
Co-design Hardware and Algorithm for Vector Search
Wenqi Jiang∗

Systems Group, ETH Zurich
Shigang Li

SPCL, ETH Zurich
Yu Zhu

Systems Group, ETH Zurich

Johannes de Fine Licht
SPCL, ETH Zurich

Zhenhao He
Systems Group, ETH Zurich

Runbin Shi
Systems Group, ETH Zurich

Cedric Renggli
Systems Group, ETH Zurich

Shuai Zhang
Systems Group, ETH Zurich

Theodoros Rekatsinas
Systems Group, ETH Zurich

Torsten Hoefler
SPCL, ETH Zurich

Gustavo Alonso
Systems Group, ETH Zurich

ABSTRACT
Vector search has emerged as the foundation for large-scale infor-
mation retrieval and machine learning systems, with search engines
like Google and Bing processing tens of thousands of queries per
second on petabyte-scale document datasets by evaluating vector
similarities between encoded query texts and web documents. As
performance demands for vector search systems surge, accelerated
hardware offers a promising solution in the post-Moore’s Law era.
We introduce FANNS, an end-to-end and scalable vector search
framework on FPGAs. Given a user-provided recall requirement
on a dataset and a hardware resource budget, FANNS automatically
co-designs hardware and algorithm, subsequently generating the
corresponding accelerator. The framework also supports scale-out
by incorporating a hardware TCP/IP stack in the accelerator. FANNS
attains up to 23.0× and 37.2× speedup compared to FPGA and CPU
baselines, respectively, and demonstrates superior scalability to
GPUs, achieving 5.5× and 7.6× speedup in median and 95th per-
centile (P95) latency within an eight-accelerator configuration. The
remarkable performance of FANNS lays a robust groundwork for
future FPGA integration in data centers and AI supercomputers.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures;
• Information systems→ Data management systems; Infor-
mation retrieval.

KEYWORDS
Approximate nearest neighbor search, hardware acceleration, FPGA
ACM Reference Format:
Wenqi Jiang, Shigang Li, Yu Zhu, Johannes de Fine Licht, Zhenhao He,
Runbin Shi, Cedric Renggli, Shuai Zhang, Theodoros Rekatsinas, Torsten
∗Corresponding author. wenqi.jiang@inf.ethz.ch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607045

Hoefler, and Gustavo Alonso. 2023. Co-design Hardware and Algorithm
for Vector Search. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’23), November 12–17, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3581784.3607045

Figure 1: By co-designing hardware and algorithm, FANNS
significantly outperforms GPUs in scale-out vector search.

1 INTRODUCTION
Vector search has emerged as the cornerstone of large-scale infor-
mation retrieval and machine learning systems. Commercial search
engines like Google and Bing process tens of thousands of search
queries per second on hundreds of petabytes of data [2, 4]. These
engines employ machine learning models to represent web pages
as vectors and retrieve pages by calculating the distances between
query vectors and web vectors [12, 29, 38, 39, 61]. Recommender
systems [16, 55] also use vector representations for products to
identify and recommend items that users may find appealing. Re-
cently, large language models (LLMs) have incorporated vector
search to enhance model quality. By inputting relevant documents
from a vector database [11, 24, 43], LLMs can achieve better perfor-
mance in various tasks such as open domain question answering
and language generation. Vector search is also extensively used in
scientific computing, including chemical structure analysis [8, 59]
and biomedical data retrieval [6, 47, 60].

To meet the surging performance demands of vector search
systems in the post-Moore’s Law era, designing specialized vec-
tor search hardware is a promising direction to explore. Accord-
ingly, we study the hardware specialization of the widely-used

https://doi.org/10.1145/3581784.3607045
https://doi.org/10.1145/3581784.3607045
https://doi.org/10.1145/3581784.3607045
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607045&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

IVF-PQ vector search algorithm [33]. The algorithm uses an in-
verted file (IVF) index to group vectors into many vector lists by
clustering. It then applies product quantization (PQ) to compress
high-dimensional vectors into a series of byte codes, reducing mem-
ory consumption and accelerating the similarity evaluation process.
When a query arrives, IVF-PQ goes through six search stages to
retrieve similar vectors. The main stages include comparing the
vector with all the vector list centroids to identify a subset of rele-
vant lists, scanning the quantized vectors within the selected lists,
and collecting the topK most similar vectors.

The benefit of hardware-algorithm co-design.Maximizing
the performance of an IVF-PQ accelerator is challenging because
one needs to carefully balance the design choices of both the hard-
ware and the algorithm. Given a target chip size, there are many
valid designs to implement IVF-PQ: how should we choose the
appropriate microarchitecture for each of the six IVF-PQ search
stages? How should we allocate the limited hardware resources
to the six stages? From the algorithm’s perspective, the multiple
parameters in IVF-PQ can significantly influence performance bot-
tlenecks and recall. Due to the vast design space, hardware spe-
cialization tailored to a specific set of algorithm parameters can
achieve better performance-recall trade-offs: as we will show in the
experiments, the accelerators without algorithm parameter aware-
ness are 1.3∼23.0× slower than the co-designed accelerators given
the same recall requirement.

Proposed solution. Considering the numerous design possibili-
ties for an IVF-PQ accelerator, we exploit the reconfigurability of FP-
GAs to examine various design points.Wepropose FANNS (FPGA-
accelerated Approximate Nearest Neighbor Search), an end-
to-end accelerator generation framework for IVF-PQ-based
vector search, which automatically co-designs algorithm and
hardware tomaximize the accelerator performance for target
datasets and deployment recall requirements. Figure 1 illus-
trates the FANNS workflow. Provided with a dataset, a deployment
recall requirement, and a target FPGA device, FANNS automatically
(a) identifies the optimal combination of parameter settings and
hardware design and (b) generates a ready-to-deploy accelerator.
Specifically, FANNS first evaluates the relationship between IVF-PQ
parameters and recall on the given dataset. It also lists all valid accel-
erator designs given the FPGA hardware resource budget. Then, the
FANNS performance model predicts the queries-per-second (QPS)
throughput of all combinations between algorithm parameters and
hardware designs. Finally, using the best combination determined
by the performance model, the FANNS code generator creates the
corresponding FPGA code, which is compiled into an FPGA bit-
stream. Besides a single-accelerator solution, FANNS can also scale
out by instantiating a hardware TCP/IP stack in the accelerator.

Results. Experiments conducted on various datasets demon-
strate the effectiveness of the hardware-algorithm co-design: the
accelerators generated by FANNS achieve up to 23.0× speedup over
fixed FPGA designs and up to 37.2× speedup compared to a Xeon
CPU. While a GPU may outperform an FPGA due to its higher
flop/s and bandwidth, FPGAs exhibit superior scalability compared
to GPUs thanks to the stable hardware processing pipeline. As
shown in Figure 1, experiments on eight accelerators show that the

Table 1: Definitions of vector search and IVF-PQ symbols.

Symbol Definition

𝑥 A query vector.
𝑦 A database vector.
𝐾 The number of most similar vectors to return.
𝑚 The sub-space number of product quantization.
𝑛𝑙𝑖𝑠𝑡 The totol Voronoi cell number.
𝑛𝑝𝑟𝑜𝑏𝑒 The number of cells to be scanned per query.

FPGAs achieve 5.5× and 7.6× speedup over GPUs in median and
95th percentile (P95) latency, respectively.

Contributions

• We identify a major challenge in designing accelerators for
the IVF-PQ-based vector search algorithm: handling the shift-
ing performance bottlenecks when applying different algo-
rithm parameters.

• We show the benefit of co-designing hardware and algorithm
for optimizing large-scale vector search performance.

• We propose FANNS, an end-to-end accelerator generation
framework for IVF-PQ, maximizing accelerator performance
for target datasets and recall requirements. FANNS includes:
– A collection of hardware building blocks for IVF-PQ.
– An index explorer that captures the relationship between
algorithm parameters and recall.

– A hardware resource consumption model that returns all
accelerator designs on a given FPGA device.

– A performance model to predict the accelerator QPS of
arbitrary combinations of algorithm parameters and ac-
celerator designs.

– A code generator that creates ready-to-compile FPGA code
given arbitrary accelerator designs.

• We demonstrate the impressive performance and scalability
of FANNS, achieving 7.6× P95 latency speedup over GPUs
when utilizing eight accelerators.

2 BACKGROUND
A vector search takes a query vector 𝑥 ∈ R𝑑 as input and retrieves
𝐾 relevant vector(s) (based on, e.g., L2 distances) from the data-
base 𝑌 which contains many 𝑑-dimensional vectors. While nearest
neighbor search retrieves the exact 𝐾 closest vectors, really world
vector search systems adopt approximate nearest neighbor (ANN)
search that trades accuracy for much higher search performance
(latency and throughput). The quality of ANN is measured by the
recall at 𝐾 (𝑅@𝐾). In this paper, we use the terms vector search and
ANN search interchangeably.

2.1 The IVF-PQ Algorithm
We target IVF-PQ because it is one of the most popular algorithms
for large-scale ANN [33]. Its key elements include (a) partitioning
the vectors by the inverted-file index to reduce the percentage of
vectors to scan and (b) applying product quantizing to compress
the vectors and save memory bandwidth.

