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Abstract

As deep learning models grow, sparsity is becoming an increasingly critical compo-
nent of deep neural networks, enabling improved performance and reduced storage.
However, existing frameworks offer poor support for sparsity. They primarily focus
on sparse tensors in classical formats such as COO and CSR, which are not well
suited to the sparsity regimes typical of deep learning, and neglect the broader
sparsification pipeline necessary for using sparse models. To address this, we pro-
pose a new sparsity interface for PyTorch, STen, that incorporates sparsity layouts
for tensors (including parameters and transients, e.g., activations), sparsity-aware
operators, and sparsifiers, which define how a tensor is sparsified, and supports
virtually all sparsification methods. STen can enable better sparse performance and
simplify building sparse models, helping to make sparsity easily accessible.

1 Introduction

Deep learning models are growing voraciously, and require ever greater amounts of compute and
memory [10, 15, 18, 20]. To address this, sparsity has emerged as a major research and engineering
direction [6, 9]. Sparsity is widely used to reduce storage requirements and improve performance
during inference. More recent work has begun to focus on sparsity during training, which can also
improve performance while helping to break the memory wall for large models. Indeed, frameworks
have begun to provide direct support for sparse tensors. The PyTorch [19] torch.sparse module
includes COO and CSR tensors and a limited set of operations and the TensorFlow [1] tf.sparse
module similarly supports COO tensors. However, these modules primarily support sparse tensors,
rather than an entire sparisification pipeline, and lack native support for sparsification operators that
can efficiently produce sparse tensors. They therefore offer limited productivity improvements and
do not provide a clear path toward supporting broad usage of sparsity. Further, at sparsities common
in machine learning (50–95%), although classical sparse matrix formats reduce storage, they perform
worse than dense implementations. While blocked formats (e.g., ELL, BCSR) support efficient
implementations by calling dense kernels for each block, they restrict where nonzeros can be placed
and can limit the information preserved after sparsification. Another approach is to use masks, which
emulate sparsity by zeroing out elements, but offer no storage reduction.

To address this, we first propose a new programming model for sparsity in PyTorch (§2), overviewed
in Fig. 1. This model consists of three components: sparsity layouts for tensors; operators, which
provide implementations for computations with any combination of sparsities for input and output
tensors; and sparsifiers, which are applied to operator outputs to compute a new sparse tensor.
Sparsifiers are further classified as streaming, blocking, or materializing, based on the number of
output values they require. Our model supports the vast majority of sparsification approaches, and
enables them to be implemented efficiently; for example, threshold pruning is a streaming sparsifier,
and a high-performance implementation could be inlined into operators. We provide an initial
implementation of this model, STen, in PyTorch (§3) for CPU inference, but aim to lay the foundation
for sparse training on accelerators. We also provide performant operators and an n:m sparsity
format [16, 27], where each group of m elements has n nonzeros, which is a middle ground between
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Figure 1: Overview of our proposed sparsity programming model.

unstructured and block sparsity that performs well for deep learning workloads and is practical on
CPUs and GPUs. With STen, we show (§4) that sparse-dense matrix multiplication can outperform
PyTorch’s built-in sparsity in the 50–90% sparsity regime: up to 54× faster than its COO format and
3× faster than its CSR format. We also match or outperform dense formats at 60% or greater sparsity.
Our code and examples are available at https://github.com/spcl/sten.

2 Programming Model for Sparsity
We now introduce our programming model for sparsity. It consists of three concepts, sparsity layouts,
operators, and sparsifiers, which we discuss in turn. We discuss implementation details in §3. While
existing frameworks have some support for sparse tensors and operators, they lack explicit support
for sparsifiers, which are manually incorporated by users in an ad hoc manner. Instead, we manage
the entire sparsification pipeline, simplifying usage while enabling improved performance.

Sparsity layouts define the sparsity structure used by a tensor, extending the usual memory layout by
annotating the sparsity format (e.g., CSR, COO, n:m) and associated parameters (e.g., n and m).

