
A PCIe Congestion-Aware Performance Model for
Densely Populated Accelerator Servers

Maxime Martinasso∗, Grzegorz Kwasniewski†, Sadaf R. Alam∗, Thomas C. Schulthess∗‡§, Torsten Hoefler†
∗Swiss National Supercomputing Centre, ETH Zurich,

6900 Lugano, Switzerland
†Department of Computer Science, ETH Zurich,

Universitätstr. 6, 8092 Zurich, Switzerland
‡Institute for Theoretical Physics, ETH Zurich,

8093 Zurich, Switzerland
§Computer Science and Mathematics Division,

Oak Ridge National Laboratory, USA

Abstract—MeteoSwiss, the Swiss national weather forecast in-
stitute, has selected densely populated accelerator servers as their
primary system to compute weather forecast simulation. Servers
with multiple accelerator devices that are primarily connected
by a PCI-Express (PCIe) network achieve a significantly higher
energy efficiency. Memory transfers between accelerators in such
a system are subjected to PCIe arbitration policies. In this
paper, we study the impact of PCIe topology and develop a
congestion-aware performance model for PCIe communication.
We present an algorithm for computing congestion factors of
every communication in a congestion graph that characterizes
the dynamic usage of network resources by an application.
Our model applies to any PCIe tree topology. Our validation
results on two different topologies of 8 GPU devices demonstrate
that our model achieves an accuracy of over 97% within the
PCIe network. We demonstrate the model on a weather forecast
application to identify the best algorithms for its communication
patterns among GPUs.

Index Terms—Multiple GPUs, PCI-Express, performance
model;

I. INTRODUCTION

MeteoSwiss is the first national meteorological service
which has chosen a computer architecture purely based on
GPUs for operational numerical weather prediction. Com-
puter nodes of this new architecture are densely populated
with GPU accelerators in order to reduce time to solution
of the simulations while increasing the energy efficiency of
the system [1]. This new system is made of two cabinets
of the Cray CS-Storm supercomputer which are exclusively
dedicated to weather forecast prediction. Each cabinet consists
of 12 hybrid computing nodes for a total of 96 NVIDIA Tesla
K80 GPU accelerators (or 192 GPU processors) and 24 Intel
Haswell CPUs. The full system delivers performance up to 360
GPU teraflops or 15 GPU teraflops per node. The climate and
weather model COSMO [2] – used by MeteoSwiss – has been
ported to GPU accelerators [3]. Combining densely populated
accelerator nodes with COSMO allows MeteoSwiss to execute
per day higher resolution simulations and a larger number of
simulations with more day forecasts [1] [4].

Multiple accelerator devices in a server or compute node
increase stress on both the inter and intra node communication
networks. To manage concurrent memory transfers, network
fabrics use a congestion control mechanism, which may impact
application performance. Contemporary accelerator devices,
e.g., GPGPU or Intel Xeon Phi, perform intra-node communi-
cation using the PCI-Express (PCIe) fabric. A PCIe topology
is based on a tree topology with a complex congestion control
mechanism performed at each node of the topology. In order
to avoid or minimize performance losses in densely-populated
servers, this study systematically investigated the causes of
congestion specific to the PCIe fabric.

In this paper we present a congestion-aware performance
model for the PCIe technology. The model is based on a tech-
nical description of the congestion control mechanism used by
PCIe together with empirical results. Our performance model
captures all the technology-specific phenomenons, yielding the
accuracy in timing prediction of over 97%. To the best of our
knowledge this is the first time that a complete performance
model has been proposed for the PCIe technology. We apply
the model to the COSMO weather forecast application to
be able to identify the best algorithms for performing halo
exchanges among the GPUs. Furthermore, the model can be
used for evaluating tuning parameters [5], increasing accuracy
of cost predictors used by schedulers [6], helping design-
ing efficient application algorithms and developing densely-
populated nodes of future large-scale systems.

The key contributions of our work are:

• a detailed analysis of complex congestion behaviors in
PCIe fabric;

• a performance model which is capable of predicting
elapsed times of communications subjected to congestion
on any PCIe tree topology;

• a performance improvement of halo exchange collective
operations for a weather forecast model.

978-1-4673-8815-3/16/$31.00 ©2016 IEEE

RC
Socket

K80

TOPOLOGY T2

0 1 2 3 4 5 6 7

PortRC
PCIe
Root
Complex

PCIe
Switch GPU

K80

TOPOLOGY T1

0 1 2 3 4 5 6 7

RCS
o
ck

e
t

Legend:

x16 Link

Fig. 1. Topology T1 connects 8 GPUs (4×K80) featuring four 48-lane PCIe
switches and one 80-lane switch. Topology T2 connects 8 GPUs (4×K80)
featuring six 48-lane PCIe switches and one root complex.

II. IMPACT OF PCI-EXPRESS ON PERFORMANCE

A. PCIe topology

One major parameter influencing the available bandwidth
is the PCIe topology. PCIe uses a tree topology where the
root node or root complex communicates directly with the
socket [7]. The endpoint devices are leaf nodes and PCIe
switches are the remaining nodes. The depth of the tree
depends on the number of ports per switch, which determines
the branching factor. To ensure maximal bandwidth each link
is using a x16 wide lane.

Our testbeds consist of two systems connecting 4 NVIDIA
K80 using two different PCIe topologies. Both testbeds are
presented in Fig. 1. An NVIDIA K80 contains two GPU
processors GK210 connected by a 3-port 48-lane PCIe switch.
Our first testbed, named T1, connects four K80 by using a
5-port 80-lane switch. The second testbed, named T2, uses
two 3-port 48-lane PCIe switches to connect the four K80.
Both switches are connected together by a root complex node.
Topology T2 is the topology connecting 4 K80 GPUs on one
socket of a Cray CS-Storm node, it is our reference topology
whereas topology T1 is used in Section VII to validate our
performance model. All switches (including the one inside
the K80) are manufactured by PLX technology, which is a
market leader for PCIe switches [8]. A 16-lane link is full-
duplex and provides a theoretical bandwidth of 16 GB/s. By
using a micro benchmark (p2pBandwidthTestLatency) from
the CUDA samples list [9] between two GPU processors of
a K80 we could assess the effective bandwidth to be 11.6
GB/s. Peer-to-Peer access is enabled for all communications
in both topologies, which allows direct memory transfer from
one device to another without using host memory.