2.1.1 Inverted File (IVF) Index. An IVF index partitions a vector
dataset 𝑌 to many (𝑛𝑙𝑖𝑠𝑡) disjoint subsets by clustering algorithms
such as k-means. Each partition is known as a Voronoi cell. At

Co-design Hardware and Algorithm for Vector Search SC ’23, November 12–17, 2023, Denver, CO, USA

Figure 2: Product quantization on two-dimensional vectors.

query time, only a few (𝑛𝑝𝑟𝑜𝑏𝑒) Voronoi cells close to the query
vector are scanned, such that the scanning workloads are reduced.

2.1.2 Product Quantization (PQ). Product quantization (PQ) di-
vides vectors into multiple subvectors and applies quantization per
sub-vector space. Figure 2 shows a PQ example on two-dimensional
vectors. The example applies four-level quantization per dimension,
thus a vector can be approximated by a combination of quantization
levels of the two dimensions (e.g., (𝑎1, 𝑏2)).

Practically, PQ can compress a 𝑑-dimensional vector to𝑚-byte
(𝑚 < 𝑑) PQ codes. Each vector in the dataset is divided into𝑚 sub-
vectors. Within a sub-vector space, all the sub-vectors are clustered
into 256 groups, such that a sub-vector can be approximated by its
nearest cluster centroid. As one can represent the cluster ID (0∼255)
by one byte, the entire vector can be stored as𝑚-byte PQ codes
representing the closest cluster centroids per sub-vector space.

Optionally, one can use optimized product quantization (OPQ) to
further improve quantization quality [22]. The key idea is to rotate
the vector space such that the sub-spaces are independent and the
variances of each sub-space are normalized. At query time, OPQ
simply introduces a vector-matrix multiplication between the query
and the transformation matrix, while the rest search procedures
are identical to PQ.

2.1.3 The Six Search Stages at Query Time. IVF-PQ contains six
search stages for query serving. First, if OPQ is involved, transform
the query vector by the OPQ matrix (Stage OPQ). Second, evaluate
the distances between a query vector and all Voronoi cell centroids
(Stage IVFDist). Third, select a subset of cells that are closest to the
query vector to scan (Stage SelCell). Fourth, in order to compare dis-
tances between PQ codes and a query vector efficiently, construct
a distance lookup table per Voronoi cell (Stage BuildLUT). More
specifically, this step divides the query vector into𝑚 sub-vectors
and computes the distances between the normalized query vector
and all centroids of the sub-quantizer. Fifth, approximate the dis-
tances between a query vector and the PQ codes (Stage PQDist) by
Equation 1, in which 𝑑2 (𝑥𝑖 , 𝑦𝑖 only requires looking up the distance
tables constructed in Stage BuildLUT. This lookup-based distance
computation process is also known as asymmetric distance com-
putation (ADC). Finally, collect the 𝐾 vectors closest to the query
(Stage SelK).

𝑑2 (𝑥,𝑦) = 𝑑2 (𝑥,𝑦) =
𝑚∑︁
𝑖=1

𝑑2 (𝑥𝑖 , 𝑦𝑖) (1)

3 HARDWARE-ALGORITHM DESIGN SPACE
The main challenge in designing compelling IVF-PQ accelerators
is to find the optimal option in a huge algorithm-hardware design
space, as summarized in Table 2. From the algorithm’s perspective,

Table 2: The list of choices during design space exploration.

Algorithm parameter space

nlist The totol Voronoi cell number.
nprobe The number of cells to be scanned per query.
K The number of most similar vectors to return.
OPQenable Whether to apply OPQ.

Hardware design space

Designs The microarchitecture design of stage 𝑠 .
#PEs The number of processing elements in stage 𝑠 .

Caches
Cache index on-chip or store it off-chip for
stage 𝑠 ∈ {Stage IVFDist, Stage BuildLUT}.

multiple parameters in IVF-PQ can significantly influence recall
and performance bottlenecks. From the hardware’s perspective,
there are many valid designs to implement IVF-PQ.

3.1 Algorithm Parameter Space
To achieve a certain recall requirement, there are many op-
tions for selecting algorithm parameters. For example, as we
will present in the experiments, all the indexes we evaluated can
achieve a target recall of R@100=95% by different nprobe. It is hard
to tell which set of parameters we should deploy on the accelerator.

Parameter selections can change the performance bottle-
neck drastically, which must be considered during the ac-
celerator design phase.We profile the search process on CPUs
and GPUs and break down the time consumption per search stage
in Figure 3. Unlike many applications with a single outstanding
bottleneck, the bottlenecks of IVF-PQ shift between the six search
stages when different parameters are used. However, a specialized
accelerator cannot handle shifting bottlenecks because it contains
a certain number of dedicated processing elements (PE) for each
stage. Thus, the accelerator should either target to achieve accept-
able performance running arbitrary algorithm parameters or to
achieve optimal performance on a certain parameter setting. We
now break down the IVF-PQ bottlenecks:

The performance effect of nprobe.Wefix the index and tune nprobe.
We use the indexes that can achieve the highest QPS of R@100=95%
on the SIFT100M dataset on CPU and GPU, respectively. As shown
in the first column of Figure 3, increasing the number of cells to
scan results in more time consumption in Stage PQDist and Stage
SelK, regardless of hardware platforms. The time consumption of
these two stages, on GPUs for example, can increase from 20% to
80% as nprobe grows.

The performance effect of nlist. By contrast to the first experiment,
we now observe the effect of the total number of clusters of the
index by fixing the number of clusters to scan (nprobe=16). As
shown in the second column of Figure 3, higher nlist results in
more time consumption on Stage IVFDist to evaluate distances
between the query vector and cluster centroids. The consumption
is more significant on CPUs due to their limited flop/s compared
with GPUs, while the main bottlenecks of GPUs are still in later
stages even if nlist is reasonably large.

The performance effect of 𝐾 . We fix the index per hardware as in
the nprobe experiment. As shown in the third column of Figure 3,
the time consumption on Stage SelK on GPUs increases significantly
as 𝐾 grows, while the phenomenon is unobvious on CPUs as the
bottlenecks are in other stages.

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

Figure 3: IVF-PQ bottleneck analysis on CPU (1st row) and GPU (2nd row). By tuning nprobe (1st column), nlist (2nd column),
and 𝐾 (3rd column), we find that the bottlenecks shift across different algorithm parameters.

3.2 Hardware Design Space
There are many ways to implement an IVF-PQ accelerator,
and the design choices are summarized in Table 2.

The first choice is the microarchitecture per search stage. Not
only does the processing element (PE) design differ between stages,
there are multiple valid designs per stage. For example, Stage SelK
collects 𝐾 nearest neighbors from a series of distance values, which
can either be implemented by a hierarchical priority queue consist-
ing of systolic compare-swap units or by a hybrid design involving
sorting network and priority queues, as we will show in Section 5.

The second choice is chip area allocation across the six search
stages, i.e., choosing PE numbers per stage. Due to the finite transis-
tors within a chip, this is a zero-sum game: increasing the number
of PEs in one stage implies reducing them in another.

The third decision is about index caching. Though storing them
in off-chip DRAM is the only option for larger IVF indexes, we can
decide whether to cache smaller indexes in on-chip SRAM. Caching
index guarantees low accessing latency and high bandwidth but
increases hardware resource consumptions.

3.3 How Does One Choice Influence Others?
The choices of algorithm parameters will influence the optimal
hardware design and vice versa. Since the relationship between
the design choices is intricate, we only convey the intuition here
with a couple of examples, while the quantitative model will be
presented in later sections. First, tuning a single parameter can
affect the optimal accelerator design. Increasing 𝑛𝑙𝑖𝑠𝑡 results in
more workload in comparing the distances between query vectors
and IVF centroids. As a result, more PEs in Stage IVFDist should
be instantiated to handle the increasing workload, while fewer
PEs can be instantiated in other stages due to the limited chip
size. Besides, if the 𝑛𝑙𝑖𝑠𝑡 is large enough, caching the IVF index
on-chip is not a choice at all, while caching small indexes can be
beneficial at the cost of consuming on-chip memory that other
PEs could have taken. Second, a specific accelerator design has its
favorable parameter settings. Assume the accelerator has a lot of
Stage IVFDist PEs, while other stages are naturally allocated with
fewer resources. Such design naturally favors a parameter setting
of high 𝑛𝑙𝑖𝑠𝑡 and low 𝑛𝑝𝑟𝑜𝑏𝑒: the reverse case (low 𝑛𝑙𝑖𝑠𝑡 and high
𝑛𝑝𝑟𝑜𝑏𝑒) will underutilize the Stage IVFDist PEs yet overwhelming
the limited Stage PQDist PEs, resulting in low QPS.

3.4 Explore the Design Space by FPGAs
Due to the many design options for an IVF-PQ accelerator as intro-
duced above, we leverage the reconfigurability of FPGAs to show
the trade-offs between different designs and to compare perfor-
mance between these designs.

FPGAs are reprogrammable circuits that consist of BRAM and
URAM as fast on-chip memory, Flip-Flops (FF) as registers, and
Digital Signal Processors (DSP) as computation units. Various FPGA
models have different amounts of those resources. An FPGA-based
accelerator usually consists of a number of processing elements
(PEs) to implement functionalities and FIFOs to connect the PEs. For
example, a neural network accelerator can allocate the computation
workload to multiple matrix multiplication PEs and gather the
partial results using another PE, and FIFOs enable the streaming
communication between these PEs. Developing FPGA accelerators
typically requires much more effort than software. Traditionally,
FPGAs are developed by hardware description languages (HDL),
such as Verilog and VHDL, but recent advances in High-Level
Synthesis (HLS) allow programmers to develop the circuit at a
higher level using C/C++ or OpenCL [1, 3]. FPGAs are now widely
available in data centers and in the cloud [36].