Operators are any standard operator, with any number of input and output tensors. Each tensor may
have any memory and sparsity layout, and an operator may have different implementations for each
combination of tensor layouts for maximum performance.

Sparsifiers define how to decide which output values to keep, and are associated with each output of
an operator. A sparsifier can be thought of as a special kind of operator, and may include additional
inputs that delay its application until they are ready (e.g., gradients for first-order sparsification). Note
a sparsifier may produce output in a different sparsity layout than what its associated operator outputs.
We use the term sparse operator to refer to the combination of an operator and sparsifier.

We further classify sparsifiers as one of streaming, blocking, or materializing. A streaming sparsifier
is applied to each output value to decide whether to drop it, in a single pass, before writing to the
output tensor. Blocking sparsifiers require a small set of output values to decide which ones to drop.
Finally, materializing sparsifiers require the operator to fully store all values. Note that a sparsifier
may be fused into an operator for performance, or used standalone to convert dense tensors to sparse.

Table 1 lists example sparsifiers and their characteristics. The trivial keep-all sparsifier preserves all
produced values and is the default for dense tensors. It is not limited to dense tensors, however: the
sum of two sparse tensors with a keep-all sparsifier may produce a new sparse tensor with nonzero
values given by the union of the nonzeros of the inputs. A random fraction sparsifier drops values
with a fixed probability, while a scalar threshold drops them if they are less than a fixed threshold.
Scalar fraction drops the smallest portion of the values (i.e., magnitude pruning) and block-wise
fraction drops entire blocks with the smallest combined absolute magnitude. Per-block fraction
drops the smallest proportion of values within fixed blocks of elements. Finally, more advanced
complex weight sparsifiers, which require additional information such as the loss or gradients, are
also supported. These examples are not exhaustive, and our model can support nearly any sparsifier.

2.1 Constructing Sparse Models

We consider two cases for building sparse models: constructing a model from scratch or sparsifying
an existing model. A sparse model is set up by providing a list of tensors and a desired sparsity layout
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Table 1: Sparsifier types and examples, the number of passes over a tensor made, their memory
requirements (nnz total nonzeros, block size b when blocking), and sparsifier type. Some complex
weight sparsifiers could be implemented more efficiently than with materialization.
Sparsifier Examples Passes Memory Type

Keep-all Sparse add 1 O(1) streaming
Random fraction Dropout [22] 1 O(1) streaming
Scalar threshold ReLU [14] 1 O(1) streaming
Scalar fraction Magnitude [5, 28] 2 O(nnz) materializing
Block-wise fraction Block magnitude [12] 2 O(nnz) materializing
Per-block fraction n:m [16, 27] 2 O(b) blocking
Complex weight sparsifiers Movement [21], ℓ0 [13], etc. [9] ≥ 1 O(nnz) materializing

for each. This provides enough information for a library to initialize tensors and dispatch operators
to specific sparse formats. If an operator implementation is not available, the user can provide one
or convert tensors to a supported sparsity layout. Note that all tensors are used as operator inputs,
outputs, or both; for simplicity, we will ignore sparsity for model inputs and outputs. The remaining
input-only tensors are typically weights. All other tensors are used as both inputs and outputs and
occur within the computation graph (e.g., activations); we refer to them as intermediate tensors. Note
that in practice, intermediate tensors do not exist until runtime in most frameworks, so their sparsity
layout is instead defined by the operator that produces them.

Constructing a sparse model from scratch is similar to the typical process in PyTorch, but tensors
and operators in its computational graph are annotated with specific sparsity layouts.

Sparsifying an existing model requires marking a subset of the model’s tensors as sparse. While this
is straightforward for weights, making intermediate tensors sparse is more challenging. Unlike when
building a model from scratch, we cannot mark operators as sparse: this would require modifying
or rewriting the original model definition, a significant overhead for a user. Further, identifying all
operators in a model is hard (not all have names or are registered, e.g., nn.functional operators).
Instead, to identify intermediate tensors, we can run the model once to collect this information.

