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Abstract. The goal of the Cluster Challenge is to design, build and
operate a compute cluster. Although it is an artificial environment for
cluster computing, many of its key constraints on operation of cluster
systems are important to real world scenarios: high energy efficiency,
reliability and scalability. In this paper, we describe our approach to ac-
complish these goals. We present our original system design and illustrate
changes to that system as well as to applications and system settings in
order to achieve maximum performance within the given power and time
limits. Finally we suggest how our conclusions can be used to improve
current and future clusters.

About our team

The ClusterMeister team consisted of six undergraduate students, three of them
from Technische Universität Dresden, namely Jupp Müller, Jens Domke and
Robin Geyer. Two students from Indiana University, Valkyrie Savage and Chris
Beckley and one student from Technische Universität Chemnitz, Timo Schnei-
der, who was a visiting student at Indiana University at the time the challenge
took place. The team was guided by two advisors, Torsten Hoefler from Indiana
University and Guido Juckeland from TU Dresden. Our team was supported by
two vendor partners, IBM and Myricom. Despite the fact that our team was
international and some of the team members never met each other prior to the
start of the challenge, we managed to outperform our competition at Cluster
Challenge 2008.
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1 Introduction

Getting the best performance is still the first priority in high performance com-
puting. However, the increasing power consumption is often a limiting technical
or financial factor nowadays. It gains more importance with growing power costs.
The increasing costs of electrical energy cause growing concern and recently, the
Green 500 list [1] was started to monitor the power efficiency of the largest
supercomputers. However, extensive studies about techniques to minimize the
power consumption and maximize the output of high performance systems are
yet to be done. Figure 1 shows the average price for electrical energy according
to the October 2008 Monthly Energy Review [2] of the US Energy Information
Administration. The trend of increasing energy prices is expected to continue.
A new competition, the Cluster Challenge, was started in 2007 in conjunction
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Fig. 1. Development of Electrical Energy Prices in the US

with the Supercomputing Conference to promote the research of those problems
and to motivate students to join the high performance computing society.

The goal of the challenge is to form a team of six undergraduate students in
order to design, build and operate a cluster built from commercially available
components to run different scientific applications as well as the High Perfor-
mance Computing Challenge (HPCC) Benchmark [3]. The challenge addresses
energy efficient cluster computing by limiting the total power consumption of
each team’s cluster. Since power consumption and time are the only limiting
factors, the teams have to optimize their systems purely for maximizing the per-
formance within the given power budget. Thus, the main problem is to optimize
the power efficiency of the overall system.

This paper has two main sections: the description of the computing platform
used and the changes we applied to optimize its power efficiency as well as the the
desciption of the applications used and their performance optimizations. While



3

some subsections in section 2 describe how known techniques have been applied
to our cluster (e.g. hard disk suspends), others present the students’ research on
methods for additional power savings (e.g. power distribution).

2 Computing Platform

Each team of the Cluster Challenge worked with vendor partners who sponsored
the hardware. Our sponsor IBM provided us with an System x iDataPlex dx360
cluster system consisting of 14 nodes while our second sponsor—Myricom—
sponsored the latest Myrinet MX interconnects. Since we also had the chance
of being supplied with InfiniBand ConnectX cards, we had to choose which
interconnection network technology we wanted to use, as described in section 2.3.
All nodes had the identical hardware configuration shown in Table 1.

The initial application optimization work was done on clusters at Zentrum
für Informationsdienste und Hochleistungsrechne (ZIH) in Dresden. Since these
clusters are running SuSE Linux Enterprise Server 10 SP2, the same Linux dis-
tribution was chosen for the competition cluster to keep the results reproducible
and leverage the experience gained on the ZIH systems.