Fig. 2 presents the conflict types on the ports of a switch.
The direction of the communications which is either towards
the root node or towards the leaves of the tree defines the
type of conflict on the ports. If communications are routed to
a PCIe component at a higher level, i.e., towards the root node
(Fig. 2 Case A), and are in conflict on a port, the conflict is
qualified to be an upstream port conflict. A conflict is qualified
as a downstream port conflict if communications are reaching

upstream port conflict
downstream port conflict

Case A Case B

Towards the root node

Towards the leaves

port

Fig. 2. Two types of conflicts: an upstream port conflict occurs when
communications going towards the root node are in conflict on a port, while
a downstream port conflict occurs when communications are in conflict on a
port when going towards the leaves.

PCIe components at a lower level, i.e., towards the leaves of
the tree (Fig. 2 Case B), and are sharing the port bandwidth.

B. Flow control

Switches use for each of its ports an arbitration policy to
control access to its connecting links. Such arbitration han-
dles the distribution of bandwidth among communications. A
credit-based flow control mechanism allows each component
to exchange credit tokens to compute the buffer availability of
its link partner.

The flow control is initialized between every two PCIe
component ports along the path of a transfer. Therefore,
a communication can be delayed at every port it crosses
depending on the load on the port.

An example of such a delay is Head-Of-Line (HOL) block-
ing. When multiple flows share the same input port, and one of
them targets a congested link, then the bandwidth availability
is reduced. In that case, the entire set of flows crossing the
input port is congested, including flows that are not directed
towards the congested link. In the context of PCIe technology,
HOL blocking has been studied by Krishnan et al. [10]. Since
the flow control mechanism does not have any information
on the congested flow, it schedules all flows coming from the
same input port using a fair strategy. Eventually, the congested
link will take a longer time to return credits to the port,
creating a credit starvation that will affect all flows crossing
that port.

C. Recent studies

Recent studies showed the performance impact of conges-
tion on the PCIe network. Lutz et al. [5] are interested in
implementing an auto-tuning framework for stencils. Their
study emphasizes the relevance of PCIe topology as a tuning
parameter. Due to the negative impact on the performance
of PCIe data transfers, the authors conclude that using all
available GPUs is not necessarily optimal. Additionally, they
point out that it is necessary to map carefully the application
on GPUs in order to minimize the negative impact. Their study
is based on three different topologies connecting four GPUs
each.

Schaa et al. [11] propose a model to compute the perfor-
mance benefits gained by increasing the number of GPUs for
a scientific application. They model performance of CUDA
kernels in terms of number of elements to compute divided
by the number of GPUs. The impact of PCIe on performance

is considered in the model by using experimental values
from a 2-GPU system. The authors only consider a PCIe
topology with two-end points. Extrapolation of these values,
disregarding the PCIe topology, is given for a 4-GPU system.

Martinasso et al. [12] have developed a methodology to help
building congestion-aware performance models. They applied
it to an InfiniBand interconnect technology. In our work, we
use a similar methodology, however, our performance model
for PCIe requires to model the status of every port which leads
to a more complex performance model.

Faraji et al. [13] show that GPU-to-GPU communication
performance depends on the number of PCIe components they
cross on the node topology. Moreover, they show that it is
specially true for large messages. They propose a scheme to
efficiently map processes to GPU to improve performance of
microbenchmarks. They do not explain which features of PCIe
are responsible for the performance variation or investigate
complex communication patterns.

III. PROBLEM STATEMENT

The PCIe congestion behavior varies significantly depend-
ing on the conflicts created by communications. Message sizes,
number of shared ports, crossing root complex, and HOL
blocking have all significant impact on observable latency and
bandwidth. To analyze the problem, we have performed a set
of tests on topology T2 which is used inside the Cray CS-
Storm machine.

A. Preliminary observations on GPUs

Our first investigation explores the behavior of a single
GPU initiating a set of communications. Each communica-
tion has a different destination and starts simultaneously by
using an asynchronous memory copy function (cudaMem-
cpyPeerAsync()) from the CUDA [14] libraries. By measuring
latency of a set of overlapping communications, we observe
that even by using an asynchronous memory copy function,
they are serialized in the First Come First Serve order.

B. Preliminary observations on switches

The PCIe congestion can be hidden if the overlapping
communications have very small message sizes. Timing dis-
parities may cause the first message to arrive before the second
congests the shared port. From our experiments, we did not
observe congestion for small messages. Therefore, for the
model simplification, we can safely assume that congestion
of small messages is negligible and we focus only on the
bandwidth distribution. To analyze bandwidth distribution be-
havior and its sensitivity to the transfer size, we evaluate the
congestion ratio of two communications depending on their
communication path and message size.

In a first conflict, we measure the latency of a single
communication 0→3. Then, we add an overlapping com-
munication, 1→2. We analyze the congestion impact on the
communication latency depending on the message size. The
results are presented in Fig. 3. It can be observed that with
increasing message size the performance approaches a half

RCRCRC

0⟶1 with 2⟶1
Conflict 2

0⟶3 with 1⟶2
Conflict 1

0⟶1 with 4⟶1
Conflict 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2 8 32 128 512 2K 8K 32K 128K 512K 2M 8M 32M
Message size [Byte]

0

1

2

3

4

5

6

7

8

9

10

11

12

M
e
a
su

re
d
 b

a
n
d
w

it
d
h
 [

G
B

/s
]

1.88x
slower for
conflict 1

1.80x
slower for
conflict 2

1.44x
slower for
conflict 3

1.21x

0→ 1 or 0→ 3 alone
4→ 1 alone
0→ 3 in conflict 1
0→ 1 in conflict 2
0→ 1 in conflict 3

Fig. 3. Observed bandwidth for different conflicts of concurrent communi-
cations over topology T2. Presented data are median over a set of 100 tests,
standard deviation is below 5% in all cases.

of its initial value for both 0→3 and 1→2 - the startup time
disparities become negligible as most of the time the ports are
shared equally between the two communications.

In a second conflict, we compare the performance of com-
munication 0→1 sharing the PCIe bandwidth with communi-
cation 2→1. For this conflict, we observed a similar behavior
as for the previous conflict. Because communication path of
2→1 is longer in term of PCIe ports traversed, the disparities
in arrival time at the shared port is increased leading to slower
convergence towards a 50% slowdown.