4 FANNS FRAMEWORK OVERVIEW
We present FANNS (FPGA-accelerated Approximate Nearest Neigh-
bor Search), an end-to-end vector search framework by hardware-
algorithm co-design. FANNS targets the deployment scenario where
the user (deployer) has a target recall goal (e.g., for all queries,
achieve 80% recall for top 10 results on average) on a given dataset
and a given hardware device. In this case, FANNS can automatically
figure out the optimal combination of algorithm parameters and
hardware design, and generate the specialized FPGA accelerator for
the combination. FANNS also supports scale-out by instantiating a
hardware network stack [25] in the accelerator.

Figure 4 overviews the FANNS workflow.
Framework building blocks (A ∼ D). To build an IVF-PQ

accelerator, we first build a set of PEs for all six search stages A .
These building blocks are independent to user requirements. We
design multiple PEs per stage when there are several valid mi-
croarchitecture solutions. Given the designed PEs, we naturally
know their hardware resource consumptions B . We can model the
PE performance in both latency and throughput C : knowing the

Co-design Hardware and Algorithm for Vector Search SC ’23, November 12–17, 2023, Denver, CO, USA

Figure 4: The workflow of FANNS. The letter-labeled blue blocks are the framework building blocks independent of user
requirements, while the digit-labeled gray blocks are the automatic accelerator generation steps.

Figure 5: An example accelerator design generated by FANNS.

pipeline depth and initiation interval per PE, one can establish the
relationship between the number of input elements to process and
the respective time consumption in clock cycles. Finishing the PE
design step, we also have a set of PE code templates D .

Automatic accelerator generation workflow (1 ∼ 7). The
gray blocks in Figure 4 presents the automatic workflow that cus-
tomizes the hardware per user recall requirement. The inputs of the
framework are the user-provided dataset and recall goal 1 . Given
the dataset, FANNS trains a number of indexes using a range of pa-
rameters 2 . Then, for each index, FANNS evaluates the relationship
between nprobe and recall 3 . On the other hand, FANNS returns all

valid hardware designs whose resource consumption is under the
constraint of the given FPGA device 4 . Subsequently, FANNS uses
a performance model to predict the optimal combination of parame-
ter setting and accelerator design 5 . The performance model takes
two input sources: (a) the set of all possible accelerator designs by
combining different hardware-level options summarized in Table 2
and (b) the minimal nprobe per index given the recall requirement.
For each combination of the hardware-level and parameter-level
choices, FANNS performance model can predict QPS based on per-
PE performance. Given the predicted optimal design, FANNS code
generator outputs the ready-to-compile FPGA code by instantiating

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

Table 3: Time consumption of the FANNS workflow.

Step Time consumption

Build Indexes Several hours per index.
Get recall-nprobe relationship Up to minutes per index.
Predict optimal design Up to one hour per recall goal.
FPGA code generation Within seconds.
FPGA bitstream generation Around ten hours per design.

the respective PEs and interconnecting them 6 . Finally, the FPGA
code is compiled to bitstream (FPGA executable) 7 . Table 3 breaks
down the time consumption of the FANNS workflow.

Framework deployment. Given its ability to optimize acceler-
ator performance based on specific datasets and recall objectives,
FANNS is well-suited for integration into production vector search
systems. Such systems often manage dynamic datasets, subject to
regular insertions and deletions. This is accomplished through the
maintenance of a primary IVF-PQ index for a specific dataset snap-
shot, an incremental (usually graph-based) index for new vectors
added since the last snapshot, and a bitmap to track deleted vectors.
These two indexes are periodically merged, e.g., once a week, into a
new primary index [57]. In this scenario, FANNS targets optimizing
performance for the main index, thus also periodically redesigning
accelerators for the new dataset snapshot and, if applicable, the new
recall goal. When building the accelerator for the new snapshot,
the existing accelerator and the CPU’s incremental index continue
to process queries. As such, the time taken to build the new acceler-
ator is effectively concealed by the ongoing operation of the older
system, barring the initial build. This setup also allows FANNS to
always target a static dataset snapshot. The algorithm explorer,
therefore, does not need to handle any shifts in data distribution,
allowing accurate performance modeling.

Example FPGA design. Figure 5 shows a generated accelera-
tor targeting R@10=80% on the SIFT100M dataset. In this single-
accelerator-search scenario, the FPGA communicates with the host
CPU through PCIe to receive query requests and return results.
FANNS processes queries in a deeply pipelined fashion: there can
be multiple queries on the fly in different stages in order to max-
imize throughput. Each stage of processing is accomplished by a
collection of PEs. The arrows connecting those PEs are FIFOs: a
PE loads values from the input FIFO(s), processes the inputs, and
pushes the results to the output FIFO(s). A stage can contain ho-
mogeneous PEs such as Stage IVFDist or heterogeneous PEs such
as Stage SelK which involves sorting networks, merging networks,
and priority queues. The PE numbers are typically irregular (11 in
Stage IVFDist, 9 in Stage BuildLUT, etc.) as they are calculated by
the performance model, unlike being restricted to the exponential
of two which human designers favor. We will specify the hardware
design per search stage in the following section.

5 HARDWARE PROCESSING ELEMENTS
We present the accelerator hardware processing elements and

the design choices. We group the six search stages into selection
stages and computation stages to explain related concepts together.

Figure 6: A hardware systolic priority queue.

5.1 Designs for the Selection Stages
Two stages need selection functionality. Stage SelCells selects the
closest Voronoi cells to the query vector, given a set of input dis-
tances. Stage SelK collects the 𝐾 smallest distances between the
query vector and database vectors, given the many approximated
distances output by Stage PQDist every clock cycle. Since there can
be multiple PEs producing inputs to the two stages, the selection
hardware should support multiple input streams.

5.1.1 𝐾-Selection Primitives. Bitonic sort networks and systolic
priority queues are the building blocks for 𝐾-selection.

Bitonic Sort. Bitonic sort is a parallel sorting algorithm that takes
several input elements in parallel, performs a certain series of
compare-swap operations, and outputs the sorted array. Bitonic
sort exhibits high sorting throughput, and its parallelism aligns
very well with FPGAs [9, 46, 48, 49, 51, 54]. As a result, the latency
of sorting an array is

∑𝑙𝑜𝑔2𝑙
𝑖=1 𝑖 =

𝑙𝑜𝑔2𝑙∗(1+𝑙𝑜𝑔2𝑙)
2 clock cycles where 𝑙

is the width of the sorting network.
Systolic Priority Queue. While software-based priority queues

support enqueue, dequeue, and replace operations, we only need
the replace operation: if the input is smaller than the current root,
dequeue the root and enqueue the input. Figure 6 shows in the
implemented systolic priority queue [30, 41] that supports such
minimal required functionality while consuming the least hardware
resources. It is a register array interconnected by compare swap
units, supporting one replace operation every two clock cycles. In
the first cycle, the leftmost node is replaced with a new item, and
all the even entries in the array are swapped with the odd entries.
In the second cycle, all the odd entries are swapped with the even
entries. During this process, the smallest elements are gradually
swapped to one side of the queue.

5.1.2 𝐾-Selection Microarchitecture Design. Parallel 𝐾-selection
collects the 𝑠 smallest numbers per query (𝑠 = 𝑛𝑝𝑟𝑜𝑏𝑒 in Stage
SelCells; 𝑠 = 𝐾 in Stage SelK) out of 𝑧 input streams given that
each stream produces 𝑣 values per query. We propose two design
options for this task with different trade-offs:

Option 1: hierarchical priority queue (HPQ). We propose
HPQ as a straightforward way for parallel selection. The first level
of HPQ contains 𝑧 queues to collect 𝑠 elements from each stream.
The second level takes the 𝑧𝑠 elements collected in the first level
and selects the 𝑠 results. The HPQ allows 𝑧/2 input elements per
cycle since each replace operation in a priority queue requires two
cycles. As a result, if an input stream generates one element per
cycle, we should split it into two substreams and match it with two
priority queues in the first level.

Option 2: hybrid sorting, merging, and priority queue
group (HSMPQG). The key idea is to collect the 𝑠 results per
clock cycle before inserting them into the priority queues, such
that the number of required queues can be significantly reduced.
Figure 7 shows an example of such design (64 < 𝑧 ≤ 80 and 𝑠 = 10).

Co-design Hardware and Algorithm for Vector Search SC ’23, November 12–17, 2023, Denver, CO, USA

Figure 7: An example of hybrid bitonic sorting, merging, and
priority queue architecture that selects the top 10 elements
out of up to 80 input streams.

