
ATUNs: Modular and Scalable Support for Atomic
Operations in a Shared Memory Multiprocessor

Andreas Kurth* Samuel Riedel* Florian Zaruba* Torsten Hoefler† Luca Benini*‡
*IIS, ETH Zürich †SPCL, ETH Zürich ‡DEI, University of Bologna

*{akurth,sriedel,fzaruba,lbenini}@iis.ee.ethz.ch †htor@inf.ethz.ch

Abstract—Atomic operations are crucial for most modern paral-
lel and concurrent algorithms, which necessitates their optimized
implementation in highly-scalable manycore processors. We pro-
pose a modular and efficient, open-source ATomic UNit (ATUN)
architecture that can be placed flexibly at different levels of
the memory hierarchy. ATUN demonstrates near-optimal linear
scaling for various synthetic and real-world workloads on an
FPGA prototype with 32 RISC-V cores. We characterize the
hardware complexity of our ATUN design in 22 nm FDSOI and
find that it scales linearly in area (only 0.5 kGE per core) and
logarithmically in the critical path.

I. INTRODUCTION

Atomic memory operations (AMOs) are ubiquitous in modern
concurrent algorithms. Many of them, such as compare-and-swap,
fetch-and-add, and LR/SC, can be used to implement lock- and
wait-free algorithms and data structures with strong progress
guarantees [14]. Theoretically, lock-free algorithms allow an
arbitrary number of threads to share a resource without the need
for serial execution on a lock. This is paramount for scaling
algorithms to a high number of threads, because even very short
intervals during which threads are serialized drastically limit the
potential speedup (Amdahl’s Law) [15].

Even though most instruction set architectures (ISAs) today
define AMOs (e.g., x86 [17], ARMv8 [3], RISC-V [27]),
their scalable implementation is not a solved problem: First,
implementation in commercial processors is a well-guarded secret,
thus there is a knowledge gap on the challenges and trade-offs
of implementing AMOs. Second, the subsystem for executing
AMOs is presumably tightly coupled to the processor architecture
and the memory hierarchy. Thus, techniques developed for
one multiprocessor architecture do not readily apply to other
architectures. Finally, AMOs on modern multiprocessors have
been shown to scale poorly to large numbers of threads [24, 8].

In this work, we fill the knowledge gap and present an open-
source hardware module to implement AMOs at any level in the
memory hierarchy. The proposed architecture decouples the
execution of AMOs and conditional-store-based primivites from
locking shared resources as much as possible. This allows our
solution to scale the throughput of AMOs linearly until the target
memory saturates.

Our module is designed for modern on-chip communication
protocols (OCCPs) and ISAs in general, but for concreteness we
describe an implementation compliant with the open, modular
RISC-V ISA [27] (§ II-A) and the industry-standard AXI
OCCP [2] (§ II-B). We describe how our module integrates into
a memory hierarchy in § III, give an overview of its design
in § III-A, describe the microarchitecture of its two stages in
§§ III-B and III-C, and discuss its liveness guarantees in § III-D.
We evaluate our system on a cycle-accurate FPGA prototype
(§ IV-A), where 32 cores share a second-level scratchpad memory,
and find (§ IV-C) that

1) The throughput of AMOs scales linearly with the number
of cores until the on-chip memory is saturated with and
without contention.

2) The latency of an AMO is only 25 % higher than a regular
load from that memory and under contention increases
linearly with 10 cycles per core.

3) The throughput of important concurrent algorithms scales
linearly with the number of cores until the memory bandwidth
is saturated.

We furthermore synthesize our design for a 22 nm FDSOI
technology for a variable number of cores in the system and find
that its area increases linearly at only 0.5 kGE per core and its
longest path scales logarithmically with the number of cores
(§ IV-D). We compare to related work in § V and conclude in § VI.

II. BACKGROUND

We briefly describe RISC-V’s semantics for atomics and its
memory consistency model (§ II-A) as well as modern on-chip
communication at the example of AXI (§ II-B).

A. RISC-V ISA
RISC-V [27] is an open ISA and its flexibility and modularity

make it ideally suited for this work. We follow the RISC-V
terminology and call a processor component core if it contains
an independent instruction fetch unit. One core might support
multiple hardware threads (harts) through multithreading.

RISC-V’s ‘A’ extension specifies two different types of atomic
instructions: the LR/SC pair and AMOs. A load-reserved (LR)
loads a word and simultaneously places a reservation for the
hart on the read memory location. This reservation does not
prevent other harts from reserving the same location or from
reading or writing to the same location, but any modification of a
memory location clears all reservations to that location. The store-
conditional (SC) instruction stores a word at a memory location
if the hart has a valid reservation and returns a value indicating
whether the store succeeded. Together, the LR/SC pair can be
used to implement atomic read-modify-write (RMW) operations.