The third conflict introduces a unique property of the root
complex. We observed that communication 0→1 is 1.44x
(almost 1.5x) slower when sharing bandwidth with commu-
nication 4→1 whereas, in the previous conflict, its perfor-
mance is reduced to a half. A second property of the root
complex is displayed when comparing bandwidth measured
just for single communications. Comparing communication
4→1 that crosses the root complex with 0→1 we observed
a performance decrease of about 1.25x for communication
4→1. One possible explanation for these unique properties is
that a communications crossing the root complex suffers from
the overhead of using smaller packet sizes than other PCIe
components. As discussed in the white paper [15], this effect
reduces the theoretical transfer bandwidth efficiency to 76%.

In our test case application, COSMO climate code, the halo
exchange message sizes depend on the grid size. The grid

1024×512×80 represents the Alpine region with Switzerland
on its center. A 256×256×80 grid block per GPU leads to
message sizes in the range of 40 KB to 254 KB. Such range
of messages are large enough to create congestion.

C. Head-Of-Line blocking

HOL blocking applies if one communication crosses at least
two ports on different switches. One port is responsible for
the credit starvation affecting the port on the other switch.
All communications that cross a port under credit starvation
have their bandwidth availability reduced to the minimum
bandwidth that the port can deliver. Therefore, the port reduces
all communication bandwidths to the slowest value. When
a communication subjected to HOL blocking is part of a
conflict on another port, all other communications that are not
subjected to HOL blocking, but part of this conflict, benefit
proportionally from the available bandwidth originating from
decreased bandwidth values.

IV. PCIE PERFORMANCE MODEL

We establish a rigorous performance model that captures all
the observations discussed in the previous section. We present
a model derived from both the architecture specifications and
the results from our experiments.

A. Dynamic congestion graph

We define a congestion graph as a directed graph CG =
(V,E), where the set of vertices V corresponds to devices
and the edges E represent pending communications among
them. A communication c ∈ E in a congestion graph CG =
(V,E) is defined as a tuple (sc, dc, tstartc, tendc,Mc) where
sc, dc ∈ V are respectively the source and destination nodes,
tstartc ∈ Tstart and tendc ∈ Tend are the communication
start and end times and Mc is the size in bytes of the message.

A dynamic congestion graph, is a CG where the set of edges
changes in time. We sort all time events Ti ∈ Tstart∪Tend in
the ascending order, so that ∀i, j ∈ S : i < j ⇐⇒ Ti < Tj ,
where S is a set of time steps. A time step i is a period between
the two consecutive events Ti and Ti+1. We can express the
duration of time step i by the following equation:

ti = Ti+1 − Ti for i ≥ 0 (1)

A communication may take several time steps to transfer
Mc bytes in time Lc = tendc − tstartc. In each time step
different communications may create conflicts on different
ports, resulting in sharing network bandwidth. The congestion
factor ρc,i ∈ [0, 1] expresses how much can a communication
c utilize the available bandwidth in time step i due to the
bandwidth sharing. In each time step, mc,i = ti ·ρc,i ·B bytes
are transferred, depending on the time step duration ti, network
bandwidth B and the current congestion factor ρc,i. We can

Fig. 4. A time step is defined as the interval of time between two events
which are either a communication start or end. A communication belonging
to a time step sends a certain amount of data which depends on the ratio of
bandwidth it obtains due to arbitration policies. On the right, the set of steps
S is shown, together with the steps belonging to the specific communications
with SC0

, SC1
, SC2

⊂ S. For instance, at time step t1, communication C0

sends m0,1 bytes with a bandwidth ratio of ρ0,1 while communication C1

sends m1,1 bytes with a bandwidth ratio of ρ1,1.

then express the total elapsed time Lc of a communication c
being part of Sc ⊂ S time steps as:

Lc =
∑
i∈Sc

ti =
1

B

∑
i∈Sc

mc,i

ρc,i
(2)

Mc =
∑
i∈Sc

mc,i (3)

Fig. 4 represents the evolution of communications being
part of a several time steps in a congestion graph.

The goal of our model is to find communication end times
which are not known at the beginning. As the input, only start
times tstartc and message sizes Mc are known, c ∈ E. Our
model first determines the congestion factors ρc,i, i ∈ S. Then,
the length of each time step i can be computed and finally we
find the unknown communication time Lc, from which we can
derive tendc = Lc + tstartc.

The flow control of the PCIe fabric exchanges buffer credits
between every two switch ports along a communication path.
Therefore, the status of every port should be modeled. The
proposed model for PCIe is based on a multicommodity flow
problem using trees as graphs [16]. The objective of our model
is not to assign flows to arcs for minimizing a cost, but to
compute flow distribution of fixed-path flows as functions of
the port or commodity capacities.

To find the required congestion factors ρ we use an algo-
rithm that performs four steps.
(A) We model source arbitration for multiple communica-

tions issued by one device (Subsection V-A).
(B-C) We find for each port of every switch the output conges-

tion factors ρ′ based on the incoming congestion factors
ρ. This step applies the port arbitration to reduce the
bandwidth availability of a communication in case of
congestion, ρ′ ≤ ρ. Step (B) computes the congestion
factor for upstream port conflicts (Subsection V-B),
whereas Step (C) computes it for downstream port con-
flicts (Subsection V-C). During Step (C) we consider the
properties of communication crossing the root complex.

(D) Once all port arbitrations are computed for all com-
munications, we evaluate the effects of HOL blocking.

HOL blocking, if applied, reduces output factor ρ′ to a
new congestion factor ρ′′. Reducing already computed
ρ′ may change the output factors of Step (B) or Step (C)
and, therefore, increase these factors to a new value ρ′′ of
communications not directly subjected to HOL blocking
(Subsection V-D).

V. COMPUTING CONGESTION FACTORS

Congestion factors reflect the bandwidth distribution among
the communications. Port arbitration and the PCIe flow control
are responsible for assigning PCIe component bandwidth.
PCIe technical specification [17] allows vendor to select differ-
ent port arbitration strategies. Therefore, switch technologies
are often proprietary and in order to be able to analyze packet
flows either proprietary software or specialized hardware [15]
attached to the topology is required.

