
Model-Driven, Performance-Centric HPC

Software and System Design and Optimization

Torsten Hoefler

With contributions from: William Gropp, William Kramer, Marc Snir

Scientific talk at Jülich Supercomputing Center

April 8th Jülich, Germany

Imagine é

Åé youôre planning to construct a multi-million

Dollar Supercomputer é

Åé that consumes as much energy as a small

[european] town é

Åé to solve computational problems at an

international scale and advance science to the

next level é

Åé with ñhero-runsò of [insert verb here] scientific

applications that cost $10k and more per run é

2T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

é and all you have (now) is é

Åé then you better plan ahead!

3T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Imagine é

Åé youôre designing a hardware to achieve 1018

operations per second é

Åé to run at least some number of scientific

applications at scale é

Åé and everybody agrees that the necessary

tradeoffs make it nearly impossible é

Å... where pretty much everything seems completely

flexible (accelerators, topology, etc.) é

4T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

é and all you have (now) is é

Åé how do you determine what the system needs

to perform at the desired rate?

Åé how do you find the best system design (CPU

architecture and interconnection topology)?

5T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

State of the Art in HPC ïA General Rant J

ÅOf course, nobody planned ahead J

ÅPerformance debugging is purely empirical

ÅInstrument code, run, gather data, reason about

data, fix code, lather, rinse, repeat

ÅTool support is evolving rapidly though!

ÅAutomatically find bottlenecks and problems

ÅUsually done as black box! (no algorithm knowledge)

ÅLarge codes are developed without a clear process

ÅMissing development cycle leads to inefficiencies

6T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Performance Modeling: State of The Art!

ÅPerformance Modeling (PM) is done ad-hoc to

reach specific goals (e.g., optimization, projection)

ÅBut only for a small set of applications (the manual

effort is high due to missing tool support)

ÅPayoff of modeling is often very high!

ÅLed to the ñdiscoveryò of OS noise [SC03]

ÅOptimized communication of a highly-tuned

(assembly!) QCD code [MILC10] Ą >15% speedup!

ÅNumerous other examples in the literature

7

[SC03]: Petriniet al. ñThe Case of Missing Supercomputer Performance éò

[MILC10]: Hoefler, Gottlieb: ñParallel Zero-Copy Algorithms for Fast Fourier Transform éò

Performance Optimization: State of the Art!

ÅTwo major ñmodesò:

1. Tune until performance is sufficient for my needs

2. Tune until performance is within X% of optimum

Å Major problem: what is the optimum?

Å Sometimes very simple (e.g., Flop/s for HPL, DGEMM)

Å Most often not! (e.g., graph computations [HiPCô10])

Å Supercomputers can be very expensive!

Å 10% speedup on Blue Waters can save millions $$$

Å Method (2) is generally preferable!

8[HiPCô10]: Edmonds, Hoefler et al.: ñA space-efficient parallel algorithm for computing BetweennessCentrality é

Ok, but what is this ñPerformanceò about?

Å Is it Flop/s?

ÅMerriam Webster ñflop: to fail completelyò

ÅHPCC: MiB/s? GUPS? FFT-rate?

ÅYes, but more complex

ÅMany (in)dependent features and metrics

Ånetwork: bandwidth, latency, injection rate, é

Åmemory and I/O: bandwidth, latency, random access rate, é

ÅCPU: latency (pipeline depth), # execution units, clock speed, é

ÅOur very generic definition:

ÅMachine model spans a vector space (feasible region)

ÅEach application sits at a point in the vector space!

9T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Example: Memory Subsystem (3 dimensions)

ÅEach application has particular coordinates

10T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

L
a

te
n

c
y

Injection Rate

some graph or

ñinformaticsò

applications regular mesh

computations

highly irregular

mesh computations

ÅApplication A

ÅApplication B

ÅMachine Model spans n-dimensional space

ÅElements are rates or frequencies (ñoperations per secondò)

ÅDetermined from documentation or microbenchmarks

ÅNetgaugeôsmemory and network tests [HPCCô07,PMEOô07]

ÅApplication Model defines requirements

ÅDetermined analytically or with performance counters

ÅLower bound proofs can be very helpful here!

Åe.g., number of floating point operations, I/O complexity

ÅTime to solution (ñperformanceò):

Our Practical and Simple Formalization

11

[HPCCô07]: Hoefler et al.: ñNetgauge: A Network Performance Measurement Frameworkò

[PMEO'07]: Hoefler et al: "Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks"

Should Parameter X be Included or Not?

ÅThe space is rather big (e.g., ISA instruction types!)

ÅApply Occamôs Razor wherever possible!
ÅEinstein: ñMake everything as simple as possible, but not simpler.ò

ÅGenerate the simplest model for our purpose!
ÅNot possible if not well understood, e.g., jitter [LSAPô10,SC10]

12

[SC10]: Hoefler et al.: "Characterizing the Influence of System Noise é by Simulation" (Best Paper)

[LSAP'10]: Hoefler et al.: "LogGOPSimïSimulating é Applications in the LogGOPS Model" (Best Paper)

A Pragmatic Example: The Roofline Model

ÅOnly considers memory bandwidth and floating point rate

but is very useful to guide optimizations! [Roofline]

ÅApplication model is ñOperational Intensityò (Flops/Byte)

13[Roofline] S. Williams et al.: ñRoofline: An Insightful Visual Performance Model éò

The Roofline Model: Continued

ÅIf an application reaches the roof: good!