Atomic memory operations (AMOs) implement a fixed set of
atomic RMW operations, which match those of the C11/C++11
atomic operations library, facilitating its fast implementation. The
operations are SWAP, ADD, bitwise AND, OR, and XOR, and signed
and unsigned MIN and MAX on 32- and 64-bit words (the latter
only on 64-bit processors).

RISC-V’s memory model is built around release consis-
tency [10]. Each hart executes its instructions so that they appear
in program order as seen from the executing hart. Memory
instructions from other harts, however, may be observed in a
different order. This so-called RISC-V Weak Memory Order
(RVWMO) gives computer architects the flexibility to design
scalable and high-performance systems but burdens software
developers with inserting explicit memory instructions where

required – although RVWMO and AMOs were designed to
implement the C11/C++11 memory model efficiently. RISC-V
optionally defines a stronger total store ordering (TSO) memory
model. Our work can accommodate both RVWMO and RVTSO.

B. Modern On-Chip Communication and AXI

Modern on-chip communication is centered around the premise
of high-bandwidth point-to-point data transfers. To fulfill this
premise despite increasing point-to-point latencies, three central
traits of modern on-chip communication protocols are: burst-based
transactions, multiple outstanding transactions, and transaction
reordering. Our design targets these central traits in general, so the
concepts we present potentially apply to a wide range of modern
on-chip protocols. More tangibly, we adhere to the latest revision
(5) of the AMBA Advanced eXtensible Interface (AXI) [2]. AXI
is one of the industry-dominant OCCPs and the only OCCP with
an open specification and a widespread adoption in current real-
life systems designed by many different companies. Other modern
major commercial OCCPs with similar properties include Intel’s
Ultra Path Interconnect [21], AMD’s scalable data fabric [6], and
IBM’s Power9 on-chip interconnect [23].

AXI separates communication into two directions (read and
write), into channels for commands, data, and responses, and into
transfer items called ‘beats’. A transaction starts with a command
followed by one or multiple data beats and ends with a single
response (on a write) or the last of multiple responses (on a
multi-beat read). Each transaction is initiated by a master, targets
an addressed slave, and can involve multiple interconnecting
components.

Exclusive accesses in AXI are very close to the semantics
of LR/SC in RISC-V. The basic mechanism is that a master
issues an exclusive read (LR in RISC-V) to an address and some
(unrestricted) time later an exclusive write (SC) to the same
address. The exclusive write then succeeds if no other master
has written to that address since the exclusive read and fails
otherwise. Only successful exclusive writes modify the memory.

Atomic transactions, which are write transactions with an
added atomic opcode, were added in AXI5. There are four types
of atomic transactions: store, load, swap, and compare. An atomic
swap unconditionally replaces the memory value at an address with
the provided data value and returns the original value; an atomic
compare replaces the value in memory only if it matches a second
provided data value. Atomic loads and stores unconditionally
apply one of eight operations (add, clear, exclusive or, set, and
signed and unsigned minimum and maximum) on the memory and
a provided value. Atomic loads return the original memory value;
atomic stores return a response without data. Although specified
independently, the atomic transaction operations of AXI5 are a
superset of the AMOs of RISC-V: the atomic ADD, AND, OR,
XOR, and signed and unsigned MAX, and MIN instructions can
be mapped to atomic loads (or atomic stores if the destination
register is x0) and the SWAP instruction to an atomic swap.

III. DESIGN AND ARCHITECTURE

We describe the design and microarchitecture of our ATomic
UNit (ATUN) hardware module. Fig. 1 shows how the ATUN
can be placed in front of any memory that has an AXI-like
OCCP interface, giving system designers many options on where
in the memory hierarchy to resolve AMOs and LR/SCs.

L1 SPM

LL SPM Mem Ctrl

C
C
C
C

C
C
C
C

L1 SPM
C
C
C
C

C
C
C
C

L1 SPM
C
C
C
C

C
C
C
C

Interconnect

In
te

rc
on

ne
ct

In
te

rc
on

ne
ct

In
te

rc
on

ne
ct

ATUNs

Figure 1: Implementing AMOs with the ATUN (red horizontal bar) in a
memory hierarchy based on scratchpad memories (SPMs).