We now discuss sparse inference, then proceed to training. To sparsify existing dense weights or load
sparse weights, we need only the desired sparsity layout and sparsifier. If a non-materializing sparsifier
is given, we first trivially convert it to a materializing version. Then the weights are sparsified and
subsequent operator calls will use the sparse version. Intermediate tensors are sparsified at runtime,
as they do not exist in advance.

For training, we need to also consider error signals (sometimes called neural gradients) and gradients,
which may have independent sparse layouts and sparsifiers from their associated forward pass tensors.
These are treated identically to intermediate tensors in the forward pass. However, note that in this
case, weight tensors are no longer input-only, as gradient updates are applied to them. This is not a
significant change from the user perspective, and mainly implies that materializing sparsifiers may be
less efficient and sparsifying on the fly with the gradient update operator may be faster.

3 STen Implementation

We now discuss the implementation of our sparsity programming model in PyTorch, STen. The
interface is in Python and interoperates with standard PyTorch models to enable a user to construct a
sparse model from scratch or sparsify an existing dense model.

Model construction. To build a sparse model from scratch, the user essentially constructs a model as
usual in PyTorch, but uses sparse versions of operators and tensors. The STen API supports sparse
tensor and parameter classes, which can store tensors using any sparsity layout, and can be extended
by the user to support additional layouts. Operators (e.g., matrix multiplication) can infer the layout
of their input tensors, but the desired output tensor layout must be explicitly specified. Finally, where
desired, sparsifiers can be associated with an operator to select which output values to keep.
import torch, sten
a, b = torch.randn(10, 20), torch.randn(10, 20)
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sparse_add = sten.sparsified_op(orig_op=torch.add,
out_fmt=[(sten.KeepAll(), torch.Tensor,

sten.RandomFractionSparsifier(0.5), sten.CsrTensor)],
grad_out_fmt=[(sten.KeepAll(), torch.Tensor,

sten.RandomFractionSparsifier(0.5), sten.CsrTensor)])
c = sparse_add(a, b) # dense + dense -> sparse

Sparsifying existing models. Alternatively, one can construct a sparse model from an existing
dense model. To do this, the user provides the original PyTorch model, a list of tensor identifiers
belonging to the model, and the desired sparsity layout and sparsifier for each tensor. To identify
weight tensors, we use the fully-qualified names provided by PyTorch. For intermediate tensors, we
obtain names using the torch.fx tracing framework. Note that adding sparsity to an intermediate
tensor is equivalent to using a sparse operator with that output layout. Sparsifiers are then applied to
existing dense weight tensors, which are then replaced by a sparse tensor, and operators that output
sparse intermediate tensors are replaced with the corresponding sparse operator.
model = torch.nn.TransformerEncoderLayer(d_model=512, nhead=8)
sb = sten.SparsityBuilder(model)
sb.set_weight(name='linear1.weight', out_format=sten.CooTensor,

initial_sparsifier=sten.ScalarFractionSparsifier(0.5))
sb.set_interm(name='relu', out_format=sten.CooTensor,

external_sparsifier=sten.ScalarFractionSparsifier(0.5))
sparse_model = sb.get_sparse_model()

Identifying intermediate tensors uniquely is challenging in the current PyTorch API, as the tensors
are materialized at runtime and only accessible via tracing. We found three approaches for this:
torch.fx, exporting to ONNX [17], or low-level TorchScript tracing. However, ONNX operators do
not map perfectly to PyTorch operators, making it difficult to recover the original model. TorchScript
tracing, while powerful and flexible, introduces significant complexity. We therefore use torch.fx
as replacing tensors and operators with it is simple.

