
Kanor
A Declarative Language for Explicit Communication

Eric Holk1, William E. Byrd1, Jeremiah Willcock1, Torsten Hoefler2, Arun Chauhan1,
and Andrew Lumsdaine1

1 School of Informatics and Computing
Indiana University

Bloomington, IN 47405, U.S.A.
{eholk,webyrd,jewillco,achauhan,lums}@cs.indiana.edu

2 Blue Waters Directorate
University of Illinois at Urbana-Champaign

Urbana, IL 61801, U.S.A.
htor@illinois.edu

Abstract. Programmers of high-performance applications face two major im-
plementation options: to use a high-level language which manages communica-
tion implicitly or to use a low-level language while specifying communication
explicitly. The high-level approach offers safety and convenience, but forces pro-
grammers to give up control, making it difficult to hand-tune communications or
to estimate communication cost. The low-level approach retains this control, but
forces programmers to express communication at a verbose, tedious, and error-
prone level of detail.
We advocate a complementary third approach in which the programmer declar-
atively, but explicitly, specifies the essence of the communication pattern. The
programmer lets the implementation handle the details when appropriate, but re-
tains enough control to hand-encode communications when necessary. In this
paper we present Kanor, a language for declaratively expressing explicit commu-
nication patterns, and demonstrate how Kanor safely, succinctly, and efficiently
expresses both point-to-point and collective communications.

1 Introduction
Large parallel computers, and the software that runs on them, are important to many
areas of science and engineering. The largest of these computers consist of many sep-
arate nodes, connected by a high-performance network. These computers implement
a message passing model for parallelism: processes have separate address spaces and
communicate through messages. Programming languages and libraries can abstract this
model, exposing instead a model with a global address space and implicit communica-
tion of data. Thus, programmers face a choice between these two approaches.

The implicit approach to communication is exemplified by languages such as X10 [4],
UPC [14], and Co-array Fortran [12]; the de facto standard for explicit communication
is the Message Passing Interface (MPI) [11]. There is a tradeoff between the implicit
and explicit approaches to message passing, however. Implicit approaches are easier to
program, but have more opaque performance characteristics, and thus their performance



is harder to predict or tune. Explicit approaches are more difficult to program, requiring
communication to be specified at a very fine-grained level of detail and thus leading to
more errors, but allow more knowledge and control over a program’s behavior and thus
its performance.

In this paper we advocate a third, complementary approach in which the program-
mer uses a high-level declarative language to explicitly specify communication within
an otherwise imperative program. This approach allows both programmer control and
ease of programming, while allowing programs to be incrementally converted from
fully explicit approaches to our declarative language.

Many, if not most, MPI applications are written in a bulk synchronous parallel
(BSP) style [15]: each process runs the same program—Single-Program, Multiple Data
(SPMD)—and alternates between steps of purely local computation and communica-
tion. One compute/communicate phase is called a superstep; there is a global synchro-
nization at the end of each superstep. Examples of programs that are conveniently ex-
pressed in BSP style include iterative solvers, sparse matrix-vector multiplication, and
many n-body algorithms.

We have designed a high-level, declarative language, Kanor, for specifying collec-
tive communication in BSP-style programs. Kanor provides a balance between declar-
ativeness and performance predictability and tunability. We have implemented a proto-
type compiler for Kanor which infers the types and sizes of the data being sent auto-
matically and generates efficient code. As a result, the programmer can express commu-
nication safely, simply, and concisely, while paying little to no abstraction penalty, as
shown by a performance evaluation. The declarative, high-level nature of Kanor, com-
bined with its simple parallel assignment semantics, exposes opportunities for future
optimizations.

Our paper makes the following contributions:

– A declarative language, Kanor, for explicitly expressing collective communication
within BSP-style programs concisely and declaratively (Section 4). Kanor extends
C++’s type enforcement to communication patterns, and avoids deadlocks, unin-
tentional race conditions, non-deterministic behavior based on message size, and
other semantic pitfalls of MPI.