Table 1. IBM System x iDataPlex dx360 initial hardware configuration

Description Count Item

Processor 2 Intel Xeon L5420

Memory 4 4 GiB Green DIMMs

Network Card (Option 1) 1 Mellanox ConnectX IB (MT26418)

Network Card (Option 2) 1 Myrinet MX (10G-PCIE-8B-QP)

Hard Disk 1 SATA Western Digital 250 GB

2.1 Power Distribution

Motivation The Cluster Challenge rules specify the use of two wall plugs, each
current metered and not allowed to exceed the maximum of 13 A. The obvious
procedure is splitting up all the hardware into two parts M1 and M2 that draw
close to 13 A each while not exceeding that limit. We will label the two currents
coming out of both plugs i1(t) and i2(t) respectively with i1 = Î1 cos(ω t + ϕ1)
and a similar definition for i2. We further define I1 being the root mean square
(rms) current for i1 and the same definition for I2. When we considered taking
this easy approach, neither the split-up itself nor the management of the two
power partitions proved to be trivial.

We found out that it was not possible to find a configuration where the 14
nodes and the Myrinet switch drew equal currents from each wall plug, mainly
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because every two nodes shared one power supply which made it impossible to
use 7 nodes on each wall plug.

Another important aspect was the ability to appropriately distribute comput-
ing jobs among those two power partitions. To illustrate the difficulties, imagine
M1 with 6 nodes and M2 with 8 nodes. Job A runs on 3 nodes of M1, job B on
4 nodes of M2 and a cross-partition job C on 3 nodes of M1 and 1 node of M2.
The currents result in I1 = 11.1 A as well as I2 = 12.6 A. We think that this
type of scenario is realistic because different applications showed different power
profiles. When we want to start a job D now, we have the problem of no nodes
being available because M1 and M2 are both too close to the power limit to
start the job. Although on the combined system there are both free nodes and a
margin of power available, we can not start a new job because the power balance
between both partitions is not equalized for this particular job configuration.

Solution Our solution is based on the assumption that we are supplied with
two wall plugs with in-phase AC currents. We are then able to deploy a self-made
cable that enables us to use the circuit shown in Figure 2 to power our cluster.
We checked the phases using an ordinary two channel oscilloscope before the
challenge.

vs1

i1

vs2

i2

Rc

is

Fig. 2. Power Equalization

It is obvious that—provided the two voltages are in-phase—the configuration
of M1 and M2 is not important, so the whole cluster and components like the
Myrinet switch can be represented by Rc and it thus follows from these conditions
that I1 = I2 = Is/2, so both ammeters measure the same current.

During the challenge, we experienced a slight difference between both cur-
rents. Lacking another ammeter we could not verify the reason for this, but we
strongly believe that measurement inaccuracies in one (or both) units have been
causing that effect since we observed a nearly perfect correlation between the
two currents.

2.2 CPU Frequency Scaling

Introduction Since energy efficiency is becoming an increasingly important fea-
ture for mobile devices and server systems [4–6], most of the currently available
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processors include features for power management, such as frequency scaling [7]
or dynamic frequency and voltage scaling [8]. All these features provide different
modes of operating the processor. With these different modes of operation it
is possible to trade performance for energy efficiency, by employing one of the
techniques mentioned above.

Although one has to choose the performance mode carefully [9], previous
research has shown that power dissipation is proportional to clock speed on
most modern general purpose CPUs and mostly determined by the underlying
chip technology rather than the microarchitecture [10].

However, it is clear that not all applications are affected by CPU frequency
scaling in the same way; for example, memory bandwidth limited applications
can not benefit from a clock frequency much higher than the memory bus
bandwidth. A performance study carried out by IBM showed that STREAM
Triad [11] benchmark results do not vary significantly above 1.8 GHz on an
Opteron equipped IBM eServer 325 while LINPACK [12] performance scales al-
most linearly with the CPU frequency on the same machine [13]. We can confirm
this behavior with our own measurements shown in Table 2. Those measurements
had been performed on a IBM System x iDataPlex dx340 system which is the
predecessor of the dx360 system using the same CPU and energy efficient de-
sign. For the measurements in this table we used the following HPL parameters:
N = 40000, NB = 200, P = 4, Q = 8 and used all 32 cores of 4 nodes.