Operator implementations. Additionally, providing operator implementations for all combinations
of input and output sparsity layouts is unrealistic given the large number of combinations, especially
when users may provide their own formats. To overcome this, we support an operator extension
API that accepts the operator name, a matching pattern for supported input and output sparsity
layout combinations, and an actual implementation. When such an operator is called with matching
tensors, we dispatch to the given implementation, which can make use of existing high-performance
implementations (e.g., [2, 4, 7, 8]). If an implementation does not exist, the interface can optionally
convert input tensors to a supported format; however, this requires the destination format to support
this transformation losslessly (e.g., CSR) and sacrifices many opportunities for performance with
the original layout (e.g., optimizations for blocked layouts). Otherwise, we fall back to using a
dense implementation and issue a warning. This enables incremental optimization by performance
engineers, who can decide which operators it is most profitable to provide sparse implementations for.
It also allows users to explore the effects of sparsity on models (albeit with a performance penalty).
@sten.register_fwd_op_impl(operator=torch.add,

inp=(sten.CsrTensor, sten.CooTensor, None, None),
out=[(sten.RandomFractionSparsifier, sten.CooTensor)])

def sparse_add_fwd_impl(ctx, inputs, output_sparsifiers):
input, other, alpha, out = inputs
[out_sp] = output_sparsifiers
return native_cpp_impl(input, other, alpha=alpha, out=out, sp=out_sp)

Backpropagation. Our programming model also supports sparsity during backpropagation. However,
supporting automatic differentiation and backpropagation on arbitrary sparsity layouts and operators is
challenging in PyTorch, as its autograd engine makes assumptions that limit its flexibility. In particular,
the autograd engine is implemented in C++ and expects instances of torch.Tensor, meaning we
cannot provide a separate class or wrap existing tensors to support additional sparsity layouts, and also
limits the usefulness of custom implementations via torch.autograd.Function. Further, while
torch.Tensor can be subclassed, these subclasses will still inherit the dense memory of the base
class. To address this, we take a hybrid approach, and inherit from the empty tensor, wrapping custom
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Figure 2: Left: Forward-pass runtime of a single BERTBASE [3] encoder layer from HuggingFace [24].
We sparsify the weights of feedforward layers and attention projections (except biases; shaded right).

sparsity layouts inside of this, and then override the forward and backward functions of operators that
access the tensor to use the wrapped sparse data. We also intercept gradient assignments to make
sure that sparse data is not lost. This allows STen to easily support new sparse layouts and operators.

4 Case Studies

We now evaluate our sparsity programming model and the STen implementation, first by considering
two case studies showing its productivity, and then examining its performance.

Productivity. We first consider sparsifying an existing BERTBASE [3] encoder layer from Hugging-
Face [24]. Sparsifying all linear layer weights as well as the GELU activation output requires only
about ten lines of code; this would not otherwise be possible in PyTorch without rewriting the model
from scratch or manually replacing operators and tensors in the same manner as STen. We then
consider constructing a simple sparse MLP from scratch. While both STen and torch.sparse
can accomplish this with comparable complexity, STen is significantly more flexible, and supports
arbitrary sparsity layouts and operators without modifying PyTorch (§3). For full examples, see §A.

Performance. We now consider the performance of the forward pass (i.e, for training) of a BERTBASE

encoder layer, which is a popular target for sparsification (e.g., [11, 21, 26]), and applicable to both
training and inference environments. We use the BERTBASE (uncased) model from HuggingFace [24]
with batch size 8 and sequence length 128, and apply a random fraction sparsifier to sparsify weights.
We run experiments on an Intel i7–4770 CPU. We compare the default PyTorch (v1.11) dense
implementation, torch.sparse using CSR and COO formats, and our own n:m sparse layout. Our
n:m layout is designed for high speed at sparsities common in deep learning. It uses accumulation
in vector registers to perform efficient multiplications on CPU, following OpenBLAS [23, 25]. The
n:m blocks are aligned along the non-contraction axis and put in equally-sized groups with the same
nonzero pattern to avoid branch mispredictions; original locations are stored in dense integer tensors.

We show results in Fig. 2. Our sparsity implementation significantly outperforms torch.sparse,
and is up to 54× faster than its COO format and 3× faster than its CSR format. It also matches or
outperforms dense PyTorch tensors when at least 60% sparse, while saving significant memory.