The first step is to sort every 16 elements since 16 is the minimum
bitonic sort width greater than 𝑠 = 10. Handling up to 80 inputs per
cycle requires five bitonic sort networks. Some dummy streams are
added as the input for the last sorting network. The second step
is to merge the sorted elements by several bitonic partial mergers.
Each bitonic merger outputs the top 16 elements out of the two
input sorted arrays. After several merging steps, we have the sorted
top 16 elements per cycle. Afterward, the 𝑠 = 10 elements per cycle
are picked out of the 16 and inserted into a hierarchical priority
queue, which outputs the 𝑠 results per query. Note that we can
configure the number of bitonic sort and parallel merge networks
for different workloads. For example, if 16 < 𝑧 ≤ 32, two sorting
and one merging modules are required; we will need three sorting
and two merging networks when 32 < 𝑧 ≤ 48.

Intuition behind different 𝐾-selection microarchitecture.
The HPQ design suits the situation when the input stream number
𝑧 is small, because the few priority queues instantiated will not
consume many resources. This design is also the only option when
𝑠 ≥ 𝑧, for which the second option cannot filter out unnecessary
elements per cycle at all. The HSMPQG design targets to collect a
small result set over many input streams. It could save hardware
resources by significantly reducing the number of priority queues
compared with the first option. However, the bitonic sorting and
merging networks also count for resource consumption, thus the
second option is not always better even if 𝑠 < 𝑧.

5.2 Designs for the Computation Stages
Computation stages include Stage OPQ, Stage IVFDist, Stage Build-
LUT, and Stage PQDist. In this section, we first specify the Stage
PQDist PEs to convey the compute PE design principles on FPGAs,
and then introduce the PE interconnection topology.

5.2.1 Stage PQDist. As shown in Figure 5, there are many Stage
PQDist PEs working in parallel, approximating distances between
the query vector and the quantized database vectors.

PE design. Figure 8 presents the PE design for decoding 16-
byte PQ codes. The PE takes two inputs: the distance lookup tables
produced by Stage BuildLUT and the PQ codes stored in off-chip
memory channels. For a single query, a PE repeats two major steps
𝑛𝑝𝑟𝑜𝑏𝑒 times. The first step is reading a distance lookup table of
size of 𝑘𝑚. We use BRAM, a type of fast on-chip SRAM, to cache
the tables. In order to provide memory access concurrency for the

Figure 8: The PE hardware design for Stage PQDist.

computing step, we assign𝑚 BRAM slices per PE — each slice stores
a column of a table. The second step is approximating the distances
between the query vector and the database vectors by asymmetric
distance computation. Each PQ code (1-byte) of a database vector
is used as the lookup index for one column of a distance table,
and𝑚 distances are retrieved from the BRAM slices in parallel per
cycle. These partial distances are then fed into an add tree that
produces the total distance. In order to maximize the computation
throughput, each logical operator (addition) in the tree is composed
of several DSPs (for computation) and FFs (as registers), such that
the computation is fully pipelined, allowing the add tree to consume
𝑚 input distances and to output one result per clock cycle. During
the last iteration of scanning a cell, the PE performs padding detec-
tion and overwrites the output by a large distance for the padded
case. The meta-info about padding is streamed into the PE by the
accelerator’s global controller.

PE size. In principle, a PE with more computation logic is usually
more efficient in terms of performance delivered per hardware
resource unit. This is because each PE has some surrounding logic as
the interface to other PEs— the smaller each PE, themore significant
the total overhead. However, it is hard for the FPGA compiler to
map a huge chunk of logic to the FPGA successfully [20]. Thus, we
experiment with several PE sizes and select the largest one that can
be successfully compiled.

5.2.2 PE interconnection Topology.
Within a computation stage, we adopt a 1-D array architecture
to forward data between the homogeneous PEs. For example, the
second PE consumes the query vector and the results of the first PE,
appends its local results, and sends the query vector as well as the
aggregated results to the third PE. Another design choice, which we
do not adopt, is the broadcasting/gather topology. The advantage
of the 1-D array architecture over the broadcasting/gather one is
the minimized wire fan-out: too many long wires connected to a
single source can lead to placement & routing failure during FPGA
compilation [19]. For communication between stages and within a
selection stage, the FIFO connections are straightforward because
there is no input sharing as in computation stages.

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

6 END-TO-END HARDWARE GENERATION
This section illustrates the end-to-end accelerator generation flow
of FANNS, as visualized in Figure 4 (1 ∼ 7). We implement the
end-to-end generation flow using a set of Python scripts, while the
hardware processing elements are implemented in Vitis HLS.

6.1 Explore Algorithm Parameters
Given a dataset, FANNS first captures the relationship be-
tween the algorithm parameters and recall, which will be
used for accelerator QPS prediction. FANNS trains a number
of IVF indexes trying different nlist 2 . Each index is trained both
with and without OPQ. Given the user-provided sample query set,
FANNS evaluates the minimum nprobe that can achieve the user-
specified recall goal on each index 3 (e.g., 80% of average recall for
top 10 results). The result of this step is a list of index-nprobe pairs
that serve as the inputs of the FPGA performance model.

6.2 List Valid Accelerator Designs
FANNS lists all valid accelerator designs on a given FPGA de-
vice by resource consumptionmodeling 4 . Specifically, FANNS
combines all hardware choices in Table 2 to form accelerators and
returns the valid ones whose consumptions of all types of resources
(BRAM, URAM, LUT, FF, and DSP) are under the device constraint.
Consuming all resources on the FPGA is unrealistic because such
designs will fail at the placement & routing step during FPGA
compilation. But it is also impossible to predict the maximum re-
source utilization per design because the EDA algorithms for FPGA
compilation are nondeterministic. As a result, we set the resource
utilization rate as a constant for all accelerators, e.g., a conservative
value of 60% in our experiments.∑︁

𝑖

𝐶𝑟 (𝑃𝐸𝑖) +
∑︁
𝑖

𝐶𝑟 (𝐹𝐼𝐹𝑂𝑖) +𝐶𝑟 (𝑖𝑛𝑓 𝑟𝑎) ≤ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑟 ,

∀𝑟 ∈ {𝐵𝑅𝐴𝑀,𝑈𝑅𝐴𝑀, 𝐿𝑈𝑇, 𝐹𝐹, 𝐷𝑆𝑃}
(2)

FANNS models an accelerator’s resource consumption by sum-
ming up several components as in Equation 2 (𝐶𝑟 denotes the
consumption of resource 𝑟). The first part is of all the PEs. The
consumption of a PE is known once we finish designing and test-
ing the PE. For priority queues of variable lengths, we employ a
linear consumption estimation model since the numbers of regis-
ters and compare-swap units in a priority queue are linear to the
queue length. The second part is the FIFOs connecting PEs, which
can be modeled by measuring the consumption of a single FIFO
and counting the required FIFO numbers. The final component is
the infrastructure surrounding the accelerator kernel, such as the
memory controller, which consumes constant resources.

6.3 Model Accelerator Performance
The FANNS performance model predicts the QPS of all com-
binations of algorithm parameters and accelerator designs,
then returns the optimal one. Given the large design space, it is
unrealistic to evaluate QPS by compiling all accelerators and testing
all parameters. Thus, we need an effective performance model to
predict the QPS per combination 5 . By using the following mod-
eling strategy, FANNS can evaluate all (millions of) combinations
given a recall requirement within an hour. We now introduce the
model in a top-down manner.

Model the performance of an accelerator. As the six search stages
of IVF-PQ are pipelined, the throughput of the entire accelerator is
that of the slowest stage, as in Equation 3.

𝑄𝑃𝑆𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 =𝑚𝑖𝑛(𝑄𝑃𝑆𝑠),where 𝑠 ∈ {Stages} (3)

Model the performance of a search stage. A search stage typically
consists of multiple PEs functioning concurrently. If these PEs share
the same amount of workload, the time consumption per query of
the stage is the same as the time consumption for a single PE to
handle its own workload. If the workloads are imbalanced per PE,
the performance of the stage is decided by its slowest PE.

Model the performance of a PE. Inspired by de Fine Licht et al. [19],
we estimate the throughput of a single PE by predicting the num-
ber of clock cycles it takes to process a query (𝐶𝐶). For a single
query, we suppose that the PE processes 𝑁 input elements. The
pipeline initiation interval is 𝐼 𝐼 , which represents the number of
cycles that must pass before a new input can be accepted into the
pipeline. The pipeline has a latency 𝐿, which is the number of cycles
it consumes for an input to propagate through the pipeline and
arrive at the exit. 𝐿 and 𝐼 𝐼 are known constants after implement-
ing the hardware. 𝑁 can be either a constant or a variable. For
example, after deciding the algorithm parameters and the accel-
erator design, the number of distances evaluated per PE in Stage
IVFDist is a constant (N=nlist/PENum). By contrast, the number of
PQ codes scanned in Stage PQDist differs for every query due to
the imbalanced number of codes per cell. In this case, we estimate
𝑁 by taking the expected scanned entries per query (assume the
query vector distribution is identical to the database vectors, such
that cells containing more vectors are more likely to be scanned).
Given the numbers of 𝐿, 𝐼 𝐼 and 𝑁 , we can estimate the consumed
clock cycles as 𝐶𝐶 = 𝐿 + (𝑁 − 1) ∗ 𝐼 𝐼 . The QPS of the PE can then
be derived by Equation 4 where freq is the accelerator frequency.
Similar to predicting the maximum resource utilization rate, it is
impossible to know the operational frequency of an accelerator be-
fore compilation. Thus, we assume the frequency to be a constant
for all accelerators.