– A categorization of common communication patterns based on the knowledge avail-
able to the communicating processes (Section 3). We then show how Kanor takes
advantage of this classification to communicate efficiently (Sections 5 and 6).

– Evaluation rules for Kanor (Section 4.1). The details of these rules are important to
the language’s properties: even a small change to the evaluation rules can radically
change the language’s expressiveness.

– A set of core algorithms that can be used to implement Kanor’s evaluation scheme
efficiently (Section 5).

– A prototype implementation of Kanor, which compiles Kanor expressions into C++
and MPI code (Section 6).

– A performance evaluation of Kanor against MPI, demonstrating that the conve-
nience of Kanor’s abstractions imposes minimal abstraction penalty when com-
pared to point-to-point MPI communication (Section 7).



2 Motivation

Despite MPI’s utility and popularity, MPI has its shortcomings. Consider this BSP-
style MPI communication, in which every processor sends a different value to every
processor whose process identifier (or rank) is even.

r = 0;
if(rank % 2 == 0)

for(j = 0; j < P; j++)
MPI Irecv(&A[j], 1, MPI INT, j, tag, MPI COMM WORLD, &reqs[r++]);

for(i = 0; i < P; i++)
if(i % 2 == 0)

MPI Isend(&B[i], 1, MPI INT, i, tag, MPI COMM WORLD, &reqs[r++]);
MPI Waitall(r, reqs, MPI STATUSES IGNORE);

The MPI Isend and MPI Irecv functions perform nonblocking sends and receives, respec-
tively, while MPI Waitall returns once all of the sends and receives have completed.

As this example shows, MPI requires programmers to write a considerable amount
of code at an error-prone level of detail to express even very simple communication
pattens. MPI does provide functions to concisely perform a fixed set of collective com-
munications, such as broadcasts. Collective statements are desirable because they are
concise, and can be optimized in system-specific ways to vastly outperform their point-
of-point equivalents. Even the simple communication pattern above, however, is awk-
ward to express using these collectives.

The programmer needs the ability to express collective communication succinctly
and declaratively, allowing the compiler to infer details such as the type of data being
sent. Ideally, the programmer would write the communication above as similarly to:

@communicate {
A[j]@i <<= B[i]@j where i in world, j in world, i % 2 == 0
}

The semantics of this idealized language would be based on parallel assignment, reliev-
ing the programmer from worries about deadlock and race conditions.

In addition to its verbosity, another problem with MPI is that it defeats C++’s type
enforcement. Consider this MPI snippet:

double b = 0.0;
float a = 1.0;

if(recv rank == rank)
MPI Recv(&b, 1, MPI DOUBLE, send rank, 0, MPI COMM WORLD,

MPI STATUS IGNORE);
if(send rank == rank)

MPI Send(&a, 1, MPI FLOAT, recv rank, 0, MPI COMM WORLD);

This example compiles and runs, but the result is clearly unintended. In some MPI im-
plementations, rank 0 may end with the value 5.26354e−315 for b, rather than the desired
value of 1.0. Not only is this result incorrect, this program’s behavior is undefined ac-
cording to the MPI specification, meaning the program may misbehave in subtle and
mysterious ways on different implementations. It is easy to see how this error might



occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;
float a = 1.0;

@communicate { b@recv rank <<= a@send rank }

and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate
blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be efficient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for efficiency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus



simplify and direct our language design. It is important to note that other types of com-
munication patterns can be transformed into to one of the three categories that Kanor
supports by performing additional communication steps.

Communication in Kanor is sender-driven. Each @communicate block corresponds
to either the global knowledge, corresponding knowledge, or sender knowledge case; in
all three cases, the sender knows the destination. The receiver knowledge case, which is
not as common as the first three cases, and requires an additional communication step,
can be expressed in Kanor as two independent @communicate blocks. In the current
Kanor implementation, the programmer may annotate each @communicate block with
an optional pragma indicating the global, corresponding, or sender knowledge case;
if no pragma is supplied, the compiler assumes the sender knowledge case. A future
version of the compiler should be able to infer this pragma in most cases. Incorrectly
specifying the hint is erroneous, and can lead to unspecified program behavior.