5 Discussion

We have proposed, and conducted initial evaluations on, a new interface for sparsity in PyTorch,
STen. By directly incorporating the notion of a sparsifier into the programming model, we allow the
interface to both better optimize performance (e.g., by not materializing tensors before sparsification
and fusing sparsification into operators) and provide a complete pipeline for sparsification. Our
interface also makes it easy to sparsify existing dense models (e.g., fine-tuning for sparsity) and to
add support for additional sparse tensor layouts, operators, or sparsifiers. With STen, we aim to
make sparsity easily accessible to ML users and practitioners. As next steps, we plan to extend our
implementation to fully support sparse training as well as GPUs and other accelerators.
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A Extended Case Studies

Here we present full details of two case studies using the STen interface. In the first, we sparsify an
existing BERT model. In the second, we demonstrate constructing a sparse MLP from scratch. For
full details, including notebooks and additional examples, see https://github.com/spcl/sten.

A.1 Case study: BERT

modify_existing.ipynb

Here we demonstrate the workflow of adding sparsity into existing models. As an example we take a
single encoder layer of BERT [3].
import torch
input_shape = (8, 128, 768) # batch, sequence, features
model = torch.hub.load('huggingface/pytorch-transformers',

'model', 'bert-base-uncased').encoder.layer[0]
input = torch.rand(input_shape)
output = model(input)
print(output[0].shape) # -> torch.Size([8, 128, 768])

We target all linear layers in this model, including feedforward and attention projection layers. A
linear layer computes y = xAT + b and is defined in torch.nn.Linear module. In particular, we
are going to sparsify tensors A by magnitude pruning of 90% of their values and storing them in the
CSR format. In the following snippet we collect the six weight tensors from linear layers, and assign
sparsifiers to them.
import sten
weights_to_sparsify = []
sb = sten.SparsityBuilder(model)
for module_name, module in model.named_modules():

if isinstance(module, torch.nn.modules.linear.Linear):
weight = module_name + ".weight"
weights_to_sparsify.append(weight)
sb.set_weight(

name=weight,
initial_sparsifier=sten.ScalarFractionSparsifier(0.9),
inline_sparsifier=sten.KeepAll(),
tmp_format=torch.Tensor,
external_sparsifier=sten.KeepAll(),
out_format=sten.CsrTensor,

)
print(weights_to_sparsify)

This yields the fully qualified names assigned by PyTorch to each of these tensors.
['attention.self.query.weight', 'attention.self.key.weight',
'attention.self.value.weight', 'attention.output.dense.weight',
'intermediate.dense.weight', 'output.dense.weight']

Next, we repeat the same process for intermediate tensors. In this example, we target only the output
of the GELU activation. However, it is challenging to refer to this intermediate tensor, as we treat the
module as a black box that we do not modify, and internal operators may have varying or no name,
depending on the implementation. Examining the layer modules ( print(model) ) shows the model
structure:
BertLayer(

...
(intermediate): BertIntermediate(

(dense): Linear(in_features=768, out_features=3072, bias=True)
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(intermediate_act_fn): GELUActivation()
)
...

)

From this we see that the model.intermediate submodule contains the GELU activation, but we
still do not know the name of the output intermediate tensor. We use the torch.fx tracer to assign
deterministic names to the intermediate tensors:
torch.fx.symbolic_trace(model.intermediate).graph.print_tabular()

The result of running this command shows that the output of <built-in function gelu> (acces-
sible as torch.nn.functional.gelu ) is assigned to the tensor with the name gelu inside the
model.intermediate module:
opcode name target args kwargs
------------- ------------- ------------------------ ---------------- --------
placeholder hidden_states hidden_states () {}
call_module dense dense (hidden_states,) {}
call_function gelu <built-in function gelu> (dense,) {}
output output output (gelu,) {}

We now assign a random fraction sparsifier with 90% zeroing probability to the GELU output
intermediate tensor. The sparsifier stores the tensor in COO format.
sb.set_interm(

name="intermediate.gelu",
inline_sparsifier=sten.RandomFractionSparsifier(0.9),
tmp_format=sten.CooTensor,
external_sparsifier=sten.KeepAll(),
out_format=sten.CooTensor,

)