𝑄𝑃𝑆𝑃𝐸 = 𝑓 𝑟𝑒𝑞/(𝐿 + (𝑁 − 1) ∗ 𝐼 𝐼) (4)

6.4 Generate FPGA Programs
FANNS code generator takes as inputs the optimal combination of
parameter setting and hardware design and produces the ready-
to-compile FPGA code. Refering to the inputs, the code generator
instantiates the given numbers of PEs using the PE code templates,
the respective on-chip memory for index caching, the FIFOs in-
terconnecting the aforementioned components, and the off-chip
memory interfaces between the accelerator kernel and the FPGA
shell 6 . Since the code generation step does not involve complex
logic, it only consumes seconds to return the FPGA program, which
will be further compiled to the bitstream 7 .

7 EVALUATION
This section shows the effectiveness and necessity of algorithm-
hardware co-design to achieve the optimal vector search perfor-
mance on FPGAs. We also integrate the FPGAs with network stacks
to show their great scalability.

Co-design Hardware and Algorithm for Vector Search SC ’23, November 12–17, 2023, Denver, CO, USA

7.1 Experimental Setup
Baseline.We compare FANNS with CPU, GPU, and FPGA baselines.
The CPU and GPU baselines run Faiss (version 1.7.0), a popular
ANN library developed by Meta known for its efficient IVF-PQ
implementation. The FPGA baseline uses the same set of hardware
building blocks as FANNS but without being parameter-aware.

Hardware Setup. We choose CPUs, GPUs, and FPGAs that
are manufactured in the generation of technology. We use an
m5.4xlarge CPU server on AWS, which contains 16 vCPUs of 16 vC-
PUs of Intel(R) Xeon(R) Platinum 8259CL@ 2.50GHz (Cascade Lake,
14nm technology) and 64 GB of DDR4 memory. We use NVIDIA
V100 GPUs (CUDA version 11.3) manufactured by the TSMC 12 nm
FFN (FinFET NVIDIA) technology (5,120 CUDA cores; 32 GB HBM).
We use Xilinx Alveo U55c FPGA fabricated with TSMC’s 16nm pro-
cess. It contains 1.3M LUTs, 9K DSPs, 40MB on-chip memory, and
16 GB HBM. We develop the accelerators using Vitis HLS 2022.1.

Benchmark.We evaluate FANNS on standard and representa-
tive vector ANN benchmarks: the SIFT and Deep datasets. The SIFT
dataset contains 128-dimensional vectors, while the Deep dataset
consists of 96-dimensional vectors. For both datasets, we adopt the
100-million-vector size scale as they can fit into the FPGA memory
after product quantization. Both datasets contain 10,000 query vec-
tors and respective ground truths of nearest neighbor search for
recall evaluation. We set various recall goals on each dataset. As
recalls are related to 𝐾 (the more results returned, the more likely
they overlap with true nearest neighbors) and the data distribution,
we set one recall goal per K per dataset, i.e., R@1=30%, R@10=80%,
and R@100=95% on the SIFT dataset and R@1=30%, R@10=70%,
and R@100=95% on the Deep dataset.

Parameters.We explore a range of algorithm parameters and set
a couple of constant factors for FANNS performance model. On the
algorithm side, we trained a range of indexes with different numbers
of Voronoi cells (nlist ranges from 210 to 218) for each dataset, so
as to achieve the best QPS for not only FPGA but the CPU and GPU
baselines. Per nlist, we trained two indexes with and without OPQ
to compare the performance. We quantize the vectors to 16-byte
PQ codes (𝑚 = 16) for all indexes and all types of hardware. The
primary consideration is to fit the dataset within FPGA’s device
memory while achieving high recall. On the FANNS side, we set the
maximum FPGA resource utilization rate as 60% to avoid placement
& routing failures. We also set the target accelerator frequency as
140MHz based on our design experience with the U55c FPGA device.

7.2 FANNS-Generated Accelerators
This section presents the FANNS generated accelerators. We show
that the optimal designs shift with parameter settings. We then
present the fully customized accelerator designs under target re-
call and compare them against the parameter-independent FPGA
baseline design.

7.2.1 The Effect of Algorithm Parameters on Hardware Designs.
Optimal accelerator designs shift significantly with algo-
rithm parameters, as shown in Figure 9. In this experiment, we
assign the parameters to the FANNS performance model, which
predicts the optimal hardware design under the parameter con-
straints. To draw high-level conclusions from the designs, we only
visualize the resource consumption ratio per search stage, omitting

the microarchitecture-level choices. First, we observe the effect of
nprobe on the designs. As the number of PQ codes to scan increases,
more hardware resources are dedicated to Stage PQDist and Stage
SelK, while most of the resources are allocated to Stage IVFDist
when 𝑛𝑝𝑟𝑜𝑏𝑒 is small. Then, we fix nprobe and observe the designs
when shifting nlist. As nlist raises, more PEs are instantiated for
Stage IVFDist so as to improve the performance of centroid distance
computation. Finally, as 𝐾 increases, the resources spent on Stage
SelK surge because the resource consumption of hardware priority
queues is linear to the queue length 𝐾 .

7.2.2 The Optimal Accelerator Designs of Given Recall Goals.
Table 4 summarizes the FANNS-generated designs per recall and
compares them with the baseline designs. It shows that:

First, FANNS picks different parameters per recall. For the
three recall requirements, FANNS adopts different indexes and
𝑛𝑝𝑟𝑜𝑏𝑒 to maximze the performance.

Second, FANNS generates different hardware designs for
each recall requirement. Stage SelK, for example, applies the
two different microarchitecture designs (HPQ and HSMPQG) and
invests different amounts of hardware resources (2.9%∼31.7% LUT)
for the three recall requirements. Even for the stages using the
same microarchitecture, e.g., Stage IVFDist, the PE numbers of
these accelerators can also be different.

7.2.3 Parameter-independent Accelerator Designs.
We design a set of parameter-independent ANNS accelerators that
can serve queries on arbitrary indexes as the FPGA baseline. We
design three parameter-independent accelerators for different 𝐾
requirements (1, 10, 100) as shown in Table 4. Each accelerator
roughly balances resource consumption across stages such that
the accelerator should perform well on a wide range of algorithm
settings. Saying this, we do not simply allocate 1/6 resources to
each of the six stages due to the following facts. First, the number
of PEs between Stage PQDist and Stage SelK should be propor-
tional, as more distance computation PEs should be matched with
more priority queues to balance the performance between the two
stages. Second, Stage OPQ performs a lightweight vector-matrix
multiplication that consumes few resources.
7.3 Performance Comparison
7.3.1 Offline Batch Processing.
We first compare the throughput (QPS) between FANNS and the
CPU/FPGA baselines in Figure 10. The throughput experiments
have no latency constraints, thus allowing query batching (size =
10K) to report the highest QPS. FANNS reports 1.3 ∼ 23.0× QPS
as the baseline FPGA designs and 0.8 ∼ 37.2× as the CPU. As
FPGAs have two orders of magnitude lower flop/s than GPUs, GPU
still achieves significantly higher QPS than FPGAs (5.3 ∼ 22.0×),
although the FPGAs show comparable latency and better scalability,
as we will present later. Several observations from the throughput
experiments include:

First, customizing the FPGA per use case is essential to
maximize performance. Although we have done our best to de-
sign the parameter-independent FPGAbaseline, the FANNS-generated
accelerators are customized for a target recall requirement on a
given dataset, thus showing significant QPS improvements and
latency reductions compared with the baseline designs.

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

Figure 9: The optimal FPGA designs shift with algorithm parameters (left: nprobe; middle: nlist; right: 𝐾 .)

Table 4: Comparison between human-crafted design and FANNS-generated designs (for the SIFT100M dataset), including index
selection, architectural design, resource consumption (LUT), and predicted QPS.

Index nprobe Stage OPQ Stage IVFDist Stage SelCells Stage BuildLUT Stage PQDist Stage SelK Pred. QPS
(140 MHz)#PE LUT.(%) #PE Index store LUT.(%) Arch. #InStream LUT.(%) #PE Index store LUT.(%) #PE LUT.(%) Arch. #InStream LUT.(%)

K=1 (Baseline) N/A N/A 1 0.2 10 HBM 6.9 HPQ 2 6.4 5 HBM 6.9 36 15.2 HPQ 72 1.8 N/A
K=10 (Baseline) N/A N/A 1 0.2 10 HBM 6.9 HPQ 2 6.4 4 HBM 6.3 16 6.7 HPQ 32 5.7 N/A
K=100 (Baseline) N/A N/A 1 0.2 10 HBM 6.9 HPQ 2 6.4 4 HBM 6.3 4 1.7 HPQ 8 15.0 N/A

K=1 (FANNS) IVF4096 5 0 0 16 on-chip 11.0 HPQ 2 0.3 5 on-chip 2.6 57 24.0 HPQ 114 2.9 31,876
K=10 (FANNS) OPQ+IVF8192 17 1 0.2 11 on-chip 7.6 HPQ 2 0.9 9 on-chip 5.2 36 15.2 HSMPQG 36 12.7 11,098
K=100 (FANNS) OPQ+IVF16384 33 1 0.2 8 on-chip 5.5 HPQ 1 0.6 5 on-chip 3.6 9 3.8 HPQ 18 31.7 3,818

Figure 10: The throughput comparison between FANNS-generated accelerators and CPU/FPGA baselines on the SIFT dataset
(first row) and the Deep dataset (second row) under various recall requirements (three columns).