A. Design Overview
Our ATUN is composed of two stages: the AMO stage, which

serves the OCCP slave interface, and the LR/SC stage, which
controls the master interface (left ports of Fig. 2). The AMO
stage (§ III-C) resolves AMOs in its arithmetic logic unit (ALU)
and uses the atomicity guarantee provided by the subsequent
LR/SC stage to guarantee the single-copy atomicity of each
AMO. The LR/SC stage (§ III-B) guarantees the atomicity of an
LR/SC pair for any reorderable downstream memory interface.
B. LR/SC Stage

The LR/SC stage guarantees the single-copy atomicity of
LR/SC pairs as long as it “owns” the entire downstream memory
– i.e., no transactions can reach the downstream memory without
being observed by the LR/SC stage – but the downstream memory
(e.g., an off-chip memory controller) is free to reorder transactions
as defined by the OCCP’s memory semantics.

The LR/SC stage will always only emit transactions that are
non-exclusive. Downstream modules unconditionally execute all
writes and have full freedom of reordering transactions (as allowed
by the OCCP specification), which is essential for memory
controllers and other off-chip links to achieve high bandwidth.
The LR/SC stage considers these reordering options and fails an
exclusive store if a contending write could be reordered before
the exclusive store. A central feature of the LR/SC stage is that
it does not lock the write channel during exclusive accesses.

inject, excl.
B cmd queue

drop
W cmd queue

dropwrites
in flight

re
m

ov
e

add

check & clear

reservation
table

R resp queue

setcheck

excl.

do
w

ns
tr

ea
m

 (e
.g

.,
m

em
or

y)

AM
O

 st
ag

e

re
ad

cm
d

w
ri

te
re

sp
re

ad
da

ta
w

ri
te

cm
d|

da
ta

re
ad

cm
d

w
ri

te
re

sp
re

ad
da

ta
w

ri
te

cm
d|

da
ta

[resp]

Figure 2: Microarchitecture of the LR/SC stage.

The LR/SC stage, shown in Fig. 2, is composed of a reservation
table and control FSMs for the OCCP channels, which interact
through command queues. Read and write transactions are fully
independent. The algorithm to process them is essentially as
follows: Every read request is forwarded in the same clock cycle
and, if it is exclusive and no write to the same address is in-flight
downstream, places a reservation. If both a read and a write
request to the same address region are at the upstream interface

2

simultaneously, the write is stalled for one clock cycle to order
the effect of reads and writes on reservations. To maintain the
single-copy atomicity of LR/SC, a write is also stalled if an
address-overlapping exclusive write is in-flight downstream. In
all other cases, a write request is forwarded in the same clock
cycle. Exclusive write requests are forwarded if and only if the
reservation table holds a reservation for the targeted memory range
and the hart identified by the transaction ID. Each forwarded write
request clears all reservations to overlapping address ranges. Our
design supports any order of LR/SCs from the connected harts,
and all harts can reserve any address in the attached memory at
any time. When placed before a cache, the LR/SC stage relies
on the existing coherence protocol to guarantee atomicity and
snoops the coherence channel for invalidations, upon which
it clears matching reservations. If there are caches before the
ATUN, they, upon an AMO must invalidate the affected cache
line and forward the AMO.

The reservation table is at the core of the LR/SC stage. Each
hart is identified by a unique OCCP transaction ID, and since the
reservations by different harts must be independent, the reservation
table contains one entry per hart. While a cache-like structure
with less entries than harts would be attractive to save area, doing
so adds dependencies between reservations from different harts,
which can lead to livelocks and deadlocks. The table is indexed by
the ID and stores the start address and size of an exclusive access.

The reservation table has two interfaces: The first interface
checks if a hart holds a reservation for an address and optionally
clears all reservations that have a range that match the address.
The second interface sets the entry for a hart to an address and
size. In the worst case (overlapping reservations for all harts and
a write to an address in the intersection), the entire table has to
be read and written before a request can be granted. As latency
is crucial for the LR/SC stage (discussed in § IV-C), the table is
implemented as an array of flip-flops so that all entries can be
compared and modified in parallel.

C. AMO Stage
The AMO stage executes AMOs by leveraging the atomicity

guarantee of the LR/SC stage. In a nutshell, each AMO is
translated into the following transactions: First, a read is issued
and the returned data is fed to the internal ALU together with
the operand. After the ALU has computed the result, a write is
issued to store it back to the memory. Once the write response
asserts that the operation is complete, both a write response and
a read response, containing the previous memory value, are sent
to the issuer of the AMO.

Figure 3: Flow diagram of AMO with fast path (blue, left) and slow
path (red, right).