In this section we present the different features that reduce
the bandwidth availability along with corresponding models.
Finally, we introduce a performance model as an algorithm
which combines all the features and computes the congestion
factors of any congestion graph by following communication
paths in a PCIe tree topology. In our model, we use the
following notation (unless otherwise stated):
• A, resp. A, to denote that the property A applies to a port

in the upstream, resp. downstream, direction;
• Ac to denote that the property A applies to the commu-

nication c;
• A(p) to denote that the property A applies to the port p;
• A′ to denote that the property A applies after a port

arbitration policy;
• A′′ to denote that the property A is modified by HOL

blocking.
Each communication c enters a switch at port e and leaves
from port l. If a communication goes towards the root complex
then it is noted as c(e, l). If it goes in the opposite direction,
i.e., towards a leaf, then it is noted as c(e, l).

Example: ρ′′c (l) denotes the congestion factor ρ for the
communication c on the port l in the downstream direction
that is modified by HOL blocking.

A. Source arbitration

A device initiating multiple communications simultaneously
applies an arbitration policy to determine the schedule in
which communications access its bandwidth. Our tests show
that a GPU device can only send one active communication
at a time even when using asynchronous communication.
The order in which the communications are scheduled is
determined by the First Come First Serve strategy. Pending
communications are modeled with a congestion factor ρ = 0.

B. Port arbitration for upstream port conflicts

Communications create conflicts by accessing ports of PCIe
switches or the root complex (RC) simultaneously. RC is
treated as a special switch. For upstream port conflicts, we
use an equal sharing of the port bandwidth among the com-
munications. We model a switch as a set of P ports pn

with 1 ≤ n ≤ P . Each communication c(e, l) enters the
switch at port e with a congestion factor ρc(e) and leaves
the switch from port l with a congestion factor ρc(l) with
0 < ρc(l) ≤ ρc(e) ≤ 1. The sum of congestion factors per
port cannot exceed 1 (which represents maximum achievable
bandwidth): ∑

c

ρc(l) ≤ 1 (4)

We group together communications entering by a port e and
leaving by a port l into a set of communications C(e, l) called
a super communication. A super communication C(e, l) enters
a port e with a congestion factor RC(e,l) =

∑
c∈C(e,l) ρc(e)

and leaves a port l with a congestion factor RC(e,l) =∑
c∈C(e,l) ρc(l). For each port l, the arbitration mechanism

determines the outgoing congestion factors RC(e,l) depending
on the incoming congestion factors RC(e,l).

For a port l we define the set C(l) as the set of all
super communications C(e, l) leaving through that port.
Arbitration applies only if super communication incom-
ing congestion factors would overflow a port capacity:∑

C(e,l)∈C(l)RC(e,l) > 1, which would violate (4).
To model the effect of the arbitration, we use a linear

transformation R′C(e,l) = β · RC(e,l) with 0 < β ≤ 1 as
an arbitration parameter between the incoming and outgoing
congestion factors of a super communication C(e, l). The
model is represented by the following equations:∑

C(e,l)∈C(l)

R′C(e,l) = 1

∀C(e,l)∈C(l) : R
′
C(e,l) = β ·RC(e,l)

with 0 < β ≤ 1. By solving this system we obtain the equation
for a congestion factor R′:

R′C(e,l) =
RC(e,l)∑

C(e,l)∈C(l)

RC(e,l)

(5)

To retrieve the congestion factor ρ′c(l) of a communication
c ∈ C(e, l) we normalize the value of all ρc(e) with the ratio
of R′C(e,l) and RC(e,l):

ρ′c(l) = ρc(e) ·
R′C(e,l)

RC(e,l)

= ρc(e) ·
1∑

C(e,l)∈C(l)

RC(e,l)

(6)

For every port that a communication c crosses in the
upstream direction we use (6) to compute its congestion factor
ρ′c using its previously computed ρc at an earlier port in its
path.

Example 1: Consider a scenario presented in Fig. 5a.
Assume that ρa(4) = 0.6, ρb(4) = 0.4, ρc(5) = 0.3 and
ρd(5) = 0.5. Note that ρa(4) + ρb(4) = RC(4,6) = 1 and
ρc(5) + ρd(5) = RC(5,6) = 0.8. Then, we can see that
RC(4,6) + RC(5,6) > 1. Therefore, an arbitration policy must

(a) Example 1: upstream port conflict. (b) Example 2: downstream port conflict.

Example 2

(c) Example 3: HOL blocking conflict.

Fig. 5. Examples of each conflict type.

reduce the congestion factors ρ′i(6) with i ∈ {a, b, c, d}. From
(5), we derive

RC(4,6) =
RC(4,6)

RC(4,6) +RC(5,6)

=
1

1.8
=

5

9

Similarly, we obtain RC(5,6) =
4
9 . Finally, from (6) we obtain

ρ′a(6) = 0.33, ρ′b(6) = 0.22, ρ′c(6) = 0.17 and ρ′d(6) = 0.28.

C. Port arbitration for downstream port conflicts

To allocate the bandwidth, a downstream port arbitration
applies a weighted round-robin method among super commu-
nications, which is modeled by considering a fair split of the
port bandwidth. If n > 0 super communications are part of a
downstream port conflict at port l, then for each C(e, l) we
limit its congestion factor R′C(e,l) ≤ 1/n.

Moreover, we distinguish the case where a super commu-
nication includes a communication that had crossed the root
complex. As shown in Section III-B we observed a different
behavior for communications crossing the root complex. Such
communications suffer from a bandwidth loss, which results
in a lower impact on other communications. We denote the
set of such super communications that cross the root complex
as CR and by n the total number of super communications
passing through a port l. To model the port arbitration on a
downstream port conflict we use the following formula:

- if CR = ∅, then

R′C(e,l) =
1

n

- if CR 6= ∅ then

R′
C(e,l) =

 min(max(
1

n
− τ, 0), RC(e,l)) if CR ∩ C(e, l) 6= ∅

min(
1

n
+ τ,RC(e,l)) otherwise

Here, τ is a factor that represents the performance loss of
communication crossing a root complex. Finally, we compute
the resulting congestion factor as:

ρ′c(l) = ρc(l) ·
R′C(e,l)

RC(e,l)

(7)

A single communication c crossing the root complex has its
bandwidth reduced by (7) and obtains ρ′c = 1− τ .