Figure 11: Latency of single-node CPU, GPU, and FPGA.

Second, the performance model can effectively predict
the accelerator performance. By comparing the actual FPGA
performance in Figure 10 and the FANNS-predicted performance in
all experiments, we find the actual QPS can reach 86.9%∼99.4% of the
predicted performance. In the case when the generated accelerators
can achieve the target frequency, the actual performance is virtually
the same as the predicted one. When the target frequency cannot
be met due to the nondeterministic FPGA placement and routing
algorithm, the achieved performance drops almost proportionally
with the frequency.

Third, FPGA performance is closely related to 𝐾 , as instan-
tiating longer priority queues consumes a lot of resources.
To match the performance of Stage PQDist that contains many
compute PEs, FANNS needs to instantiate many hardware priority

queues in Stage SelK. But the resource consumption per queue is
roughly linear to the queue size 𝐾 . As 𝐾 grows, more resource con-
sumption on queues results in fewer resources for other stages and
leads to overall lower performance. This explains why the FPGA
performance is slightly surpassed by the CPU when 𝐾 = 100.

Fourth, picking appropriate algorithm parameters is es-
sential for performance, regardless of hardware platforms.
The performance numbers of the CPU and the baseline FPGA de-
signs show that the QPS difference can be as significant as one
order of magnitude with different parameters.

7.3.2 Online Query Processing and Scalability.

To support low-latency online query processing, we integrate
FANNS with a hardware TCP/IP stack [25], such that clients can
query the FPGAdirectly, bypassing the host server.We also compare
system scalability of GPUs and FPGAs in this scenario. As the
network stack also consumes hardware resources, we rerun the
FANNS performance model to generate the best accelerators. We
assume the queries already arrive at the host server for CPU and
GPU baselines, while for FPGAs, the measurements include the
network latency (around five `s RTT).

Co-design Hardware and Algorithm for Vector Search SC ’23, November 12–17, 2023, Denver, CO, USA

Figure 12: Estimated latency on large-scale deployments.

FPGA achieves 2.0∼4.6× better P95 latency than the best
CPU baseline. Figure 11 captures the latency distributions [26] of
each type of hardware. Although showing high tail latency, GPUs
still achieve lower median and P95 latency than FPGAs and CPUs
due to the much higher flop/s and bandwidth. The FPGA shows
much lower latency variance than its counterparts, thanks to the
fixed accelerator logic in FPGAs.

FPGAs achieves 5.5× and 7.6× speedup over GPUs in me-
dian and P95 latency in an eight-accelerator setup, as shown
in Figure 1. We run the prototype scale-out experiments on a clus-
ter of eight FPGAs. Each FPGA or GPU holds a 100-million vector
partition, running the same index (nlist=8192, 𝑚=16) to achieve
R@10=80%. For FPGAs, we use a CPU server that sends queries
to all FPGAs and aggregates the results. For GPUs, Faiss natively
supports multi-GPU workload partitioning. FPGAs achieve better
scalability thanks to their stable latency distribution, as shown in
Figure 11. In contrast, GPUs experience long tail latencies, thus a
multi-GPU query is more likely to be constrained by a slow run.

FPGAs are expected to exhibit increasing speedup over
GPUs as the search involves more (hundreds or thousands
of) accelerators. To extrapolate latency trends beyond eight accel-
erators, we estimate the latency distribution of large-scale vector
search using the following method. The query latency consists of
search and network components. We record search latencies of
100K queries on a single FPGA/GPU using the same parameters as
the above paragraph. For a distributed query, we randomly sample
Naccelerator latency numbers from the latency history and use the
highest number as the search latency. We assume the implementa-
tion of broadcast/reduce communication collectives follows a binary
tree topology. Subsequently, we apply LogGP [5, 17] to model the
network latency, using previously reported values measured for In-
finiBand using MPI [27, 28]: the maximum communication latency
between two endpoints is 6.0 `s; the constant CPU overhead for
sending or receiving a single message is 4.7 `s; and the cost per
injected byte at the network interface is 0.73 ns/byte. We assume
merging partial results from two nodes takes 1.0 `s. As shown in
Figure 12, FPGA’s P99 latency speedup over GPUs increases from
6.1× with 16 accelerators to 42.1× with 1024 accelerators, thanks
to the low search latency variance on FPGAs.

8 RELATEDWORK
To our knowledge, FANNS is the first hardware-algorithm co-design
framework for vector search. We introduce related works below.

Vector search on modern hardware. The most popular GPU-
accelerated ANN library so far is Faiss developed by Meta [37]. The
academia has also built several GPU-based ANNS systems [13, 14,
58]. Google researchers accelerate exact nearest neighbor search on
TPUs and show great performance on one-million-vector datasets [15].

Lee et al. [40] propose a fixed ASIC design for PQ supporting arbi-
trary algorithm parameters.Zhang et al. [62] implements a variation
of the PQ algorithm on FPGAs and focuses on compressing large
IVF indexes to fit it to BRAM. Ren et al. [50] stores full-precision
vectors in non-volatile memory to scale up graph-based ANNS,
while on-disk ANNS has to be careful with I/O cost [12, 32, 42].

Vector search in hardware accelerated machine learning
systems. Vector search is an essential component in retrieval-
augmented language models and recommender systems. For rec-
ommender systems, previous work has already explored hardware
acceleration using a single FPGA [34], a cluster of FPGAs [64], and
hybrid GPU-FPGA clusters [35] in which the FPGA serves as a disag-
gregated memory node controlling SRAM, HBM, and DDR memory.
FANNS can be integrated with them in a single system, enabling
the entire candidate generation and click-through rate prediction
recommendation pipeline being offloaded to specialized hardware
thus allowing high throughput while achieving low service latency.

Vector search algorithms. There are several ways to index
the database vectors. The first category is IVF indexes [7, 53] as
introduced in Section 2. The second category is graphs [21, 44, 45,
56]. The graph should connect nodes (vectors) by edges that present
neighborhood relationships. The search starts from an entry point
and iteratively traverses the graph until one of the termination
conditions is met. The third category is Locality-Sensitive Hashing
(LSH) [18, 23, 31, 63]. Each vector is hashed into a bucket that, to
some extent, reflects the spatial location of the vector. A search
hashes the query and scans the respective bucket. To increase the
chance of finding the nearest neighbor, one can create several hash
tables and ensemble the search results. LSH is a popular topic for
theorists as it provides probabilistic theoretical guarantees. The
fourth category is trees [10, 52]. Though studied in the early days,
tree-based structures cannot handle high-dimensional features well
due to the curse of dimensionality. Apart from indexing methods,
researchers also propose to quantize the vectors to reduce memory
footprint and save bandwidth. Product quantization [22, 33] is the
most popular quantization algorithm for ANN search.

9 CONCLUSION
Commercial search engines are driven by a large-scale vector search
system operating on a massive cluster of servers. We introduce
FANNS, a scalable FPGA vector search framework that co-designs
hardware and algorithm. Our eight-FPGA prototype demonstrates
7.6× improvement in P95 latency compared to eight GPUs, with our
performancemodel indicating that this advantage will only increase
as more accelerators are employed. The remarkable performance
of FANNS lays a robust groundwork for future FPGA integration
in data centers, with potential applications spanning large-scale
search engines, LLM training, and scientific research in fields such
as biomedicine and chemistry.

ACKNOWLEDGMENTS
Wewould like to thank AMD for their generous donation of the Het-
erogeneous Accelerated Compute Clusters (HACC) at ETH Zurich
(https://systems.ethz.ch/research/data-processing-on-modern-hardware/
hacc.html), on which the FPGA experiments were conducted.

https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

REFERENCES
[1] [n.d.]. https://www.intel.com/content/www/us/en/software/programmable/sdk-

for-opencl/overview.html.
[2] [n.d.]. RocksDB in Microsoft Bing. https://blogs.bing.com/Engineering-Blog/

october-2021/RocksDB-in-Microsoft-Bing.
[3] [n.d.]. Vivado High-Level Synthesis. https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html.
[4] [n.d.]. Worldwide visits to Google.com. https://www.statista.com/statistics/

268252/web-visitor-traffic-to-googlecom/.
[5] Albert Alexandrov, Mihai F Ionescu, Klaus E Schauser, and Chris Scheiman.

1995. LogGP: Incorporating long messages into the LogP model—one step closer
towards a realistic model for parallel computation. In Proceedings of the seventh
annual ACM symposium on Parallel algorithms and architectures. 95–105.

[6] Panagiotis Anagnostou, Petros Barbas, Aristidis G Vrahatis, and Sotiris K Tasoulis.
2020. Approximate kNN Classification for Biomedical Data. In 2020 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 3602–3607.

[7] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247–1260.

[8] Dávid Bajusz, Anita Rácz, and Károly Héberger. 2015. Why is Tanimoto index
an appropriate choice for fingerprint-based similarity calculations? Journal of
cheminformatics 7, 1 (2015), 1–13.

[9] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, spring joint computer conference. 307–314.

[10] Jeffrey S Beis and David G Lowe. 1997. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In Proceedings of IEEE computer
society conference on computer vision and pattern recognition. IEEE, 1000–1006.

