect that our model will
soon become a standard technique. For example, a batch
system could inform a self-optimizing application about the
task mapping and a solver could automatically determine
the best decomposition and routing strategy.
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