1) Downstream Transactions: As the OCCP does not have to
order read with respect to write transactions, a read issued by the
AMO stage can overtake a write to the same address that passed
the AMO stage before it issued the read. In this case, the write
would violate the single-copy atomicity of an AMO. The LR/SC

starvation-free livelock-free deadlock-free

AMO X (D) X (B) X (A)

LR/SC X (E) X (C) X (A)

Table I: Liveness properties guaranteed by our ATUN.

stage solves this problem for SCs, and instead of replicating the
logic, the AMO stage uses the guaranteed atomicity of a successful
SC to ensure the atomicity of an AMO. As illustrated in Fig. 3, as
a first step on the fast path, an LR is issued to resolve an AMO.
Upon receiving the data and calculating the result, an SC is used
to write it back to the memory. If the SC was successful, the
LR/SC stage guarantees the atomicity of the LR/SC pair and the
AMO stage can send the responses for the AMO. This sequence is
called the fast path, as it executes the AMO immediately with the
assumption that it will succeed. However, an SC on the fast path
might fail due to conflicting writes by non-AMOs downstream,
but an AMO must never fail. Therefore, if the SC fails and does
not update the memory, the AMO stage executes the slow path.

The slow path only occurs when a program updates a memory
location both with regular writes and AMOs (which is not data
race free). This special case is usually not worth optimizing for,
and our implementation minimizes hardware spent on it: First,
the AMO stage completely drains the downstream write channel
to eliminate the possibility of a conflicting write transaction in
flight. Second, the AMO stage stalls not only conflicting but all
new write requests until the AMO has executed, because it does
not keep track of the target addresses of writes in flight and there
are no ordering guarantees on writes. Finally, the AMO stage
uses a regular read followed by a regular write transaction to
execute the AMO.

up
st

re
am

 (e
.g

.,
ha

rt
s)

LR
/S

C
st

ag
e

re
ad

cm
d

w
ri

te
re

sp
re

ad
da

ta
w

ri
te

cm
d|

da
ta

re
ad

cm
d

w
ri

te
re

sp
re

ad
da

ta
w

ri
te

cm
d|

da
ta

Figure 4: Microarchitecture of the AMO stage.

2) Microarchitecture: As shown in Fig. 4, the microarchitecture
consists of controllers for the OCCP channels and an execution
unit to compute AMOs. In the absence of AMOs, the AMO
stage is transparent for incoming transactions. When handling an
AMO, the AMO stage injects reads and writes between regular
transactions with priority. This not only reduces the latency
of single AMOs but also increases the throughput of AMOs,
as this microarchitecture processes AMOs sequentially. This
microarchitecture was designed for low latency and low area, but
architectural extensions that feature multiple parallel execution
units, pipeline the fetching and writeback of operands, and/or can
fuse AMOs to the same address are possible.

D. Liveness Guarantees
Three liveness properties are essential to guarantee progress in

multi-master communication: freedom from starvation, from
livelocks, and from deadlocks. OCCPs stipulate rules to make

3

any two transactions free from livelocks and deadlocks, and
arbitrators are commonly required to be starvation free. Under
these assumptions on downstream and upstream, our ATUN
guarantees the liveness properties listed in Table I as follows: (A)
Both AMOs and LR/SCs are free from deadlocks because each
AMO, LR, and SC individually completes within a bounded
number of cycles and, once completed, does not preclude any
other instruction from progressing. (B) AMOs are entirely free
from livelocks because they are executed in the order they enter
the AMO stage, resulting in unconditional progress among all
AMOs. (C) LR/SCs are free from livelocks because one among
multiple contending LR/SC pairs always succeeds. (D) AMOs are
starvation-free because they are unconditionally executed in the
order they enter the AMO stage within a bounded number of
cycles. (E) The execution of LR/SC pairs is free from starvation,
but their success is only guaranteed to be starvation-free for
disjoint addresses because any such pairs do not change the
success of each another. While it is possible to write programs
based on LR/SC that prevent one hart from ever succeeding an SC
(or that deadlock or livelock the program), such liveness violations
do not extend to other programs or even system components and
thus do not impair the liveness guarantees of our ATUN.

IV. EVALUATION

We built a multicore architecture (§ IV-A) to evaluate multiple
variants of four benchmarks representing a wide range of loads on
our ATUN, and we characterize throughput and contention (§ IV-C)
in cycle-accurate execution on an FPGA. Finally, we characterize
the hardware complexity in a 22 nm technology (§ IV-D).
A. Evaluated Architecture

In
te

rc
on

ne
ct

L2
SPM

Cluster 1
L1 SPM

Cluster 2
L1 SPM

Cluster 4
L1 SPM

L1
 S

PM
Ba

nk
 1

Crossbar

L1
 S

PM
Ba

nk
 2

L1
 S

PM
Ba

nk
 3

L1
 S

PM
Ba

nk
 1

6

RV32
Core 1

RV32
Core 2

RV32
Core 8

DemuxIn
te

rc
on

ne
ct

L1
 S

PM
Ba

nk
 4 ...