Finally, we create a new sparse model from the original dense model and run it with the same
arguments as before:
sparse_model = sb.get_sparse_model()
output = sparse_model(input)
print(output[0].shape) # -> torch.Size([8, 128, 768])

A.2 Case study: MLP

build_from_scratch.ipynb

In this example, we show how to build sparse model from scratch using a simple MLP. As reference
we use the following implementation of a dense MLP:
import torch

class MLP(torch.nn.Module):
def __init__(self, channel_sizes):

super().__init__()
self.layers = torch.nn.Sequential()
in_out_pairs = list(zip(channel_sizes[:-1], channel_sizes[1:]))
for idx, (in_channels, out_channels) in enumerate(in_out_pairs):

if idx != 0:
self.layers.append(torch.nn.ReLU())

self.layers.append(torch.nn.Linear(in_channels, out_channels))
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def forward(self, input):
return self.layers(input)

model = MLP([50, 40, 30, 20, 30, 10])
output = model(torch.randn(15, 50))
print(output.shape)

We are going to replace torch.nn.Linear with our custom SparseLinear module, which will call
our sparse implementation of torch.nn.functional.linear .
import sten

class SparseLinear(torch.nn.Module):
def __init__(self, input_features, output_features, weight_sparsity):

super().__init__()
self.weight_sparsity = weight_sparsity
dense_weight = sten.random_mask_sparsify(

torch.randn(output_features, input_features),
frac=weight_sparsity

)
self.weight = sten.SparseParameterWrapper(

sten.CscTensor.from_dense(dense_weight)
)
self.weight.grad_fmt = (

sten.KeepAll(),
torch.Tensor,
sten.RandomFractionSparsifier(self.weight_sparsity),
sten.CscTensor,

)
self.bias = torch.nn.Parameter(torch.rand(output_features))
self.bias.grad_fmt = (

sten.KeepAll(),
torch.Tensor,
sten.KeepAll(),
torch.Tensor,

)

def forward(self, input):
sparse_op = sten.sparsified_op(

orig_op=torch.nn.functional.linear,
out_fmt=tuple(

[(sten.KeepAll(), torch.Tensor,
sten.KeepAll(), torch.Tensor)]

),
grad_out_fmt=tuple(

[(sten.KeepAll(), torch.Tensor,
sten.KeepAll(), torch.Tensor)]

),
)
return sparse_op(input, self.weight, self.bias)

The important aspect is the use of SparseParameterWrapper to hold the data of sparse tensors. The
code above shows the sparsity configuration of weight and intermediate tensors gradients that will
appear in the backward pass, although they are dense in this example. The remaining piece is the
implementation of SparseMLP :
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class SparseMLP(torch.nn.Module):
def __init__(self, channel_sizes, weight_sparsity):

super().__init__()
self.layers = torch.nn.Sequential()
in_out_pairs = list(zip(channel_sizes[:-1], channel_sizes[1:]))
for idx, (in_channels, out_channels) in enumerate(in_out_pairs):

if idx != 0:
self.layers.append(torch.nn.ReLU())

self.layers.append(SparseLinear(
in_channels, out_channels, weight_sparsity))

def forward(self, input):
return self.layers(input)

Finally, after the replacement of torch.nn.Linear with the SparseLinear in the MLP implemen-
tation, we call it and observe the expected output.
model = SparseMLP([50, 40, 30, 20, 30, 10], 0.8)
output = model(torch.randn(15, 50))
print(output.shape)

A.3 Case study: Customization

custom_implementations.ipynb

This example demonstrates the API to register custom operator implementations for specific input
and output tensor formats. This example demonstrates customization API to define new sparse tensor
formats and sparsifier. It shows how to register custom operator and sparsifier implementations for
them.
import torch
import sten
import scipy

Start from the dense implementation of d = (a+ b)c.
a = torch.randn(10, 20, requires_grad=True)
b = torch.randn(10, 20, requires_grad=True)
c = torch.randn(20, 30, requires_grad=True)
grad_d = torch.randn(10, 30)

d = torch.mm(torch.add(a, b), c)
d.backward(grad_d)