Example 2: Consider the example of Fig. 5b. Communi-
cations a(18, 17) and b(20, 17) generate a downstream port
conflict on port 17. Assume that RC(18,17) = ρa(18, 17) = 0.7

and RC(20,17) = ρb(20, 17) = 0.9. Furthermore, communica-
tion a crosses the root complex, therefore CR 6= ∅. Assume
that τ = 0.2. Therefore, min(max(12 − τ, 0), RC(18,17)) = 0.3

and min(12 + τ,RC(20,17)) = 0.7. Using (7), we obtain
ρ′a(17) = 0.3 and ρ′b(17) = 0.7.

D. Head-Of-Line blocking

HOL blocking is computed at the last step of the algorithm
where all communications have obtained congestion factors ρ′.
We first identify communications subjected to HOL blocking.
Then, we increase the congestion factors of communications
which are in conflict with them.

Consider a communication c and assume that its congestion
factor on a port l is ρ′c(l) with c ∈ C(e, l). Now assume that a
communication b ∈ C(e, l) crosses another switch after port l
and is part of an upstream or downstream port conflict at port
m for which it obtains ρ′b(m). We define a set of all ports that
the communication b crosses in its path to the destination after
crossing the port l as Pb(l). We compute ρ′′c (l) as follows:

ρ′′c (l) = min
b∈C(e,l)

(min
m∈Pb(l)

ρ′b(m)) (8)

Once all communications subjected to HOL blocking are
identified, we compute the congestion factor increase of
communications having a conflict with communications sub-
jected to HOL blocking. Consider the port l and the set
C(l) of all communications that pass through it. Among
those communications, some of them are subjected to HOL
blocking. We denote this set CHOL(l) ⊂ C(l). Then, all
c ∈ C(l) \ CHOL(l) have their congestion factor raised due
to more bandwidth available at the port l. To find the new
congestion factors ρ′′c for all c ∈ C(l)\CHOL(l), we first find
R′(l) =

∑
b∈CHOL(l) ρ

′
b(l) and R′′(l) =

∑
b∈CHOL(l) ρ

′′
b (l)

with R′′(l) ≤ R′(l). Then, it allows us to find ρ′′c as follows
for c ∈ C(l) \ CHOL(l):

ρ′′c (l) = ρ′c(l) +
R′(l)−R′′(l)
|C(l) \ CHOL(l)|

(9)

Example 3: Consider the example in Fig. 5c. Communica-
tions a, b and c enter the switch by port 12 and d enters by port
20. The communication a is later a part of a downstream port
conflict, where its congestion factor ρ′a was lowered. Then,
according to (8), communications b and c are subjected to the
HOL blocking with their new congestion factors.

ρ′′i (12) = min(ρi(12), ρ
′
a(17)) for i ∈ {b, c}

E. Algorithm to compute congestion factors

To combine all presented features, we present an algorithm
that is capable of computing the congestion factors. The
different steps of the algorithm are presented in Algorithm 1.

Algorithm 1 ComputingCongestionFactors
Require: Initial graph CG
Ensure: Congestion factors of each edge

for source s in all leaf nodes do . Step (A)
Consider only the first communication of source s in the next

steps of the algorithm and apply a value of zero to congestion
factor of the other communications
end for
for d = maxDepth, d ≥ 0, d = d− 1 do . Step (B)

for x in all switches at depth d do
for p in all ports of switch x do

Arbitration: upstream port conflicts p, Equation (6)
end for

end for
end for
for d = 0, d ≤ maxDepth, d = d+ 1 do . Step (C)

for x in all switches and root complexes at depth d do
for p in all ports of switch x do

Arbitration: downstream port conflicts p, Equation (7)
end for

end for
end for
for x in all switches do . Step (D)

for p in all ports of switch x do
Apply HOL blocking on p, Equation (8)

end for
end for
for x in all switches do

for p in all ports of switch x do
Apply HOL blocking on p, Equation (9)

end for
end for

All congestion factors are initialized to the value 1. The
first step, Step (A), is to ensure that all sources send only
one communication at a time by setting a congestion factor of
zero to communications in a waiting state. Communications in
a waiting state are not considered within the remaining steps of
the algorithm. In Step (B), we apply the port arbitration model
for every upstream port conflict of every switch starting by
switches with higher depth (closer to the leaves). maxDepth
is the maximum depth of the tree. This step represents the
ascending phase of a communication in the tree topology. Once

the congestion factors are computed for the ascending phase,
the port arbitration model is applied for all downstream port
conflicts in Step (C). This phase reflects the descending phase
of the communications towards their destination devices. The
model is applied starting from the root complex towards the
lower switches. Finally, the last step, Step (D), computes the
effect of HOL blocking on communications and its consequent
impact on all other communications. Algorithm 1 applies to
any tree topology.

We have developed python objects to encapsulate the differ-
ent PCIe components. A Switch object holds any number of
Port objects. A root complex is also encapsulated in a Switch
object. A Port object holds a set of Communication object ref-
erences and an Arbiter object that contains the port arbitration
and HOL blocking formulas. Communication objects represent
the communications: source, destination, starting time, size
and congestion factors per port. We represent a congestion
graph step by creating a Communication object for every edge
in the graph. We associate for every Port object the set of
Communication object references that traverses it. By con-
necting these python objects together, we can create any tree
topology and apply the model to any set of communications.
The evaluation of one graph by the model requires only few
milliseconds on one core.

VI. APPLYING THE MODEL ON A FULL EXAMPLE

To clarify the usage of the model, we present an example on
topology T2. The first part of the example applies Algorithm 1
to compute the congestion factors of a specific congestion
graph step. The second part of the example computes the
evolution of communication elapsed times within a congestion
graph. The congestion graph used for the example is composed
of 4 communications: 0→2, 1→4, 3→2, 6→4. Communica-
tions start at the same time and send each 300 MB of data.