Frequency scaling in a power-limited environment All applications used
in this years cluster challenge (see Section 2.3 for power dissipation profiles for
RAxML and WPP) show different behavior in terms of power consumption. It
was clear that, given the 26 A current limit imposed by the competition rules,
we could use more nodes for the WPP, OpenFOAM, GAMESS and POY runs.
Nodes running HPCC and RAxML used more power, so we had to run these
applications on a smaller number of nodes. Since the competition rules also
stated that every piece of equipment that is used for calculations at one point in
time at the competition (except spare parts) had to be powered all the time, the
number of nodes used for example for HPCC can be modelled by the equation

(n − x)pi + xpl ≤ 26 A (1)

where n is the total number of nodes used for the competition, x is the number
of nodes running HPCC, pi specifies the current drawn by a single node when
idle, and pl when running HPCC (both measured in amperes).

Since we measured that we could leverage n = 14 nodes with some of the
applications, we would end up with x = 6 nodes for HPCC—but that would
imply the waste of approximately 9.5 A of current during the HPCC run because
of 8 nodes being idle during that time, if we ran at the default CPU frequency
of 2.5 GHz.

The Linux kernel used already issues HLT instructions [14] when the system
load is low, thus, the idle power is hard to reduce further without hardware mod-
ifications (i.e., reducing the amount of memory), which in turn might deteriorate
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the performance of other applications, or more invasive kernel modifications such
as decreasing the timer interrupt frequency. However, based on the linear scaling
of LINPACK performance with the CPU clock frequency, it seemed promising
to reduce the clock frequency of the nodes running HPCC, so that we could run
this particular benchmark on more nodes with less power dissipation per node.
Applying this technique reduces the amount of power wasted by idle nodes and
yields a slightly higher performance as shown in Figure 3. The graph in this
figure is based on Equation 1 and the measurement results from Table 2.
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Fig. 3. Modelled influence of frequency scaling on LINPACK performance for different
cluster sizes n with a fixed current limit of 26 A

Table 2. Effects of frequency scaling on HPL on a single dx340 node

CPU Frequency 2.0 GHz 80% 2.5 GHz 100%

Current Idle pi 1.0 A 100% 1.0 A 100%

Current Load pl 2.25 A 82% 2.75 A 100%

Gflop/s 49.5 83% 59.67 100%

Results While this approach worked very well on our IBM System x iDataPlex
dx340 based test systems, it turned out that, because of problems in the ACPI
subsystem with the default BIOS, CPU frequency scaling was not supported on
the system used at the challenge, which consisted of IBM System x iDataPlex
dx360 nodes. After reporting this problem to our vendor partner IBM we were
issued a pre-release BIOS which supported ACPI well enough so that we could
query and “adjust” the clock frequency with the acpi-cpufreq driver and the
cpufrequtils software package. Unfortunately, the adjustments had no measur-
able effect on the power consumption of our system. A micro-benchmark—based
on continuous sampling of the processors internal time stamp counter—revealed
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that the CPU frequency did not change at all, even though the appropriate entry
in /proc/cpuinfo showed different values than before. Even with on-site sup-
port from an IBM technician, this problem could not be solved until the start
of the challenge. However, this issue only exists on our particular platform and
is clearly firmware related, and so the analysis described above is still useful in
similar scenarios.

2.3 Node Interconnection Network

Our vendor partner IBM provided us with 14 Mellanox ConnectX InfiniBand
cards (MT26418) and a Cisco TopSpin SFS7000D switch. Myricom kindly of-
fered to also sponsor us with their own latest high performance interconnect
technology, fiber based 10G-PCIE-8B-QP Myricom cards and a switch from
Myricom with a single line card (10G-SW32LC-16QP). Therefore, we could de-
cide which interconnect we wanted to use. It was quickly discovered that Myrinet
was much easier to setup on the cluster. All it took after plugging in the cards
was a simple ./configure && make && make install to build the driver and
mx local install on all nodes to get a usable system. The driver installation
was more complicated with InfiniBand, although the OFED software stack was
officially supported by the SuSE Linux SLES 10.2 distribution we used.