ÅIf not é

Åé optimize (vectorize, unroll loops, prefetch, é)

Åé or add more parameters!

Åe.g., graph computations, integer computations

ÅThe roofline model is a special case in the ñmulti-

dimensional performance spaceò

ÅPicks two most important dimensions

ÅCan be extended if needed!

14[Roofline] S. Williams et al.: ñRoofline: An Insightful Visual Performance Model éò

Caution: Resource Sharing and Parallelism

ÅSome dimensions might be ñsharedò

Åe.g., SMT threads share ALUs, cores share

memory controllers, é

ÅNeeds to be considered when dealing with

parallelism (not just simply multiply performance)

ÅUnder investigation right now, relatively complex

on POWER7

15T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

How to Apply this to Real Applications?

1. Performance-centric software development

ÅBegin with a model and stick to it!

ÅPreferred strategy, requires re-design

2. Analyze and model legacy applications

ÅUse performance analysis tools to gather data

ÅForm hypothesis (model), test hypothesis (fit data)

16T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Performance-Centric Software Development

ÅIntroduce Performance Modeling to all steps of the

HPC Software Development Cycle:

ÅAnalysis (pick method, PM often exists [PPoPPô10])

ÅDesign (identify modules, re-use, pick algorithms)

ÅImplementation (code in C/C++/Fortran - annotations)

ÅTesting (correctness andperformance! [HPCNanoô06])

ÅMaintenance (port to new systems, tune, etc.)

17

[HPCNanoô06]: Hoefler et al.: ñParallel scaling of Teter's minimization for AbInitio calculationsò

[PPoPP'10]: Hoefler et al.: "Scalable Communication Protocols for Dynamic Sparse Data Exchange"

Tool 1: Performance Modeling Assertions

ÅIdea: The programmer adds model annotations to

the source-code, the compiler injects code to:

ÅParameterize performance models

ÅDetect anomalies during execution

ÅMonitor and record/trace performance succinctly

ÅHas been explored by Alamand Vetter [MAô07]

ÅInitial assertions and potential has been

demonstrated!

18[MAô07] Vetter, Alam: ñModeling Assertions: Symbolic Model Representation of Application Performance

Tool 2: Middleware Performance Models

ÅAlgorithm choice can be complex

ÅEspecially with many unknowns, e.g.,

Åperformance difference between reduce and allreduce?)

Åscaling of broadcast, itôs not O(S*log2(P))

ÅDetailed models can guide early stages of software

design but such modeling is hard

ÅSee proposed MPI models for BG/P in [EuroMPIô10]

ÅLed to some surprises!

19[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Example: Current Point-to-Point Models

ÅAsymptotic (trivial):

ÅLatency-bandwidth models:

ÅNeed to consider different protocol ranges

ÅExact model for BG/P:

ÅUsed Netgauge/logp benchmark

ÅThree ranges: small, eager, rendezvous

20[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Example: Point-to-Point Model Accuracy

ÅLooks good, but there are problems!

21

<5% error

[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Example: The not-so-ideal (but realistic) Case I

ÅStrided data-access (p2p model assumed stride-1)

Å Benchmark: Netgauge: one_one_dtype, 16 kiB MPI_CHAR data

22

Stride 1!

DDT overhead

Cache

[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Example: The not-so-ideal (but realistic) Case II

ÅMatching queue overheads (very common)

ÅR requests:
ÅBenchmark: Netgauge/one_one_req_queue

23

Latency factor of 35!

[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Example: The not-so-ideal (but realistic) Case III

ÅCongestion is often ignored

ÅVery hard to determine but worst-case can be

calculated (assuming rectangular 3D Torus on BG/P)

Åeffective Bisection Bandwidth

ÅAverage bandwidth of a random perfect matching

ÅUpper bound is congestion-less (see p2p model)

ÅLower bound assumes worst-case mapping

ÅAssume ideal adaptive routing (BG/P)

ÅCongestion of per link

24[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Example: Worst-case vs. Average-case Congestion

ÅAverage seems to converge to worst-case (large P)
ÅBenchmark: Netgauge/ebb

25

285 MB/s (P=64)

17.9 MB/s (P=32k)

375 MB/s (P=2)

[EuroMPIô10]: Hoefler et al.: ñToward Performance Models of MPI Implementations éò

Tool 3: Modeling for Legacy Applications

ÅCurrent programming models donôt support

performance modeling well

ÅPerformance analysis tools to gather data

ÅCostly manual analysis

ÅAutomatic modeling tools?

ÅDetection of regions

Åchanges in IPC

ÅExample: MILC, detect

five ñcritical regionsò, same

result as manual modeling

26T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

data collected with NCSA perfsuite/papi