First we define a custom random fraction sparsifier functioning the same as
sten.RandomFractionSparsifier . The sparsifier implementation is not defined here since

it is characterized not only by the sparsifier itself but also by the input and output tensor formats. The
sparsifier class only needs to declare its configurable parameters.
class MyRandomFractionSparsifier:

def __init__(self, fraction):
self.fraction = fraction

Then declare a tensor in CSC format that will utilize scipy CSC implementation under the hood.
class MyCscTensor:

def __init__(self, data):
self.data = data

11

https://github.com/spcl/sten/blob/master/examples/custom_implementations.ipynb


@staticmethod
def from_dense(tensor):

return MyCscTensor(scipy.sparse.csc_matrix(tensor))

def to_dense(self):
return torch.from_numpy(self.data.todense())

Then we make the result of addition a+ b sparse. To achieve this, we need to replace the addition
operator with its sparse counterpart. For simplicity, we do not use an inline sparsifier, which is
why the operator outputs a dense torch.Tensor after applying the KeepAll sparsifier. We use an
external random fraction sparsifier with 0.5 dropout probability and output the tensor in the newly
defined CSC format. The same specification is assigned to the gradient format, but nothing prevents
us from applying a different sparsifier and using a different format for the gradient.
sparse_add = sten.sparsified_op(

orig_op=torch.add,
out_fmt=(

(sten.KeepAll(), torch.Tensor,
MyRandomFractionSparsifier(0.5), MyCscTensor),

),
grad_out_fmt=(

(sten.KeepAll(), torch.Tensor,
MyRandomFractionSparsifier(0.5), MyCscTensor),

),
)

Then we try to use the operator.
d = torch.mm(sparse_add(a, b), c)

Output:

WARNING:root:Sparse operator implementation is not registered (fwd). op:
<built-in method add of type object at 0x7f033a216ea0> inp: (<class
'torch.Tensor'>, <class 'torch.Tensor'>, None, None) out: ((<class
'sten.KeepAll'>, <class 'torch.Tensor'>),).. Fallback to dense
implementation.

↪→

↪→

↪→

↪→

WARNING:root:Sparsifier implementation is not registered. sparsifier:
<class '__main__.MyRandomFractionSparsifier'> inp: <class
'torch.Tensor'> out: <class '__main__.MyCscTensor'>. Fallback to dense
keep all implementation.

↪→

↪→

↪→

WARNING:root:Sparse operator implementation is not registered (fwd). op:
<built-in method mm of type object at 0x7f033a216ea0> inp: (<class
'__main__.MyCscTensor'>, <class 'torch.Tensor'>) out: ((<class
'sten.KeepAll'>, <class 'torch.Tensor'>),).. Fallback to dense
implementation.

↪→

↪→

↪→

↪→

The first error message indicates the operator implementation which is required is not registered.
Here we register it and try calling the method again.
@sten.register_fwd_op_impl(

operator=torch.add,
inp=(torch.Tensor, torch.Tensor, None, None),
out=tuple([(sten.KeepAll, torch.Tensor)]),

)
def sparse_add_fwd_impl(ctx, inputs, output_sparsifiers):

input, other, alpha, out = inputs
return torch.add(input, other, alpha=alpha, out=out)

d = torch.mm(sparse_add(a, b), c)
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Output:

WARNING:root:Sparsifier implementation is not registered.
sparsifier: <class '__main__.MyRandomFractionSparsifier'>
inp: <class 'torch.Tensor'> out: <class '__main__.MyCscTensor'>.
Fallback to dense keep all implementation.
WARNING:root:Sparse operator implementation is not registered (fwd).
op: <built-in method mm of type object at 0x7f033a216ea0>
inp: (<class '__main__.MyCscTensor'>, <class 'torch.Tensor'>)
out: ((<class 'sten.KeepAll'>, <class 'torch.Tensor'>),).
Fallback to dense implementation.