Furthermore, an evaluation of the performance and power consumption of
both networks should be the basis for the final decision on the interconnect.
The results of this analysis are described in the following paragraphs. We com-
pare the two most widely used high performance interconnection networks for
cluster computing, Myrinet and InfiniBand, and analyze them with regards to
their micro-benchmark performance, real application performance and power
consumption.

InfiniBand [15] is the most-used commodity high performance network in
cluster computing. It offers bandwidths of up to 32 Gb/s. The latency can be
lower than 1 µs if it is measured in a tight communication loop. The InfiniBand
Architecture (IBA) has been analyzed in many research works [16, 17] and is well
understood. There also exist two major open source Message Passing Interface
(MPI) [18] implementations for InfiniBand, MVAPICH and Open MPI.

Myrinet [19] is the 4th generation Myricom hardware. It offers a bandwidth
of 10 Gb/s for either Myrinet Express (MX) or Ethernet protocols. Latencies
down to 2.3 µs are possible and its physical layer is 10 Gigabit Ethernet. The
MX communication layer is highly optimized for MPI point-to-point messaging
and offers dynamic routing [20]. Myrinet is able to perform tag matching in the
NIC firmware which further offloads communication functionality from the main
CPU.

Different research groups compared the performance of communication net-
works. Liu et al. [21] compares the characteristics of several high performance
interconnection networks with micro-benchmarks. Another study by the same
author [22] also presents some application comparisons. Other studies, like [23–
25] limit themselves to micro-benchmarks and the NAS parallel benchmarks.
However, for the decision which network technology to use for Cluster Challenge
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it was crucial to not only compare micro-benchmark results but also real-world
application performance and power consumption.

Micro-benchmark Results The well-known benchmark NetPIPE [26] was
used to measure basic parameters such as latency and throughput. Figure 4
shows the latency for small messages. The minimum (zero-byte) latency for
InfiniBand with MPI was 1.38 µs and 2.53 µs for Myrinet. Figure 5 shows
the throughput that NetPIPE reported for the different networks. The high-
est throughput with 8 MiB messages was achieved with InfiniBand at about
13.9 Gb/s which is 86.9% of the peak performance. Myrinet reached up to
9.1 Gb/s which is 91% of the peak bandwidth.
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Application communication In this section, the different networks will be
compare with respect to application performance, using the same input problem
and an identical system configuration (except the communication network) for
each application run. The total run time and the different MPI overheads are
recorded. We ran each application three times and report minimal values in
order to eliminate operating system noise effects. The PMPI [18] interface was
leveraged to intercept and profile all MPI calls and report the average overheads
over all processes.

The MPI parallelization of RAxML (see Section 3.5) is coarse grained: each
rank computes different trees and sends the results to rank 0. We calculated
112 phylogenetic trees on all 112 cores of our cluster with both networks. We
used the same random seed for all runs and a database with 50 pre-aligned
genome sequences consisting of 5000 base pairs: this database is shipped with
the RAxML source. This computation took 746.97 s with InfiniBand and had an
MPI overhead of 34.90 s (4.67%). On Fiber Myrinet 738.35 s were needed with
an MPI overhead of 31.60 s (4.28%). Most of the MPI overhead is contributed
by MPI Probe. The MPI overhead for both networks is shown in Figure 6.
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Our WPP (see Section 3.6) benchmark simulated a grid of size 30000 ×

30000×17000 with a spacing of 20 and a single wave source in it on all 112 cores.
The layout of the grid was the same as in the LOH1 example distributed with
WPP. All output was written after the last time step was computed. The MPI
overhead of WPP is dominated by MPI Sendrecv. On InfiniBand, the calculation
took 701.60 s and showed an MPI overhead of 51.08 s (7.28%). On Myrinet, the
timing was 700.95 s of which 53.37 s (7.61%) had been recorded as MPI overhead.
An overview of the MPI calls that contribute to WPP’s MPI overhead can be
found in Figure 7.