...

DemuxCluster 3
L1 SPM

Demux

...

ATUN

Figure 5: Architecture of the evaluated system, where one instance of
our ATUN is in front of the L2 SPM shared by four clusters each
composed of eight RISC-V cores.

Fig. 5 shows an overview of the multicore architecture that
we assembled to evaluate our ATUN. 32 cores organized in 4
clusters share a L2 scratchpad memory (SPM) through a fully-
connected-crossbar interconnect. In front of the L2, one ATUN
handles atomic and exclusive memory accesses. We focused our
evaluation on this case to show the benefits and limits of our
proposed approach where many harts share one ATUN. All cores
within a cluster share a multi-banked L1 SPM, which is used by
the benchmarks to store core-private data. Each core implements
one RISC-V in-order hart.

We implemented the evaluation architecture on a field-
programmable gate array (FPGA) to be able to measure throughput
and contention in benchmarks cycle-accurately. For measurements
inside the memory hierarchy, we inserted hardware performance
monitors that do not interfere with execution into our system. We
measured the number of cycles on the cycle-accurate FPGA
implementation and scaled throughput and latency numbers

(§ IV-C) to the frequency achieved by the application-specific
integrated circuit (ASIC) implementation (§ IV-D).

B. Terminology: Atomic Locality

We call a set A of atomic variables local to a set of harts H
during a time interval T if there exists no hart outside H that
accesses any variable in A during T . Let H consist of all harts
executing a workload, then during some interval T , the atomic
locality of that workload is |H|/|A|. A high atomic locality is
neither “good” nor “bad”: For highest performance, the memory
to which the ATUN is connected should be able to simultaneously
hold all variables in A, implying moderate values of atomic locality
are “good”. If the atomic locality is too high, however, it becomes
“bad” as the probability of conflicts in the shared ATUN increases.

C. Throughput and Contention

We selected four different benchmarks to evaluate our ATUN
under a wide range of loads. In all benchmarks, contention is
maximized by programming all harts to execute the specified
atomic operations without interruption. The execution time of the
slowest hart is used as the total system execution time.

1) Synthetic Maximum Contention: For maximum contention,
a variable number of harts execute a single (write or AMO) or
two (LR and SC) memory operations to the L2 memory without
interruption in a loop. All writes and AMOs target the same
memory location. All LR/SCs go to different memory locations
so that every SC is successful and leads to a write. We use this
to find the upper bound on the throughput and the lower bound
on the latency as a function of harts under maximum contention.

1 4 8 12 16 20 24 28 32
Harts

0

125

250

375

500

625

T
hr

ou
gh

pu
t [

M
O

ps
/s

] Write LR/SC AMO

×2

roofline

×5

Figure 6: Throughput of writes, LR/SC pairs, and AMOs as a function
of harts under maximum contention.

The throughput of writes, LR/SC pairs, and AMOs under
maximum contention on the evaluated architecture is shown
in Fig. 6. Even though the memory is clocked at 1 GHz, the
memory controller can only accept a read or write every second
clock cycle, leading to a peak throughput of 500 MOps/s. The
write curve forms the roofline for the evaluated architecture. Both
writes and LR/SC pairs scale linearly up to 12 harts, and LR/SC
pairs achieve exactly half the throughput of writes because one
LR/SC pair is composed of two memory operations. The current
implementation of our ATUN requires 10 cycles to resolve one
AMO if the memory controller can accept a read or write only
every second cycle: 2 cycles forth and 2 cycles back for the
read, one for the computation of the AMO, four cycles for the
write, and one to accept the next AMO. Therefore, it can process
one AMO every tenth cycle, which is five times lower than
writes only. Nonetheless, the evaluated architecture can sustain a
throughput that is half the roofline for LR/SCs, which is optimal
when all SCs are successful (as in this benchmark), and a fifth of
the roofline for AMOs even under maximum contention, which
is a synthetic worst-case scenario.

4

2) Lock-Free Memory Allocator: We implemented the lock-
free buddy allocator proposed in [20]. Memory is allocated in
chunks of discrete sizes and managed by a binary tree, whose
nodes are atomic variables. We implemented the algorithm once
with AMOs and once with some AMOs replaced by LR/SC-
based atomic read-modify-writes to maximize throughput. This
algorithm requires modifying several different shared variables
atomically, so it represents algorithms with low atomic locality.