4 The Kanor Language

Figure 1 contains the grammar for Kanor. The nonterminals integer, variable, and expr
represent standard C++ integer literals, identifiers and expressions. The grammar ex-
tends C++ by allowing statements to also include the collective stmt.

collective stmt F @communicate hint comprehension
hint F ε | global | corresponding | sender

remote ref F expr @ expr
reduction F remote ref <<= remote ref

| remote ref << variable << remote ref
| reduction , reduction

comprehensionF { reduction where (clause , )∗ clause }
| { reduction }

set expr F expr | { expr ... expr }
clause F variable in set expr | expr

Fig. 1. Grammar for Kanor

Kanor allows set comprehensions, similar to the comprehensions found in Python
and Haskell. The comprehension contains generator clauses, which bind variables to
values in a set, and filter clauses, which restrict messages to be sent only when the
filters’ Boolean expressions evaluate to true. As might be expected, data is sent from the
sender’s process to the storage location on the receiver process; the complete evaluation
rules are given in Section 4.1.

Each top-level @communicate block encapsulates a logical communication, which
comprises one or more logically independent reductions (described below). The
@communicate form supports an optional compiler hint, which must be either global,
corresponding, or sender. These hints correspond to the first three classes of communica-
tion knowledge described in Section 3; the compiler’s use of these hints is essential for



good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn in e

where x0 through xn are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through xn are
independently assigned values from the set S, in effect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref τ0, e2 : τ1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in



Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;
}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]︸︷︷︸
storage
location

@ i︸︷︷︸
receiver

rank

<<=︸︷︷︸
reduction
operator

B[i]︸︷︷︸
data

@ j︸︷︷︸
sender
rank

where i in world,︸         ︷︷         ︸
generator

j in {0...i},︸        ︷︷        ︸
generator

i% 2 == 0︸        ︷︷        ︸
f ilter

It may seem that this information is sufficient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where
and in which environment each of these sub-expressions should be evaluated.

An important note about terminology: when we say that an expression e is evaluated
on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely different evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-effecting expressions
within a communication block should be avoided, as their behavior is unspecified.)



The programmer could be required to specify explicitly where expressions should
be evaluated—for example, indicating whether the storage location expression should
be evaluated on the sender or the receiver. Although this is the most general approach,
the level of detail required would make even the simplest communication cumbersome
to write. Instead, the rules for evaluating Kanor expressions are fixed and implicit:

A[j]︸︷︷︸
A:receiver,
j:sender

@ i︸︷︷︸
sender

<<=︸︷︷︸
receiver

B[i]︸︷︷︸
sender

@ j︸︷︷︸
all

where i in world, j in {0...i}, i% 2 == 0︸                                           ︷︷                                           ︸
all

The sender’s rank, along with where-bound generators and filters, are evaluated by
every process; this is necessary to determine which processes are senders. Furthermore,
the where-bound clauses are evaluated from left to right—this ordering is necessary
since clauses may reference variables introduced in previous clauses. The data expres-
sion and the receiver’s rank are evaluated on the sender’s process. Evaluation of the
storage expression is more complicated: the expression is evaluated on the receiver’s
process, except for where-bound variables, which are evaluated on the sender’s process
and sent if necessary.

The evaluation rules presented above are subtle: the slightest change can radically
change the expressiveness of the language. For example, it may seem that the receiver
rank should be evaluated on every processor, rather than just on the sender:

A[j] @ i︸︷︷︸
all

<<= B[i] @ j where i in world, j in {0...i}, i% 2 == 0

The symmetry of this approach is intuitively appealing: the expressions for both sender
and receiver ranks use the same evaluation rules. However, using this scheme the pro-
grammer cannot directly express the sender knowledge case, in which the ranks of
receiver processes are known only to the senders.