Power Measurements In this section, we analyze the power consumption of
the different applications and cluster configurations. This was done by sampling
the root mean square current through the whole cluster (described in Section 2)
every second. The power consumption can easily be computed by multiplying
this value with the root mean square voltage (120 V in our case). However, we
will give our direct measurement results (in amperes) throughout this section.
With this method, we were able to compute the total power consumption for
the solution of a particular problem for each application. In this case, the power
consumption is the discrete integral (sum) over all measurement points multi-
plied by 120 V. The current graphs over time and the total energy needed to
compute a particular input are reported.

In a first experiment, we compare the current drawn by our idle system
(without the switch) with the three different network configurations. The system
equipped with InfiniBand uses 17.7 A when idle. Myrinet lowers the current
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consumption of the idle cluster to 16.9 A. Disconnecting all Ethernet cables
from the on-board Gigabit Ethernet (GigE) cards lowers the current by 0.35 A.
Since Myrinet as well as InfiniBand also offer IP connectivity it was clear that
(additionally) using Gigabit Ethernet for the challenge would be a waste. By
deciding to not use GigE at all we also saved the power that would have been
consumed by the GigE switch. Furthermore, the current consumption of the
switches was analyzed. The Cisco InfiniBand switch uses 0.48 A. The 7U Myrinet
switch uses 0.75 A with the fan unit. However, removing the fan decreased the
drawn current to 0.48 A. The Cisco Catalyst Gigabit Ethernet switch drew 0.6 A
of current.

The current consumption of all switches was identical when idle and under
full load. We also investigated the current consumption of four nodes under
full communication load using a bidirectional stream of 8 MiB messages. Four
InfiniBand nodes used 3.9 A when idle which increased to 5.0 A under full
message load. Four Myrinet (copper) nodes used 3.77 A when idle and 4.95 A
under full load with Open MPI using the OB1 PML. However, switching to the
PML CM, which enabled tag matching in hardware, reduced the current by 4%
to 4.75 A. This seems mostly due to the packet matching on the specialized NIC
processor.

In the following, the power consumption of each application and input prob-
lem for the different networking technologies will be compared. Furthermore, we
compute and compare the total energy consumption that is required to solve the
particular real-world problem. For this we only compare two applications, WPP
and RAxML. This is due to the fact that we were also interested in profiling
the MPI overhead of the applications. Since GAMESS is faster when sockets are
leveraged for communication and the POY runtimes varied too much even for
identical input problems we omit results for those applications. Unfortunately,
at the time we conducted our measurements we did not have enough experience
with the parallel solvers of OpenFOAM to produce useful results.

The RAxML computation has different phases with different power consump-
tion. This demonstrates that the CPU is used differently in those phases. One
would assume that a higher power consumption means more efficient CPU usage.
RAxML has a peak with more than 35 A in our measurement. The generation of
the “tree of life” for the 50 species in our input file used 8.315 kWh in InfiniBand.
Myrinet uses 8.015 kWh which is around 3.7% less than InfiniBand. RAxML only
exhibits a small communication overhead, thus the energy consumption is only
marginally influenced by the network.

The Wave Propagation Program uses between 29 A and 31 A and the power
consumption varies highly during the application run. The computation of the
seismic properties modelled in the (modified) LOH1 example shipped with WPP
uses 6.807 kWh on InfiniBand. Myrinet lowers the energy consumption by 1.4%
to 6.713 kWh.