1 4 8 12 16 20 24 28 32
Harts

0

2

4

6

8

10

T
hr

ou
gh

pu
t [

M
O

ps
/s

]

AMO+LR/SC
AMO

saturation

M
em

or
y

ut
ili

za
tio

n
[%

]

0

20

40

60

80

100

Figure 7: Throughput (left scale, filled markers) and utilization of the
memory interface (right scale, empty markers) as a function of harts for
two variants of the lock-free memory allocator, which has low atomic
locality.

The throughput of the lock-free allocator is shown in Fig. 7.
The AMOs-only variant scales linearly up to ca. 20 cores. Beyond,
the ATUN saturates as it can handle one AMO every 10 cycles.
The second variant combines AMOs and LR/SC. This leads to a
balanced utilization of the ATUN and the memory, saturating
both for the maximum number of harts.

3) Lock- or Wait-Free Concurrent Queue: As a representative
of algorithms with high atomic locality, we implemented the
concurrent queue algorithm proposed in [28]. Only two atomic
variables, the head index and tail index, arbitrate the access to the
shared queue. We implemented two variants of the algorithm: in
one we use AMOs to atomically modify the head and tail index,
in the other we use LR/SC pairs for that purpose. As the variant
with AMOs is wait-free whereas the variant with LR/SCs is only
lock-free, we use this to compare the throughput of the two
operation types and the cost of the higher progress guarantee.

0

4

12

16

8

16

1 4 8 12 16 20 24 28 32
Harts

T
hr

ou
gh

pu
t [

M
O

ps
/s

]

LR/SC
AMO

saturation

0

25

50

75

100

M
em

or
y

ut
ili

za
tio

n
[%

]

Figure 8: Throughput (left scale, filled markers) and utilization of
memory interface (right scale, empty markers) as a function of harts for
two variants of the concurrent queue, which has high atomic locality.

The throughput of both variants is shown in Fig. 8. Remarkably,
the throughput of the variant with the stronger progress guarantee
(AMO) is consistently higher. The reason is that this concurrent
queue has a very high atomic locality with only two atomic
variables. In such cases, the success rate of LR/SC pairs quickly
degrades and limits the throughput of the LR/SC variant whereas
AMOs always succeed. The algorithm reads from L2 memory
not only with AMOs, and the combined throughput of reads
limits the AMO variant.

4) Parallel Histogram: The histogram benchmark is represen-
tative for algorithms with data-dependent atomic access patterns.
The shared target histogram is allocated with B bins in the L2

memory. Each hart reads values from an array in the L1 memory
of its cluster and atomically increments the bin to which the
value belongs. We implemented two variants, one that uses
LR/SC and one that uses an AMO ADD for atomically modifying
the shared variable, to be able to compare the effectiveness
of LR/SC to AMOs in this scenario. In order to focus on L2
contention, we deliberately do not accumulate in the shared L1
and then update the L2 in batches.

1 4 8 12 16 20 24 28 32
Harts

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t [

M
O

ps
/s

]

LR/SC: 256 bins
LR/SC: 64 bins
LR/SC: 16 bins
LR/SC: 4 bins
AMO

Figure 9: Throughput of the histogram benchmark as a function of harts
for different atomic localities.

The throughput of AMOs and LR/SCs in the histogram
benchmark is shown in Fig. 9. As the current implementation of
the AMO stage processes all AMOs in series, the locality does
not influence the throughput. For LR/SCs, however, it is of major
importance, because their success depends on the number of
shared variables accessed. This benchmark shows the locality of
AMOs required for LR/SC to outperform AMOs under maximum
contention. With the likelihood of collisions decreasing when
more bins are used, the LR/SC version reaches the maximum
possible throughput on the evaluated system at 250 MOps/s.

5) Summary: In most cases, the throughput of AMOs through
the ATUN scales linearly until the memory at which the ATUN
executes AMOs saturates. When the throughput of AMOs
saturates before the memory bandwidth is reached, this is due
to the AMO stage processing one AMO every 10 cycles, and
further microarchitectural improvements could alleviate this
bottleneck. Whether to use AMOs or LR/SCs to implement an
atomic operation depends mainly on the atomic locality.

D. 22nm FDSOI Hardware Complexity

4 8 16 32 64 128

100

101

102

A
re

a
[k

G
E

]

Harts

Reservation Table
AMO Stage
State and Commands

AXI
Remainder

Figure 10: Hardware complexity of our ATUN as a function of the
maximum number of concurrent harts. The dashed line is y = 0.7x to
show the linear growth of the reservation table at 0.5 kGE per hart.