[11] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, et al. 2021. Improving language models by retrieving from
trillions of tokens. arXiv preprint arXiv:2112.04426 (2021).

[12] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighbor Search. arXiv preprint arXiv:2111.08566 (2021).

[13] Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, Qiang Wang, and Wei
Zhao. 2019. Vector and line quantization for billion-scale similarity search on
GPUs. Future Generation Computer Systems 99 (2019), 295–307.

[14] Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, and Wei Zhao. 2019.
Robustiq: A robust ann search method for billion-scale similarity search on gpus.
In Proceedings of the 2019 on International Conference on Multimedia Retrieval.
132–140.

[15] Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, and
Sanjiv Kumar. 2022. TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s. arXiv
preprint arXiv:2206.14286 (2022).

[16] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[17] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:
Towards a realistic model of parallel computation. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
1–12.

[18] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[19] Johannes de Fine Licht, Maciej Besta, Simon Meierhans, and Torsten Hoefler.
2020. Transformations of High-Level Synthesis Codes for High-Performance
Computing. IEEE Transactions on Parallel and Distributed Systems 32, 5 (2020),
1014–1029.

[20] Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten Hoefler. 2020. Flex-
ible communication avoiding matrix multiplication on FPGA with high-level
synthesis. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 244–254.

[21] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

[22] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744–755.

[23] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[24] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.
2020. Realm: Retrieval-augmented language model pre-training. arXiv preprint
arXiv:2002.08909 (2020).

[25] Zhenhao He, Dario Korolija, and Gustavo Alonso. 2021. EasyNet: 100 Gbps
Network for HLS. In 2021 31th International Conference on Field Programmable
Logic and Applications (FPL).

[26] Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking of parallel
computing systems: twelve ways to tell the masses when reporting performance

results. In Proceedings of the international conference for high performance com-
puting, networking, storage and analysis. 1–12.

[27] Torsten Hoefler, Andre Lichei, and Wolfgang Rehm. 2007. Low-overhead LogGP
parameter assessment for modern interconnection networks. In 2007 IEEE Inter-
national Parallel and Distributed Processing Symposium. IEEE, 1–8.

[28] Torsten Hoefler and Dmitry Moor. 2014. Energy, memory, and runtime tradeoffs
for implementing collective communication operations. Supercomputing frontiers
and innovations 1, 2 (2014), 58–75.

[29] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[30] Muhuan Huang, Kevin Lim, and Jason Cong. 2014. A scalable, high-performance
customized priority queue. In 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 1–4.

[31] Qiang Huang, Yifan Lei, and Anthony KH Tung. 2021. Point-to-Hyperplane
Nearest Neighbor Search Beyond the Unit Hypersphere. In Proceedings of the
2021 International Conference on Management of Data. 777–789.

[32] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information Pro-
cessing Systems 32 (2019).

[33] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[34] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preußer, Kai Zeng, Liang Feng,
Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, et al. 2020. MicroRec:
Accelerating Deep Recommendation Systems to Microseconds by Hardware and
Data Structure Solutions. arXiv preprint arXiv:2010.05894 (2020).

[35] Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong Zhang,
Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, et al. 2021. Fleetrec: Large-scale
recommendation inference on hybrid gpu-fpga clusters. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3097–3105.

[36] Wenqi Jiang, Dario Korolija, and Gustavo Alonso. 2023. Data Processing with FP-
GAs on Modern Architectures. In Companion of the 2023 International Conference
on Management of Data. 77–82.

[37] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data (2019).

[38] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

[39] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39–48.

[40] Yejin Lee, Hyunji Choi, Sunhong Min, Hyunseung Lee, Sangwon Beak, Dawoon
Jeong, Jae W Lee, and Tae Jun Ham. 2022. ANNA: Specialized Architecture for
Approximate Nearest Neighbor Search. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 169–183.

[41] Charles E Leiserson. 1979. Systolic Priority Queues. Technical Report. CARNEGIE-
MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

[42] Herwig Lejsek, Friðrik Heiðar Ásmundsson, Björn Þór Jónsson, and Laurent
Amsaleg. 2008. NV-Tree: An efficient disk-based index for approximate search in
very large high-dimensional collections. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31, 5 (2008), 869–883.

[43] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[44] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61–68.

[45] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[46] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2012. Sorting networks on
FPGAs. The VLDB Journal 21, 1 (2012), 1–23.

[47] Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. 2019. ScispaCy:
fast and robust models for biomedical natural language processing. arXiv preprint
arXiv:1902.07669 (2019).

[48] Philippos Papaphilippou, Chris Brooks, and Wayne Luk. 2018. Flims: Fast light-
weight merge sorter. In 2018 International Conference on Field-Programmable
Technology (FPT). IEEE, 78–85.

[49] Philippos Papaphilippou, Chris Brooks, and Wayne Luk. 2020. An Adaptable
High-Throughput FPGA Merge Sorter for Accelerating Database Analytics. In
2020 30th International Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 65–72.

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://blogs.bing.com/Engineering-Blog/october-2021/RocksDB-in-Microsoft-Bing
https://blogs.bing.com/Engineering-Blog/october-2021/RocksDB-in-Microsoft-Bing
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/
https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/

Co-design Hardware and Algorithm for Vector Search SC ’23, November 12–17, 2023, Denver, CO, USA

[50] Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest
neighbor search on heterogeneous memory. Advances in Neural Information
Processing Systems 33 (2020), 10672–10684.

[51] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee,
Yang Seok Ki, and Tajana Rosing. 2021. NASCENT: Near-Storage Acceleration
of Database Sort on SmartSSD. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 262–272.

[52] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image
descriptor matching. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 1–8.

[53] Josef Sivic and Andrew Zisserman. 2003. Video Google: A text retrieval approach
to object matching in videos. In Computer Vision, IEEE International Conference
on, Vol. 3. IEEE Computer Society, 1470–1470.

[54] Wei Song, Dirk Koch,Mikel Luján, and JimGarside. 2016. Parallel hardwaremerge
sorter. In 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 95–102.

[55] Ján Suchal and Pavol Návrat. 2010. Full text search engine as scalable k-nearest
neighbor recommendation system. In IFIP International Conference on Artificial
Intelligence in Theory and Practice. Springer, 165–173.

[56] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:
solving c-approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. Proceedings of the VLDB Endowment (2014).

[57] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: a hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment

13, 12 (2020), 3152–3165.
[58] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik

Lensch. 2016. Efficient large-scale approximate nearest neighbor search on
the gpu. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2027–2035.

[59] Peter Willett. 2014. The calculation of molecular structural similarity: principles
and practice. Molecular informatics 33, 6-7 (2014), 403–413.

[60] Jonathan Woodbridge, Bobak Mortazavi, Alex AT Bui, and Majid Sarrafzadeh.
2016. Improving biomedical signal search results in big data case-based reasoning
environments. Pervasive and mobile computing 28 (2016), 69–80.

[61] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

[62] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient large-scale ap-
proximate nearest neighbor search on OpenCL FPGA. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4924–4932.

[63] Yuxin Zheng, Qi Guo, Anthony KHTung, and SaiWu. 2016. Lazylsh: Approximate
nearest neighbor search for multiple distance functions with a single index. In
Proceedings of the 2016 International Conference on Management of Data. 2023–
2037.

[64] Yu Zhu, Zhenhao He, Wenqi Jiang, Kai Zeng, Jingren Zhou, and Gustavo Alonso.
2021. Distributed recommendation inference on fpga clusters. In 2021 31st Inter-
national Conference on Field-Programmable Logic and Applications (FPL). IEEE,
279–285.

SC ’23, November 12–17, 2023, Denver, CO, USA Wenqi Jiang et al.

A ARTIFACT DESCRIPTION
We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset
and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding
accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator.

We use the following open-source software and commercial hardware in the experiments. The experimental results should be easily
reproducible on the same hardware.

A.1 Hardware.
For CPU experiments, we use an m5.4xlarge CPU server on AWS. The server contains 16 vCPUs of Intel(R) Xeon(R) Platinum 8259CL @
2.50GHz (Cascade Lake, 14nm technology) and 64 GB of DDR4 memory. For GPU experiments, we use a p3.24xlarge GPU server on AWS. It
contains eight NVIDIA V100 GPUs manufactured by the TSMC 12 nm FFN (FinFET NVIDIA) technology. Each GPU has 5,120 CUDA cores
and 32 GB HBM2. For FPGA experiments, we use Xilinx Alveo U55c FPGA fabricated with TSMC’s 16nm process. Each FPGA contains 1.3M
LUTs, 9K DSPs, 40MB on-chip memory, and 16 GB HBM. We use a cluster of FPGAs for scale-out experiments, and all the U55c FPGAs are
connected to the same switch.

A.2 Software.
We use Faiss 1.7.1 for both CPU and GPU experiments. The CUDA version of the GPU server is 11.3. For FPGA experiments, we develop the
accelerators using Vitis HLS 2022.1.

B ARTIFACT EVALUATION
The code of FPGA accelerators with/without the network stack as well as the CPU/GPU baseline evaluations are available at: https:
//github.com/WenqiJiang/SC-ANN-FPGA. We only apply for the availability badge because the HACC FPGA cluster at ETH Zurich does not
allow anonymous access for reproducibility evaluation.