Conclusions The first and most important conclusion is that networking micro-
benchmarks and simple metrics such as latency and bandwidth do not necessar-



11

 27

 28

 29

 30

 31

 0  100  200  300  400  500  600  700

C
u
rr

e
n
t 

[A
]

Application run time [s]

InfiniBand
Myri-10G

Fig. 8. Current consumption for WPP

 29

 30

 31

 32

 33

 34

 35

 36

 0  100  200  300  400  500  600  700

C
u
rr

e
n
t 

[A
]

Application run time [s]

InfiniBand
Myri-10G

Fig. 9. Current consumption for RAxML

ily reflect the performance of real-world applications—if we had decided which
interconnection network to use for the challenge by solely relying on micro-
benchmarks, we clearly would have ended up with InfiniBand. Many other ef-
fects such as support for tag matching in hardware, memory registration or
remote direct memory access influence the performance of real applications sig-
nificantly. We demonstrated that even though micro-benchmarks predict that
Myrinet should be slower than InfiniBand, Myrinet performs significantly bet-
ter than InfiniBand for some examined applications. Power consumption is also
an important parameter for high performance networks, especially for the Clus-
ter Challenge where we were faced with a hard power limit. We, furthermore,
demonstrated that the energy needed to compute a certain result can be de-
creased with a power-efficient interconnection network. We also show that the
energy consumption of an idle system significantly depends on the networking
equipment. Based on our findings we decided to work with Myrinet cards during
the challenge, which proved to be a good decision in terms of performance as
well as stability and ease of use.

2.4 Hard Drive Suspends

In order to save additional energy, we decided to boot cluster nodes diskless and
enable the local hard disks only when needed. Most hard drives feature a suspend
mode where the disk stops spinning and the head is in a waiting position. That
behavior can be triggered using the hdparm utility supplied with most Linux
distributions.

We created a custom initrd boot image which contained the Myrinet kernel
drivers and userspace stack. The initrd images were deployed onto USB flash
drives. During the boot process, the head node’s root file system is mounted
via NFS. This procedure enabled us to completely discard the Ethernet while
still being able to benefit from diskless booting. We used 13 USB flash drives
of 2 GB size, one for each compute node. Measurements showed that the flash
drives consume less than 0.2 A for the whole cluster when not used after the
boot procedure.
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This setup allowed us to choose between a completely diskless mode of op-
eration and a mode with plenty of scratch disk space on a per-job basis which
saved 1 A when all hard disks are suspended. Further research could determine
if there are performance issues in communication intensive applications related
to Open MPI writing files to the /tmp directory. We did not encounter any sig-
nificant decrease of communication performance with the applications used in
the competition, though.

2.5 Job Scheduling

The main strategy for the challenge was to maintain a constantly high level of
workload to make sure there is no unused CPU time. We also tried to reduce
communication overhead. This involves a couple of strategies such as avoiding job
oversubscription, i.e. allocating a core for multiple jobs, and reducing the ratio
of nodes to threads, i.e. bundle threads of one job on the fewest nodes possible.
Another point taken into consideration was the scalability of the applications; in
spite of low speedup it was necessary to increase the number of cores allocated
to a particular job to ensure that the job terminates within the time limit.
Based on the scheduling strategy of the previous years winning team [27], we
developed a new strategy that takes into consideration constraints like time limit,
points per job, power consumption, etc. We created an abstract mathematical
model based on a 0-1 knapsack problem to solve the problem of getting as many
points as possible in the given time. Our MATLAB script uses the solver for the
constrained binary integer programming problem

max
xi∈{0,1}

n
∑

i=1

pixi , A · x ≤ b .

Each given job xi is associated with its score points pi. The constraints A
consist of CPU time and energy for each job and b holds the challenge constraints,
the first component being the overall time for the challenge, the second being
the maximum energy Emax = U

∫ te

ts

I(t)dt being provided to the participating

teams for the duration of the challenge (ts being the start time of the challenge,
te the end time, I being I1 + I2 according to section 2.1) and U representing the
nominal system voltage e.g., 120 V for the US. For the example

p =





2
6
3



 , A =

[

5 h 10 h 5 h
6 kWh 18 kWh 7 kWh

]

, b =

[

12 h
15 kWh

]

the solution computes to x = [1, 0, 1]
T

because the 18 kWh of the second job
exceeds the limit of 15 kWh and only the first and third job would be started. By
calculating the estimated CPU-time-per-point rate for each job, the result can
be converted into two different priority lists: one list for runnable jobs and one
for not-runnable, reserve jobs. Those lists are the initial solution for a modified
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version of the hill-climbing algorithm for oversubscribed scheduling [28]. The al-
gorithm uses the current state and configuration of the cluster and the challenge
limitations to find the next job.