We synthesized our ATUN for a target frequency of 1 GHz on
GlobalFoundries’ 22 nm FDSOI. Fig. 10 shows the hardware
complexity in number of gates of one instance of our ATUN
as a function of the number of harts for which it can track
reservations. Overall, the complexity increases linearly with
the number harts—both axes are log scale—at only 0.5 kGE
(100 µm2 in 22 nm) per hart. The complexity is dominated by
the reservation table, which causes the linear asymptote. The
OCCP interface grows logarithmically with the number of harts

5

(to encode additional hart IDs), and the state and command
queues as well as the entire AMO stage remain constant.

The longest path through our ATUN (ca. 1050 ps) involves the
unpipelined ALU in the AMO stage, and it does not increase
with the number of harts. Few paths grow logarithmically with
the number of harts, e.g., at the interfaces of the reservation
table, but they do not become critical for the evaluated number
of harts. In summary, the hardware implementation of our ATUN
is ideally suited to scale to a large number of harts at a very low
hardware cost per hart.

V. RELATED WORK

To the best of our knowledge, our work is the first to introduce
the concept of decoupling reservations for exclusive memory
accesses and execution of AMOs. As a result, for the first time
memory hierarchy designers can decide at which memory level
AMOs are resolved. Additionally, our work is the first to describe
the microarchitecture of a hardware module that is designed to be
shared by multiple harts to resolve atomic memory accesses and
evaluate its performance scalability and hardware complexity. As
AMO resolution is deeply embedded into the memory subsystem
in related work, a quantitative comparison is very complex and
we focus on a qualitative comparison.

Executing atomic fetch-and-φ operations close to the memory
has already been proposed in early multiprocessors [12], and
our work extends this concept to LR/SCs and modern on-
chip communication with transaction reordering. Combining
networks have been proposed to scale fetch-and-φ to many
parallel requestors [12, 26, 19], and while our current ATUN
cannot directly be integrated into network nodes, extending our
work in this direction potentially allows to scale the throughput
beyond the bandwidth of the target memory.

The x86 ISA [16, 17] specifies AMOs that are different from
those of RISC-V, and these operations seem to be resolved at
the L1 cache of each core [24]. However, there is no public
information available on how write buffer, L1 cache, and pipeline
stages interact to resolve AMOs. The poor performance of RMWs
in x86 is partially caused by TSO requirements, and works such as
[22] that relax those are orthogonal to our work. ARM [3] specifies
similar AMOs as RISC-V and their AXI and AXI Coherency
Extensions (ACE) [2] protocols allow remote AMOs, but there is
no public information available on the options for resolving
atomic memory operations in an ARM-based multiprocessor.

Two instances of open-source, many-core capable multipro-
cessors are OpenPiton [5] and Rocket chip [4]. In OpenPiton,
each core has a private L1 and L1.5 cache, and all cores share
a common (distributed) L2, at which AMOs are executed. In
contrast to the ATUN, AMO execution is embedded into the cache
and does not include uncached or off-chip accesses. The multicore
Rocket chip [4] uses a coherent TileLink-C interconnect [25]
similar to ACE. AMOs to the peripheral space are forwarded
on the bus while atomics on main memory are resolved in the
processor’s L1 data cache by using the cache coherency protocol
to obtain a unique copy of a cache line. This seems similar to
the close coupling of resolving atomics between core and L1 on
x86 architectures. In contrast, our ATUN could resolve AMOs at
the last level cache.

General-purpose graphic processing units (GPGPUs) are
another important class of parallel processors, known in particular
for scaling performance to a large number of threads. AMOs on
memory shared by more than one SIMT unit, however, were long

avoided by programmers of GPGPUs because their lock-based
implementation [11] used to destroy just that performance scaling
both on AMD [8] and NVIDIA [1] GPGPUs, and researchers
proposed architectural changes to improve this [9]. Indeed, the
latest GPGPUs generations significantly improved the performance
scaling of atomic instructions by adding microarchitectural support
for executing them on shared memory [7, 18]. Nonetheless, atomic
updates and synchronization remain a limiting factor in many
HPC applications and the demand for faster atomics persists [13].