Here we see that sparsifier implementation is not registered. Let’s provide it.
@sten.register_sparsifier_implementation(

sparsifer=MyRandomFractionSparsifier, inp=torch.Tensor, out=MyCscTensor
)
def scalar_fraction_sparsifier_dense_coo(sparsifier, tensor):

return sten.SparseTensorWrapper(
MyCscTensor.from_dense(

sten.random_mask_sparsify(tensor, frac=sparsifier.fraction)
)

)
d = torch.mm(sparse_add(a, b), c)

Output:

WARNING:root:Sparse operator implementation is not registered (fwd). op:
<built-in method mm of type object at 0x7f033a216ea0> inp: (<class
'__main__.MyCscTensor'>, <class 'torch.Tensor'>) out: ((<class
'sten.KeepAll'>, <class 'torch.Tensor'>),).. Fallback to dense
implementation.

↪→

↪→

↪→

↪→

Since a+ b is sparse now and it is used as an input of torch.mm , we need to provide sparse operator
implementation for it as well.
@sten.register_fwd_op_impl(

operator=torch.mm,
inp=(MyCscTensor, torch.Tensor),
out=tuple([(sten.KeepAll, torch.Tensor)]),

)
def torch_mm_fwd_impl(ctx, inputs, output_sparsifiers):

input1, input2 = inputs
ctx.save_for_backward(input1, input2)
output = torch.from_numpy(input1.wrapped_tensor.data @ input2.numpy())
return output

d = torch.mm(sparse_add(a, b), c)

As expected, it works. The next step is to call the backward pass and see what remains to be
implemented there.
d = torch.mm(sparse_add(a, b), c)
try:

d.backward(grad_d)
except sten.DispatchError as e:

print(str(e))

Output:
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Sparse operator implementation is not registered (bwd). op: <built-in
method mm of type object at 0x7f033a216ea0> grad_out: (<class
'torch.Tensor'>,) grad_inp: ((<class 'sten.KeepAll'>, <class
'torch.Tensor'>), (<class 'sten.KeepAll'>, <class 'torch.Tensor'>))
inp: (<class '__main__.MyCscTensor'>, <class 'torch.Tensor'>).

↪→

↪→

↪→

↪→

Registering the backward implementation for torch.mm .
@sten.register_bwd_op_impl(

operator=torch.mm,
grad_out=(torch.Tensor,),
grad_inp=(

(sten.KeepAll, torch.Tensor),
(sten.KeepAll, torch.Tensor),

),
inp=(MyCscTensor, torch.Tensor),

)
def torch_mm_bwd_impl(ctx, grad_outputs, input_sparsifiers):

input1, input2 = ctx.saved_tensors
[grad_output] = grad_outputs
grad_input1 = torch.mm(grad_output, input2.T)
grad_input2 = torch.from_numpy(

input1.wrapped_tensor.data.transpose() @ grad_output)
return grad_input1, grad_input2

d = torch.mm(sparse_add(a, b), c)
try:

d.backward(grad_d)
except sten.DispatchError as e:

print(str(e))

Output:

Sparse operator implementation is not registered (bwd). op: <built-in
method add of type object at 0x7f033a216ea0> grad_out: (<class
'__main__.MyCscTensor'>,) grad_inp: ((<class 'sten.KeepAll'>, <class
'torch.Tensor'>), (<class 'sten.KeepAll'>, <class 'torch.Tensor'>),
None, None) inp: (<class 'torch.Tensor'>, <class 'torch.Tensor'>, None,
None).

↪→

↪→

↪→

↪→

↪→

Backward implementation for torch.add :
@sten.register_bwd_op_impl(

operator=torch.add,
grad_out=(MyCscTensor,),
grad_inp=(

(sten.KeepAll, torch.Tensor),
(sten.KeepAll, torch.Tensor),
None,
None,

),
inp=(torch.Tensor, torch.Tensor, None, None),

)
def torch_add_bwd_impl(ctx, grad_outputs, input_sparsifiers):

[grad_output] = grad_outputs
dense_output = grad_output.wrapped_tensor.to_dense()
return dense_output, dense_output, None, None
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d = torch.mm(sparse_add(a, b), c)
d.backward(grad_d)

Now backward pass is also fully functional.
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