Consider another example of changing the evaluation rules. If all subexpressions,
other than op, are evaluated only on the sender, the evaluation model is equivalent to
a remote memory put or accumulate operation. If all subexpressions are evaluated on
the receiver, the model is equivalent to a remote memory get. Some collectives, such
as MPI Alltoallv, cannot be expressed using only one stage of communication using put
or get, but can be expressed as a single stage in Kanor. (Kanor supports, but is not re-
stricted to, put.) For this reason, some operations from other languages and interfaces
that superficially resemble Kanor’s transfer statement, such as MPI 2’s one-sided oper-
ations, actually have very different properties because of the different locations at which
the subexpressions are evaluated.

5 Core Algorithms

The evaluation semantics described in Section 4.1 can be implemented in a straight-
forward manner, using the algorithms presented below. We present algorithms for both
the corresponding and sender communication cases. Communication blocks that are
marked as global or corresponding use the Corresponding Communication Algorithm.
Sender-knowledge communication blocks use the Sender Communication Algorithm.



The Corresponding Communication Algorithm is given in Figure 2. In the corre-
sponding case, both parties are able to determine which messages will be sent and in
what order. This allows the receiver to post nonblocking receives ahead of time and
thereby avoid more complicated communication protocols. For each environment gen-
erated by the where clauses, each process p checks to see if it is sending, receiving, or
both. The algorithm then evaluates and applies the reduction operator to the received
messages.

1 Algorithm: Corresponding Communication Algorithm
2 Input: Receiver rank expression: Ee

Sender rank expression: Es

Data expression: Ed

Storage location expression: El

List of environments for where clauses: EnvSet
Local environment: L
My rank: m

3 receives← empty list
4 foreach e in EnvSet do
5 e′ ← extend env (L, e)
6 sender← eval (Es, e′)
7 receiver← eval (Er, e′)
8 if sender = m then
9 data← eval (Ed, e′)

10 start sending data to receiver

11 if receiver = m then
12 begin receiving data from sender
13 loc← eval (El, e′)
14 operator← eval (Eo, e′)
15 receives← append(receives, 〈loc, data, operator〉)

16 wait for all sends and receives to complete
17 foreach 〈loc, data, operator〉 in receives do
18 apply operator to 〈loc, data〉

Fig. 2. Algorithm for the corresponding knowledge case.

Sender-knowledge communication blocks use the algorithm given in Figure 3. This
is a slight modification of the NBX algorithm [8]. The algorithm first posts nonblocking
sends as before, but the sends in this case require an acknowledgment from the receiver
before completing the send. It then enters the NBX termination loop. This loop tests
to see if an incoming message is pending, and if so receives the message and stores
the result in the output list. It then checks if all pending sends have completed. If so,
the algorithm begins a nonblocking barrier which will signal that all processes have
finished communicating. Each process continues to receive messages until the barrier
is completed.



1 Algorithm: Sender Communication Algorithm
2 Input: Receiver rank expression: Ee

Sender rank expression: Es

Data expression: Ed

Storage location expression: El

List of environments for where clauses: EnvSet
Local environment: L
My rank: m

3 foreach e in EnvSet do
4 e′ ← extend env (L, e)
5 sender← eval (Es, e′)
6 if sender = m then
7 data← eval (Ed, e′)
8 fv← vars(e) ∩ free vars(El)
9 vals← lookup(fv, e′)

10 send 〈data, vals〉 to eval (Er, e′)

11 done← false
12 barrier active← false
13 while not done do
14 probe for message
15 if message waiting then
16 receive 〈data, e′, sender〉
17 send acknowledgment to sender
18 e′ ← extend env (L, e′)
19 loc← eval (El, e′)
20 operator← eval (Eo, e′)
21 apply operator to 〈loc, data〉

22 if barrier active then
23 if barrier is complete then
24 done← true

25 else
26 if all sends have been acknowledged then
27 start nonblocking barrier
28 barrier active← true

Fig. 3. Algorithm for the sender knowledge case.