The repository contains three folders with documented execution flow:
• The CPU_GPU_baselines folder contains all the CPU and GPU baseline experiments. It also contains part of the co-design formula –
we use Faiss to evaluate the relationship between index, nprobe, and recall on a given dataset.

• The FPGA_local folder contains all the CD-ANN programs without the network stack. Its performance_model sub-directory contains
the performance and resource consumption models. A user can use the programs in it to predict the best hardware design given a
certain recall goal on a dataset. The code_generation sub-directory can generate the ready-to-compile FPGA code given a hardware
setting, which is either predicted by the performance model or set by the user manually. The generated_projects sub-directory contains
all the generated FPGA accelerator code that we evaluated in the experiments.

• The FPGA_with_network folder contains all the FPGA accelerators that we evaluated with the network stack. The FPGA kernels are
located in the kernel/user_kernel sub-directory. The CPU client programs are in the CPU_program sub-directory.

It will take a significant amount of time to reproduce all results. Training the indexes can be costly (around two hours per index), given
that we trained 18 indexes in the paper. Once the indexes are trained, it should take less than two hours on CPUs and GPUs to reproduce the
performance. The FPGA compilation can take around ten hours per design, which is costly because we have more than ten designs to form
the experiments. Executing an FPGA program should take less than a minute.

The reproduced results are expected to be identical to the paper, given that we already reported performance on multiple runs and
characterized the error bars in throughput experiments as well as latency distributions in latency experiments.

https://github.com/WenqiJiang/SC-ANN-FPGA
https://github.com/WenqiJiang/SC-ANN-FPGA

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
10.5281/zenodo.8071025

ARTIFACT IDENTIFICATION
1 ARTIFACT DESCRIPTION
We introduce FANNS, an end-to-end and scalable vector search
framework on FPGAs. Given a user-provided recall requirement
on a dataset and a hardware resource budget, FANNS automatically
co-designs hardware and algorithm, subsequently generating the
corresponding accelerator. The framework also supports scale-out
by incorporating a hardware TCP/IP stack in the accelerator.

We use the following open-source software and commercial
hardware in the experiments. The experimental results should be
easily reproducible on the same hardware.

1.1 Hardware.
For CPU experiments, we use an m5.4xlarge CPU server on AWS.
The server contains 16 vCPUs of Intel(R) Xeon(R) Platinum 8259CL
@ 2.50GHz (Cascade Lake, 14nm technology) and 64 GB of DDR4
memory. For GPU experiments, we use a p3.24xlarge GPU server
on AWS. It contains eight NVIDIA V100 GPUs manufactured by
the TSMC 12 nm FFN (FinFET NVIDIA) technology. Each GPU
has 5,120 CUDA cores and 32 GB HBM2. For FPGA experiments,
we use Xilinx Alveo U55c FPGA fabricated with TSMC’s 16nm
process. Each FPGA contains 1.3M LUTs, 9K DSPs, 40MB on-chip
memory, and 16 GB HBM. We use a cluster of FPGAs for scale-out
experiments, and all the U55c FPGAs are connected to the same
switch.

1.2 Software.
We use Faiss 1.7.1 for both CPU and GPU experiments. The CUDA
version of the GPU server is 11.3. For FPGA experiments, we develop
the accelerators using Vitis HLS 2022.1.

REPRODUCIBILITY OF EXPERIMENTS
The code of FPGA accelerators with/without the network stack as
well as the CPU/GPU baseline evaluations are available at: https:
//github.com/WenqiJiang/SC-ANN-FPGA

The repository contains three folders with documented execu-
tion flow:

• The CPU_GPU_baselines folder contains all the CPU and
GPU baseline experiments. It also contains part of the co-
design formula – we use Faiss to evaluate the relationship
between index, nprobe, and recall on a given dataset.

• The FPGA_local folder contains all the CD-ANN programs
without the network stack. Its performance_model sub-
directory contains the performance and resource consump-
tion models. A user can use the programs in it to predict the
best hardware design given a certain recall goal on a dataset.
The code_generation sub-directory can generate the ready-
to-compile FPGA code given a hardware setting, which is

either predicted by the performance model or set by the user
manually. The generated_projects sub-directory contains all
the generated FPGA accelerator code that we evaluated in
the experiments.

• The FPGA_with_network folder contains all the FPGA accel-
erators that we evaluated with the network stack. The FPGA
kernels are located in the kernel/user_kernel sub-directory.
The CPU client programs are in the CPU_program sub-
directory.

It will take a significant amount of time to reproduce all results.
Training the indexes can be costly (around two hours per index),
given that we trained 18 indexes in the paper. Once the indexes are
trained, it should take less than two hours on CPUs and GPUs to
reproduce the performance. The FPGA compilation can take around
ten hours per design, which is costly because we have more than
ten designs to form the experiments. Executing an FPGA program
should take less than a minute.

The reproduced results are expected to be identical to the paper,
given that we already reported performance on multiple runs and
characterized the error bars in throughput experiments as well as
latency distributions in latency experiments.

ARTIFACT DEPENDENCIES REQUIREMENTS
Hardware:

For CPU experiments, we use an m5.4xlarge CPU server on AWS.
The server contains 16 vCPUs of Intel(R) Xeon(R) Platinum 8259CL
@ 2.50GHz (Cascade Lake, 14nm technology) and 64 GB of DDR4
memory. For GPU experiments, we use a p3.24xlarge GPU server
on AWS. It contains eight NVIDIA V100 GPUs manufactured by
the TSMC 12 nm FFN (FinFET NVIDIA) technology. Each GPU
has 5,120 CUDA cores and 32 GB HBM2. For FPGA experiments,
we use Xilinx Alveo U55c FPGA fabricated with TSMC’s 16nm
process. Each FPGA contains 1.3M LUTs, 9K DSPs, 40MB on-chip
memory, and 16 GB HBM. We use a cluster of FPGAs for scale-out
experiments, and all the U55c FPGAs are connected to the same
switch.

Software: We use Faiss 1.7.1 for both CPU and GPU experiments.
The CUDA version of the GPU server is 11.3. For FPGA experiments,
we develop the accelerators using Vitis HLS 2022.1. The operating
system we use is Ubuntu 20.04 LTS.

Datasets: We use the SIFT and Deep datasets, which are among
the most popular benchmark datasets for approximate nearest
neighbor search.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
To build the FPGA bitstreams, the first step is to install Vitis. We
do not upload an image for it because the software consumes more
than 100 GB of space. The user should find a powerful server to
build the bitstream, i.e., at least eight cores and 64 GB of memory.

The repository (https://github.com/WenqiJiang/SC-ANN-FPGA)
contains three folders with documented execution flow:

https://github.com/WenqiJiang/SC-ANN-FPGA
https://github.com/WenqiJiang/SC-ANN-FPGA

Jiang, et al.

• The CPU_GPU_baselines folder contains all the CPU and
GPU baseline experiments. It also contains part of the co-
design formula – we use Faiss to evaluate the relationship
between index, nprobe, and recall on a given dataset.

• The FPGA_local folder contains all the CD-ANN programs
without the network stack. Its performance_model sub-
directory contains the performance and resource consump-
tion models. A user can use the programs in it to predict the
best hardware design given a certain recall goal on a dataset.
The code_generation sub-directory can generate the ready-
to-compile FPGA code given a hardware setting, which is
either predicted by the performance model or set by the user
manually. The compilation can be done with the Makefile in
the folder. The generated_projects sub-directory contains all
the generated FPGA accelerator code that we evaluated in
the experiments.

• The FPGA_with_network folder contains all the FPGA accel-
erators that we evaluated with the network stack. The FPGA
kernels are located in the kernel/user_kernel sub-directory.
The CPU client programs are in the CPU_program sub-
directory.

It will take a significant amount of time to reproduce all results.
Training the indexes can be costly (around two hours per index),
given that we trained 18 indexes in the paper. Once the indexes are
trained, it should take less than two hours on CPUs and GPUs to
reproduce the performance. The FPGA compilation can take around
ten hours per design, which is costly because we have more than
ten designs to form the experiments. Executing an FPGA program
should take less than a minute.

The reproduced results are expected to be identical to the paper,
given that we already reported performance on multiple runs and
characterized the error bars in throughput experiments as well as
latency distributions in latency experiments.

	Abstract
	1 Introduction
	2 Background
	2.1 The IVF-PQ Algorithm

	3 Hardware-Algorithm Design Space
	3.1 Algorithm Parameter Space
	3.2 Hardware Design Space
	3.3 How Does One Choice Influence Others?
	3.4 Explore the Design Space by FPGAs

	4 FANNS Framework Overview
	5 Hardware Processing Elements
	5.1 Designs for the Selection Stages
	5.2 Designs for the Computation Stages

	6 End-to-End Hardware Generation
	6.1 Explore Algorithm Parameters [height=0.06]fig/parameter-icon.png
	6.2 List Valid Accelerator Designs [height=0.06]fig/hardwareresourceicon.png
	6.3 Model Accelerator Performance [height=0.06]fig/performanceicon.png
	6.4 Generate FPGA Programs [height=0.06]fig/codeicon.png

	7 Evaluation
	7.1 Experimental Setup
	7.2 FANNS-Generated Accelerators
	7.3 Performance Comparison

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Description
	A.1 Hardware.
	A.2 Software.

	B Artifact Evaluation
	1 Artifact Description
	1.1 Hardware.
	1.2 Software.