Computation of congestion factors are presented in Table I.
Algorithm 1 initially sets all congestion factors to the value 1.
Every communication starts from a different source which im-
plies that congestion factors remain unchanged after Step (A).
In Step (B), communications (a) and (b) cross the same
upstream port and both have access to only half of the available
bandwidth by (6). Downstream port arbitration is computed in
Step (C) for two sets of communications: (a) and (c), and (b)
and (d). Neither of communication (a) nor (c) crosses the root
complex, then by (7) both communication obtains a congestion
factor of 1/2. For the second set of communications, (b) and
(d), communication (b) crosses the root complex. By selecting
τ = 1/5 and using (7), the algorithm computes ρ′b = 3/10
and ρ′d = 7/10. In the final step, Step (D), HOL blocking is
computed. Communications (a) and (b) share a same upstream
port with communication (b) obtaining a lower congestion
factor at a later port which reduces the congestion factor
of (a) due to HOL blocking. Communication (a) becomes
subjected to HOL blocking and its congestion factor equals to
the congestion factor of (b) from (8). With (a) being subjected
to HOL blocking, the conflict between (a) and (c) is updated

TABLE I
FIRST PART OF THE EXAMPLE: EVOLUTION OF CONGESTION FACTORS OF

COMMUNICATIONS CROSSING SEVERAL PORTS WITH τ = 1/5.

congestion graph step: (0→2, 1→4, 3→2, 6→4) on topology T2
comm. Step (A) Step (B) Step (C) Step (D)

(a) 0→2 1 1/2 1/2 3/10 3/10

(b) 1→4 1 1/2 3/10 3/10 3/10

(c) 3→2 1 1 1/2 1/2 7/10

(d) 6→4 1 1 7/10 7/10 7/10

TABLE II
SECOND PART OF THE EXAMPLE: EVOLUTION OF COMMUNICATION

ELAPSED TIMES FOR A CONGESTION GRAPH.

Congestion graph step 1
comm. cong. factor data remaining elapsed time

(a) 0→2 3/10 128 MB 36 ms

(b) 1→4 3/10 128 MB 36 ms

(c) 3→2 7/10 0 MB 36 ms

(d) 6→4 7/10 0 MB 36 ms

Congestion graph step 2
comm. cong. factor data remaining elapsed time

(a) 0→2 1/2 0 MB 65 ms

(b) 1→4 1/2 0 MB 65 ms

by (9) and the communication (c) obtains a higher congestion
factor of 7/10.

Evolution of communication elapsed times among the steps
is presented in Table II. In the first congestion graph step
communications (c) and (d) are the first communications to
complete with an elapsed time of 36 ms. During this time
step the two remaining communications, (a) and (b), are
sending a lower quantity of data due to their lower congestion
factors. When communications (c) and (d) complete, the
congestion graph moves to a new step. In this new step, the
communication (b) is not anymore in conflict with (d) and
its congestion factor is increased. Consequently, the negative
effect of HOL blocking does not affect communication (a)
anymore. Both communications obtain a congestion factor of
1/2. With these new congestion factors, both communications
(a) and (b) complete simultaneously sending their remaining
data of 172 MB in 29 ms, which leads to an elapsed time of
65 ms for both communications.

VII. MODEL VALIDATION

To validate the model we have written a simple bench-
mark. This benchmark creates a dynamic congestion graph
by triggering communications among devices at the same
time. A communication is an asynchronous memory transfer
from the memory of one device to the memory of another
device by using cudaMemcpyPeerAsync() function from the
CUDA [14] libraries. To assess the model validation we use
communications with a large size to be able to minimize

TOPOLOGY T1

TOPOLOGY T2

Fig. 6. Validation of the model on several congestion graphs for both
topologies T1 (top plots) and T2 (bottom plots).

the disparities of startup time and increase the time of ports
being shared among them. We have selected a message size
of 300 MB, however, any other large sizes can be used.

Our model requires to identify the value of two parame-
ters, B and τ . The parameter B is the measured bandwidth
between two GPU processors of one K80, B = 11.6 GB/s.
The parameter τ reflects the bandwidth difference between
a single communication crossing the root complex and a
single communication which does not cross it. This bandwidth
difference is displayed in Fig. 3. Therefore, we evaluate
τ = 1− 1

1.21 = 0.17355.
Our validation analysis uses a set of dynamic congestion

graphs that consists of both arbitrarily selected and random
graphs. We select specific graphs that allow us to identify
special behaviors of the PCIe network. To this set of graphs we
add simple collective operation graphs like scatter, gather, or
all-to-all. All graphs in this set are unique and not isomorphic

to any other graphs when projected on topology T2. Our
validation set also includes all possible and non isomorphic
graphs projected on two topologies similar to topology T2 but
with only four devices: one topology with four consecutive
GPUs of topology T2, and one with all even numbered GPUs
of topology T2. To this set we add randomly generated graphs.
Our set of graphs is composed of 22, 298 unique directed
graphs leading to 94, 259 communications for topology T1
and 22, 635 unique directed graphs, 95, 906 communications,
for topology T2. Fig. 6 displays two plots per topology: the
measured time of each communication (top) and the number
of communications obtaining a specific relative error (bottom).
The relative error is computed by comparing the predicted
time against the measured time. Measured communication
times are shown as multiples of the reference time Tref of
one congestion-free communication crossing only one switch
(internal to a K80), with Tref = 25.2829 ms for a message
size of 300 MB. Communication times are arranged by groups
of communications which belongs to graphs with the same
number of edges with a maximum of seven edges. Commu-
nications are also arranged by the type and number of PCIe
components that they cross.

The error distribution plots display the number of commu-
nications for which times are predicted with a specific error.
For topology T1 the error range is −46% to 31% where as
for topology T2 the error range is −56% to 29%. For both
topologies more than 97% of the predicted communications
are in the range −15% to 15%, which represent more than
91, 000 communications predicted with a very low error. The
maximum absolute error for both topologies does not exceed
56%. These results validate the accuracy of our model. A tiny
group of communications per topology, 408 communications
for T2 and 348 communications for T1, shows an error below
−30%. These errors are due to features that are incompletely
modeled, such as variability on the port capacity due to indirect
loads on other ports of the switch.

Measured times are largely spread implying that all commu-
nications are sensitive to congestion. Moreover, in almost all
cases, measured times cover the full range of values between
the fastest and the slowest time. This variability of time values
indicates that making accurate predictions is hard.

VIII. APPLICATIONS OF THE MODEL

We apply the model for halo exchange communication
patterns among multiple GPUs. We identify the fastest con-
gestion graph for a halo exchange pattern of a 2D domain
decomposition as used in weather forecasting application and
we generalize it to a halo exchange of a 3D domain decom-
position. For both cases, we use domains with non-periodic
boundary conditions and we consider only faces exchange
among the GPUs. In practice, the GPUs do not always
start their initial communications simultaneously, however, the
worst case scenario in terms of congestion behavior will occur
when they do. Here we study this worst-case scenario of
halo exchanges on topology T2 which is the topology of a
MeteoSwiss CS-Storm node.