In this case, receivers do not know how many messages they will receive, in which
order the messages will arrive, or the environments used on the senders to generate the
messages. For this reason, the sender must include the values of where-bound variables
that are used by the receiver. As a message is received, the reduction operator is applied
within the environment included in the message rather than the one available locally.



6 Implementation

Our prototype implementation consists of two parts: a compiler written in Scheme and
a runtime library written in C++. The Scheme portion of the compiler converts Kanor
expressions into C++. The resulting code relies heavily on the runtime library, which
performs most of the work in the communication and reduction operations.

6.1 Compiler

There is a small wrapper script for the compiler that extracts Kanor @communicate
blocks, converts them into S-expressions, and passes them to the main Kanor com-
piler, which compiles them into C++ using MPI. The resulting C++ code then replaces
the @communicate block. The design of the Scheme portion of the compiler is modeled
after the nanopass framework [13]. Structuring the compiler into many passes, each of
which performs very little work, enables rapid experimentation with a variety of im-
plementation approaches, which is crucial during this early prototype implementation
phase.

At a high level, the compiler converts where clauses into C++ for loops or if state-
ments as appropriate. The innermost body adds transfer expressions to a context imple-
mented by the runtime. For example,

@communicate corresponding { a@i <<= b@0 where i in world, (i % 2) == 0 }

would compile into something like:

{

corresponding communicate ctx;
for(int i = 0; i < world.size(); i++)

if((i % 2) == 0) { ctx.add transfer(a, i, b, 0); }
}

The other main function performed by the compiler is synthesis of message struc-
tures and associated reduction operators. This is necessary for sender-only knowledge
@communicate blocks in order to handle environments correctly. For example, consider
the statement:

@communicate sender {
A[k]@i <<= B[k]@j
where i in world, j in world, k in {0 ... 10}, k % stride == 0
}

Here, receivers cannot predict where to store values they receive, because the location
depends on the value of stride on the sender processor. Thus, when a sender sends the
value of B[k], it must also send the associated value of k so the receiver can store it in
the correct location. In order to do this, the compiler generates a structure such as:

struct send data {
int k;
double B k;
send data(int k, double B k) : k(k), B k(B k) {}
};



The compiler also wraps the user-specified reduction operator (assignment in this case)
with a new operator that unpacks the message structure, such as:

void set array(double ∗A, send data msg) { A[msg.k] = msg.B k; }

Finally, the compiler also generates serialization code for messages, such as those using
array slices, that might have variable lengths.

6.2 Runtime

The primary purpose of the runtime library is to implement the various communication
protocols. This is facilitated by a context class, as mentioned previously. The context
class provides an add transfer method, which indicates that a certain data transfer will
take place. The context class then executes the set of transfers. We provide contexts
for both corresponding and sender communication protocols, and the compiler selects
the correct context based on the user-supplied hint. The context is also responsible for
managing any temporary buffer space needed to realize Kanor’s semantics.

The corresponding context implements the algorithm in Figure 2. For corresponding
communication, the receiver can always tell how many messages it will receive, and
therefore can start a receive for each transfer in which it is the receiver. Likewise, the
context initiates a send for each transfer where a given processor is sending.

The sender context is somewhat more complicated because the communication pro-
tocol is more complex. Since receivers cannot determine the amount of data to expect,
we must use the algorithm given in Figure 3. This algorithm handles, with minimal
overhead, the case where each processor may receive an unknown amount of data. For
each transfer in which a given processor is sending, the sender context initiates a syn-
chronous send—i.e., a send that will not complete unless the message is received and
acknowledged. After all sends have been started, the context enters a receive and ter-
mination loop. If messages are waiting to be received, the context receives the message
and applies the reduction operator. Once all of a process’ sends have completed, it starts
a nonblocking barrier [5]. The barrier completes only after all processes have received
all the data that they will receive.

7 Performance

Programmers using a declarative language for communication can enjoy the benefits
discussed in Section 2 while paying little or no abstraction penalty. That is, the resulting
communication can be as efficient as the MPI equivalent. Furthermore, the declarative
approach enables optimizations that can make some communications more efficient
than their lower-level equivalents.