VI. CONCLUSION AND OUTLOOK

We propose the concept of modular ATomic UNits (ATUNs),
which decouple the execution of AMOs and conditional-store-
based primitives from locking shared resources in the common
case. ATUNs can implement AMOs at different levels of the
memory hierarchy in manycore processors. We designed and
implemented an ATUN that supports RISC-V’s AMOs and memory
model on standard OCCP interfaces (AXI specifically). We
demonstrated the performance of our ATUN on a cycle-accurate
FPGA prototype with 32 cores. We evaluated the hardware
complexity of our design in 22 nm FDSOI and find that its area
scales linearly at only 0.5 kGE per hart and its combinatorial
delay scales logarithmically. Our ATUN has been integrated into
the application-class open-source Ariane [29] RISC-V core,
which successfully runs Linux, where atomics play a vital role.

We expect that our work lays the foundation for further
research on modular microarchitectures and optimizations of
ATUNs. As explained throughout the architecture and evaluation
sections, no single ATUN microarchitecture can perfectly match
the wide range of multiprocessor architectures and domain-
specific concurrent workloads. To foster future work on this
topic, we release our ATUN implementation, which is written in
industry-standard SystemVerilog, under a permissive open-source
license at https://github.com/pulp-platform/axi_riscv_atomics.

ACKNOWLEDGMENTS
This work was partially funded by the EU’s H2020 project OPRECOMP (No.
732631).

REFERENCES
[1] A. Adinets. CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics. 2014.
[2] Arm Ltd. AMBA AXI and ACE Protocol Specification. 2017.
[3] Arm Ltd. ARMv8-A Architecture Reference Manual. 2019.
[4] K. Asanovic et al. The Rocket chip generator. 2016.
[5] J. Balkind et al. “OpenPiton: An Open Source Manycore Research Framework.” In: ASPLOS.

2016.
[6] T. Burd et al. “Zeppelin: An SoC for Multichip Architectures.” In: IEEE JSSC (2019).
[7] S. G. De Gonzalo et al. “Automatic generation of warp-level primitives and atomic instructions

for fast and portable parallel reduction on GPUs.” In: CGO. 2019.
[8] M. Elteir et al. “Performance Characterization and Optimization of Atomic Operations on AMD

GPUs.” In: 2011 IEEE Cluster. 2011.
[9] S. Franey et al. “Accelerating atomic operations on GPGPUs.” In: NoCS.

[10] K. Gharachorloo et al. “Memory consistency and event ordering in scalable shared-memory
multiprocessors.” In: ISCA. 1990.

[11] J. Gomez-Luna et al. “Performance Modeling of Atomic Additions on GPU Scratchpad Memory.”
In: IEEE TPDS (2013).

[12] A. Gottlieb et al. “The NYU Ultracomputer—Designing an MIMD Shared Memory Parallel
Computer.” In: IEEE TC (1983).

[13] S. D. Hammond et al. On the Importance of Faster Atomics. 2017.
[14] M. Herlihy et al. The Art of Multiprocessor Programming. 2011.
[15] M. D. Hill et al. “Amdahl’s Law in the Multicore Era.” In: Computer (2008).
[16] Intel Corporation. Intel 64 and IA-32 architectures optimization reference manual. 2019.
[17] Intel Corporation. Intel 64 and IA-32 architectures software developer’s manual. 2019.
[18] Z. Jia et al. Dissecting the NVIDIA Volta GPU architecture via microbenchmarking. 2018.
[19] A. R. Lebeck et al. “Request combining in multiprocessors with arbitrary interconnection

networks.” In: IEEE TPDS (1994).
[20] R. Marotta et al. A Non-blocking Buddy System for Scalable Memory Allocation on Multi-core

Machines. 2018.
[21] D. Mulnix. Intel Xeon Processor Scalable Family Technical Overview. Intel Corp., 2017.
[22] B. Rajaram et al. “Fast RMWs for TSO: Semantics and Implementation.” In: PLDI. 2013.
[23] S. K. Sadasivam et al. “IBM Power9 Processor Architecture.” In: IEEE Micro (2017).
[24] H. Schweizer et al. “Evaluating the cost of atomic operations on modern architectures.” In: PACT.

2015.
[25] SiFive Inc. TileLink Specification. 2018.
[26] N.-F. Tzeng. “A cost-effective combining structure for large-scale shared-memory multiproces-

sors.” In: IEEE TC (1992).
[27] A. Waterman et al. The RISC-V instruction set manual. 2011.
[28] C. Yang et al. “A Wait-free Queue As Fast As Fetch-and-add.” In: PPoPP. 2016.
[29] F. Zaruba et al. The Cost of Application-Class Processing: Energy and Performance Analysis of

a Linux-ready 1.7GHz 64bit RISC-V Core in 22nm FDSOI Technology. 2019.

6