GPU0 GPU1

GPU5GPU4

GPU3GPU2

GPU6 GPU7

2D domain decomposition GPU0 GPU1

GPU4

GPU3

GPU7GPU6

GPU2

GPU5

3D domain decomposition

Fig. 7. Typical halo exchange used by 2D and 3D domain decomposition of a
3D input data. The input data are divided into eight sub-domains. Each GPU
holds the data of one sub-domain and exchanges faces with its neighbours.

A. Halo exchange of a 2D domain decomposition

The COSMO [2] application is a non-hydrostatic local
area atmospheric model used for both operational numerical
weather prediction and long-term climate simulation. COSMO
is developed by seven national weather forecast institutions.
Parallelism strategy decomposes the three-dimensional domain
into a two-dimensional Cartesian grid in the North-South
and East-West directions. Each sub-domain is assigned to an
MPI rank, with MPI communication used to perform halo
exchanges among the sub-domains [18]. MeteoSwiss uses an
implementation of COSMO GPUs for fine-grained parallelism
on each sub-domain [19]. This implementation of COSMO is
used on a cluster of nodes with two sockets, where each socket
has four K80 GPUs being connected following topology T2.
Each socket runs a standalone instance of COSMO.

A halo exchange for eight sub-domains is displayed in
Fig. 7. Each GPU sends multiple communications creating a
set of possible contention graphs. For this domain decomposi-
tion, four GPUs have a choice among three communications,
the other four GPUs can choose between two communications.
Therefore, we compute (3!)4 · (2!)4 = 20, 736 different
congestion graphs and we apply the model on each of them.
The fastest graph is displayed in Fig. 8. For clarity we split
it into three steps. The model indicates that a set of spe-
cific communication rings limits congestion. These rings are
carefully selected to minimize the number of communications
crossing the root complex in the same direction. Congestion
still occurs as communications are not synchronized among
step transitions, but the impact is negligible. For instance,
when GPU1 starts communication 1 → 5, communication
0 → 4 is not completed leading to a small overlap of time
where both communications concurrently access several ports.
Elapsed time of all congestion graphs are displayed in Fig. 9.
The curve indicates (sharp slope at the beginning) that only
few graphs are faster than the vast majority of graphs. The
fastest graph is 1.9 times faster than the slowest one and 1.6
times faster than the currently implemented graph in COSMO.
Comparing the values obtained by the model with the graph
running on topology T2, the model overestimates the fastest
graph time by 11%.

We trace the entire set of halo exchanges of a run
of COSMO simulating one time step, i.e., 20 seconds of
simulated weather forecast for a grid of 1024×512×80 or

RC

0 1 2 3 4 5 6 7

RC

0 1 2 3 4 5 6 7

RC

0 1 2 3 4 5 6 7

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

Fig. 8. Fastest order of communications for a halo exchange from a 2D
domain decomposition on topology T2. For clarity, we split the graph into
three steps. At every step each GPU triggers a communication. A set of
selected rings is the fastest pattern.

Congestion graphs sorted by elapsed time
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

T
im

e
 [

s]

current implemented graph in COSMO

1.6x 1.9x

Fig. 9. Times of all possible congestion graphs of a 2D domain.

256×256×80 block per GPU. One time step triggers 312
halo exchanges for which message sizes are in the range of
40 KB to 254 KB. These halo exchanges account for 16%
of the time needed to execute one time step. We present, in
Fig. 10, the ratio of the measured and modeled times of the
fastest congestion graph against the currently implemented
congestion graph in COSMO. We repeat 50 times one time
step and take the fastest measured time. Standard deviation
of this set of 50 tests is below 5%. The large difference in
the range of 1.75x to 5x between the modeled and measured
times are attributable to MPI overhead in comparison to direct
CUDA function calls. This overhead limits the benefit of
using the fastest graph inside COSMO. Halo exchanges of
small message sizes (below 100 KB), such as halo exchanges
occurring at positions 30 to 90 and 180 to 250, do not
contribute to the performance improvement. For larger halo
exchange message sizes, such as halo exchange from position
0 to 30, 90 to 180 and 250 to 312, the fastest graph gives
about 5–10% better performance. The fastest graph with MPI
improves the sum of the halo exchange times of one time step

50 100 150 200 250 300
0.2

0.4

0.6

0.8

1.0

1.2

H
a
lo

 e
x
ch

a
n
g
e
 r

a
ti

o

a
g
a
in

st
 t

h
e
 d

e
fa

u
lt

 g
ra

p
h

ratio of the measured time of the fastest graph
ratio of the modeled time of the fastest graph

50 100 150 200 250 300
Halo exchanges in one timestep

0

50

100

150

200

250

300

M
e
ss

a
g
e
 s

iz
e
 i
n
 K

B

Fig. 10. Measured and modeled times of the fastest congestion graph
compared with the time of the currently implemented congestion graph in
COSMO. The X-axis is the list of 312 halo exchanges in their order of
occurrence during one time step. The top plot shows the ratio of measured
and modeled times and the bottom plot the message size used by each halo.

RC

0 1 2 3 4 5 6 7

RC

0 1 2 3 4 5 6 7

RC

0 1 2 3 4 5 6 7

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

Fig. 11. Fastest order of communications for a halo exchange from a 3D
domain decomposition on topology T2. At every step each GPU triggers a
communication. Step 1 and Step 3 use a ring pattern which limits conflicts,
but as a result, Step 2 has a large number of conflicts. Nevertheless, such
graph is the fastest graph among the entire set of possible graphs.

by 5.7% (filled zone in the plot). This effect is expected as
congestion is more visible for large message sizes (see Fig. 3
in Section III).

B. Halo exchange of a 3D domain decomposition

3D domain decomposition are used by scientific applica-
tions [20]. A halo exchange of 3D domain decomposition
for eight sub-domains is displayed in Fig. 7. With eight
active GPUs and three communications per GPU, we compute

(3!)8 = 1, 679, 616 orders of communications, and, therefore,
we evaluate the same amount of congestion graphs. The fastest
graph is presented in Fig. 11. It consists of three steps where
Step 1 and Step 3 use a ring pattern that limits conflicts to
the RC (as seen for the 2D domain decomposition example).
However, communications during Step 2 create conflicts at
every port. Without the model, it is difficult to identify the
most efficient set of communications for Step 2, for which
conflicts occur, and for the steps Step 1 and Step 3 which
create only RC conflicts.