To show that our approach is feasible, we have conducted preliminary benchmarks
for our unoptimized Kanor implementation. Evidence that Kanor is competitive with
point-to-point MPI code can be seen in Figure 4, which shows the time in microseconds
to execute the first example from Section 1 as the number of processors increases. The
graph shows three communication variants: a Kanor version using the corresponding-
knowledge algorithm, a Kanor version using the sender-knowledge algorithm (NBX),



and a point-to-point MPI version. The reported time is the arithmetic mean of four runs,
each of 15,000 collective operations. Measurements were performed on Odin, a 128-
node InfiniBand cluster (Single Data Rate). Each node is equipped with two 2 GHz Dual
Core Opteron 270 CPUs and 4 GiB RAM. In order to emphasize the communication
cost, we limited the program to only one task per node. Figure 4 shows that there is
minimal overhead as a result of using Kanor.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80  90  100

Ex
ec

ut
io

n 
tim

e 
(µ

s)

Number of nodes

Kanor (Corresponding)
Kanor (Dynamic)

MPI

Fig. 4. Time required to execute the first example communication statement from Section 1 as
the number of processes increases. This graph compares point-to-point MPI communication with
Kanor versions using both the corresponding sender algorithms.

8 Related Work
Partitioned Global Address Space (PGAS) languages, such as UPC [14], Co-array For-
tran [12], X10 [4], and Chapel [3], provide programmers with explicit control over data
placement, but still use shared-memory-like semantics with implicit communication.
They distinguish between references to local vs. remote memory, however; the earlier
High-Performance Fortran (HPF) language was similar to PGAS, but without this ex-
plicit distinction [9]. These languages differ from Kanor in several ways: they provide a
global address space, they do not allow (or expect) programmers to specify communi-
cation explicitly, they do not segregate communication from computation, and they do
not provide collective semantics for general communications. Kanor, on the other hand,
exposes a distributed address space without direct access to remote memory; communi-
cation operations must be specified explicitly, rather than implicitly through a memory
consistency model. Kanor also has separate communication blocks, separated from an
application’s computation. These communication operations are collective, matching
the BSP model often used in message-passing programs.



Kanor @communicate blocks are similar to sparse collective operations as proposed
for the upcoming MPI-3 standard [6]. The main difference is that Kanor allows a simpler
high-level specification of the patterns while retaining all optimization possibilities.

Erlang is a declarative programming language designed for developing highly scal-
able, reliable concurrent applications [1]. Erlang supports dynamic creation and de-
struction of processes. Although Erlang is a declarative, functional programming lan-
guage, its message passing abstractions resemble those in imperative languages since
programmers write individual sends and receives. Unlike Kanor, Erlang does not pro-
vide or encourage collective communication.

Eden [10] is a high-level declarative language for parallel programming. Their ap-
proach is to start with a more declarative language (Haskell) and add support for par-
allelism. In contrast, we are adding declarative features to C++. While performing on
par with MPI is an explicit non-goal for Eden, there is nothing fundamental about the
design of Kanor that prevents it from achieving performance similar to pure MPI pro-
grams. Eden has a much richer processor abstraction than is provided by Kanor.

Data Parallel Haskell (DPH) adds parallel arrays to Haskell along with operations
on parallel arrays, e.g., fold. DPH lacks mechanisms to send messages explicitly, and
lacks X10- or Chapel-like constructs to express locality. However, it supports nested
parallelism, similar to NESL, which is a nested data-parallel language [2].

XcalableMP’s [16] gmove construct specifies collective communications as prag-
mas using concepts similar to those in Kanor. However, a single gmove statement can-
not perform data reductions and covers only the global knowledge case while other
cases require a mix of multiple pragmas and serial code.

9 Conclusion and Future Work
We demonstrated it is both feasible and desirable to use a declarative domain-specific
language to express communication patterns explicitly. Programs that use Kanor are
shorter, simpler, and safer than their MPI equivalents.

Perhaps the greatest limitation of our approach is that some problems are not nat-
urally expressed in BSP style. Another limitation is that receiver-only knowledge pat-
terns can’t be expressed within a single @communicate block. Receiver-only patterns are
inherently inefficient, however, so this limitation is minor.

Our model is not restricted to message passing over distributed memory. We also
hope to explore a shared memory version of Kanor. There are two obvious approaches
to integrating shared memory into the Kanor model. The first is to allow multiple threads
per Kanor process. The second is to allow multiple Kanor processes within a single
address space, but allow them to communicate only through Kanor.

We also plan to add communication optimizations to the Kanor execution engine.
Those optimizations are similar to optimizations for sparse collective operations [6].

We intend to continue exploring different evaluation rules, to better understand their
effects on the expressiveness of Kanor. We plan to explore one-sided and non-blocking
communication to exploit the communication/computation overlap inherent in BSP ap-
plications. An interesting problem is to infer the global/corresponding/sender annotations.
We may also allow additional programmer annotations (for example, whether a reduc-
tion operator is commutative) to enable additional optimizations.



Acknowledgments This research was supported in part by NSF grant CSR-0834722
and by a grant from the Lilly Foundation. The Odin cluster used for our benchmarks
was purchased using NSF grant EIA-0202048.

We thank Pushkar Ratnalikar and Nilesh Mahajan for porting several MPI programs
to Kanor, investigating several papers describing related work, and for their comments
on the paper. Amr Sabry and Dan Friedman provided helpful comments on earlier
drafts. We also thank Nick Edmonds, Josh Hursey, Joseph Cottam, and members of
Indiana’s Open Systems Lab and PL Wonks groups for many helpful suggestions. We
appreciate the insightful comments provided by the anonymous referees.

References
1. Armstrong, J.: The development of Erlang. In: International Conference on Functional Pro-

gramming. pp. 196–203. ACM, New York, NY, USA (1997)
2. Blelloch, G.: NESL: A nested data-parallel language (version 3.1). Tech. Rep. CMU-CS-95-

170, CMU (Jan 1995)
3. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel language.

Int’l. Journal of High Performance Computing Applications 21(3), 291–312 (Jan 2007)
4. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,

C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In:
Object-Oriented Programming, Systems, Languages, and Applications. pp. 519–538 (2005)

5. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analysis of non-
blocking collective operations for MPI. In: Supercomputing. IEEE/ACM (Nov 2007)

6. Hoefler, T., Traeff, J.L.: Sparse collective operations for MPI. In: International Parallel &
Distributed Processing Symposium, HIPS’09 Workshop (May 2009)

7. Hoefler, T., Willcock, J., Chauhan, A., Lumsdaine, A.: The Case for Collective Pattern Spec-
ification. In: 1st ACM Workshop on Advances in Message Passing (AMP’10) (Jun 2010)

8. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable communication protocols for dynamic
sparse data exchange. In: Principles and Practice of Parallel Programming. pp. 159–168.
ACM, New York, NY, USA (2010)

9. Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of High Performance Fortran: An
historical object lesson. In: History of Programming Languages III. pp. 7-1–7-22. ACM,
New York, NY, USA (2007)

10. Loogen, R., Ortega-Mallén, Y., Peña-Marı́, R.: Parallel functional programming in Eden.
Journal of Functional Programming (15), 431–475 (2005)

11. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September 4th 2009)
12. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN Fortran Fo-

rum 17(2), 1–31 (1998)
13. Sarkar, D., Waddell, O., Dybvig, R.K.: A nanopass infrastructure for compiler education.

SIGPLAN Not. 39(9), 201–212 (2004)
14. UPC Consortium: UPC Language Specification, v1.2 (May 2005), http://upc.lbl.gov/
docs/user/upc_spec_1.2.pdf

15. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM
33(8), 103–111 (1990)

16. XcalableMP Specification Working Group: Application Program Interface Version 1, Draft
0.7. Tech. rep. (November 2009)