In the entire set of graphs, the fastest graph is 2.57 times
faster than the slowest graph, whereas the median graph is
1.44 times faster than the slowest graph. This large difference
in performance shows the significant impact of congestion
on PCIe topology. Comparing the predicted values with real
values obtained by running this graph on topology T2, the
model overestimates the time of the fastest graph by 8%.

IX. CONCLUSION

MeteoSwiss has chosen a computer architecture with
densely populated accelerator nodes, which provide high num-
ber of teraflops for a relatively low power consumption. We
presented a performance model for the PCIe fabric used to
connect GPUs on such nodes. The model is proven to be
accurate with almost 97% of communications time predicted
with an error in the range of −15% to 15%. We apply the
model on the application COSMO to identify graphs with
higher efficiency for executing halo exchanges among GPUs.

Based on this model it will be possible to investigate the
cost of collective operations and neighborhood communica-
tions [21] among GPUs to define algorithms that maximize
performance. This study will prove to be useful for incorpo-
rating such algorithms in the communication layer of COSMO,
or, more generally, into an MPI library.

REFERENCES

[1] HPCwire. Today’s outlook: GPU-accelerated weather forecasting.
Accessed on 03/2016. [Online]. Available: http://www.hpcwire.com/
2015/09/15/todays-outlook-gpu-accelerated-weather-forecasting

[2] Consortium for small-scale modeling. Accessed on 03/2016. [Online].
Available: http://www.cosmo-model.org

[3] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess,
“STELLA: A domain-specific tool for structured grid methods in
weather and climate models,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC’15. New York, NY, USA: ACM, 2015, pp. 41:1–41:12.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807627

[4] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco,
A. Arteaga, and T. Schulthess, “Towards a performance portable,
architecture agnostic implementation strategy for weather and climate
models,” Supercomputing frontiers and innovations, vol. 1, no. 1, 2014.
[Online]. Available: http://superfri.org/superfri/article/view/17

[5] T. Lutz, C. Fensch, and M. Cole, “PARTANS: An autotuning framework
for stencil computation on multi-GPU systems,” ACM Trans. Archit.
Code Optim., vol. 9, no. 4, pp. 59:1–59:24, Jan. 2013. [Online].
Available: http://doi.acm.org/10.1145/2400682.2400718

[6] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: A framework
for real-time GPU management,” in 2013 IEEE 34th Real-Time Systems
Symposium. Institute of Electrical & Electronics Engineers (IEEE),
Dec. 2013. [Online]. Available: http://dx.doi.org/10.1109/rtss.2013.12

[7] R. Solomon, PCI Express Basics. PCI-SIG, Oct. 2011.
[8] Marketwired. PLX achieves industry-first compliance of PCI Express

3.0 switches on exclusive PCI-SIG integrators list. Accessed
on 03/2016. [Online]. Available: http://www.marketwired.com/
press-release/plx-achieves-industry-first-compliance-pci-express-30-
switches-on-exclusive-pci-sig-nasdaq-plxt-1875400.htm

[9] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, 1st ed. Addison-Wesley Pro-
fessional, 2010.

[10] V. Krishnan and D. Mayhew, “A Localized Congestion Control Mech-
anism for PCI Express Advanced Switching Fabrics,” in In Proc. 12th
IEEE Symp. on Hot Interconnects, 2004.

[11] D. Schaa and D. Kaeli, “Exploring the multiple-GPU design
space,” in 2009 IEEE International Symposium on Parallel &
Distributed Processing. Institute of Electrical & Electronics Engineers
(IEEE), May 2009. [Online]. Available: http://dx.doi.org/10.1109/
ipdps.2009.5161068

[12] M. Martinasso and J.-F. Méhaut, “A contention-aware performance
model for HPC-based networks: A case study of the InfiniBand
network,” in Euro-Par 2011 Parallel Processing. Springer Berlin
Heidelberg, 2011, pp. 91–102. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-23400-2 10

[13] I. Faraji, S. H. Mirsadeghi, and A. Afsahi, “Topology-aware GPU
selection on multi-GPU nodes,” in Sixth International Workshop on
Accelerators and Hybrid Exascale Systems (AsHES). To be published
in Proceedings of the 30th IEEE International Parallel & Distributed
Processing Symposium Workshops, May 2016.

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, p. 40, Mar. 2008.
[Online]. Available: http://dx.doi.org/10.1145/1365490.1365500

[15] “Understanding performance of PCI Express systems,” White paper,
Xilinx, 2008.

[16] A. A. Assad, “Multicommodity network flows - a survey.” Networks,
vol. 8, no. 1, pp. 37–91, 1978. [Online]. Available: http://dblp.uni-
trier.de/db/journals/networks/networks8.html#Assad78

[17] PCI-SIG 2010, PCI Express Base Specification 3.0, Std.
[18] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess,

“STELLA,” in Proceedings of the International Conference for High
Performance Computing Networking, Storage and Analysis on -
SC’15. Association for Computing Machinery (ACM), 2015. [Online].
Available: http://dx.doi.org/10.1145/2807591.2807627

[19] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco,
A. Arteaga, and T. Schulthess, “Towards a performance portable
architecture agnostic implementation strategy for weather and climate
models,” SuperFRI, vol. 1, no. 1, Sep. 2014. [Online]. Available:
http://dx.doi.org/10.14529/jsfi140103

[20] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. Hawkes,
S. Klasky, W. Liao, K. Ma, J. Mellor-Crummey, N. Podhorszki et al.,
“Terascale direct numerical simulations of turbulent combustion using
S3D,” Computational Science & Discovery, vol. 2, no. 1, p. 015001,
2009.

[21] T. Hoefler and T. Schneider, “Optimization principles for collective
neighborhood communications,” in 2012 International Conference for
High Performance Computing Networking, Storage and Analysis.
Institute of Electrical & Electronics Engineers (IEEE), Nov. 2012.
[Online]. Available: http://dx.doi.org/10.1109/sc.2012.86