Although suitable for the work loads encountered in the challenge, the model
has some limitations. Each job’s power consumption is represented by a constant,
taking into account the average power consumption during its run time. As
mentioned in Section 2.3, applications’ power consumption changes with time.
Further, single jobs are—under certain circumstances—allowed to exceed power
limitations, especially when occupying the whole cluster. Although this could be
filtered by the hill climbing algorithm, we did not implement a check, as those
conditions are rare and trivial to recognize.

Unfortunately—as opposed to the teams in the 2007 challenge—we did not
receive a list of score point values for the jobs at the SC08 Cluster Challenge,
so this strategy was not viable. The new strategy for the beginning, after an
analysis of the given jobs, was to split the cluster into one bundle of 8 nodes for
larger jobs that can’t run on one node, and another bundle for single node jobs.
Once we reached a point in the competition where no more jobs would terminate
before the deadline, we scheduled jobs that write intermediate data so that we
could get partial points.

3 Application Optimization

The SC Cluster Challenge Committee chose HPC applications from different
fields of scientific computing. GAMESS is used to simulate processes in molecular
chemistry, OpenFOAM simulates different physical phenomena including fluid
dynamics, combustion and electrostatics, but is also able to simulate financial
flows, and WPP implements algorithms to predict wave propagation in earth
quakes. RAxML and POY both originate in the field of biogenetic simulation,
utilizing phylogenetic trees to provide insight into evolutionary processes.

Since all applications have been published under open source licenses, we
were able to begin deployment and source code analysis on the clusters at ZIH
as soon as the names of the applications were announced. We started with simple
profiling utilizing gprof in order to obtain a basic overview about the time spent
in different functions. VampirTrace and Vampir [29] allowed a better understand-
ing of communication patterns and were utilized together with PAPI counters
to find regions of code with potential for architecture specific code optimization.

3.1 HPCC

The High Performance Computing Challenge benchmark [3] is one of the world-
wide accepted benchmarks for comparison of HPC systems. Seven micro-benchmarks
are included in the test suite, which partially split up into parallel, embar-
rassingly parallel and single measurement kernels. The micro-benchmarks are
HPL [12], DGEMM, STREAM [11], PTRANS, RandomAccess, FFT and band-
width/latency for the network.
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Analysis The rules for HPCC runs are strict: modification of source code is not
allowed in the base run and only a few changes in some files are permitted for
the optimized run. With respect to this, VampirTrace was only used to get an
overview of the fraction of communication in the different kernels.

Optimization The task of optimization consists of three distinct parts: Finding
the best compiler and compiler flags, using the fastest libraries on the specific
machine and building an input file to maximize performance based on machine
specifications and time limit. We compared different compiler suites, namely
the Intel Compiler Suite Professional Edition for Linux (version 10.1), the GNU
Compiler Collection (version 4.3) and Portland Group’s PGI Compiler Suite
(version 7.2-5). The Intel compilers showed the best performance in our tests.
In the field of linear algebra the Intel Math Kernel Library (version 10.1) was a
few percent slower than GotoBLAS (version 1.26).

Listing 1.1 shows the compiler flags we used to compile HPCC. To maximize
memory bandwidth for the STREAM benchmark, the flags shown in Listing 1.2
were added.

Our efforts to optimize HPCC’s FFT micro-benchmark showed that it is
possible to achieve a 60 % runtime improvement for the FFT kernel by linking
against a third party FFT library. This kernel calculates a double-precision com-
plex one-dimensional DFT. There are extensive performance comparisons based
on similar hardware [30] for different FFT libraries available. Unfortunately, the
interface of the FFTW 3.2 library is incompatible to the HPCC benchmark, so
we used the FFT routines of the Intel MKL. We had to apply minor changes to
the MKL interface to link the benchmark against FFTW.

Work on finding a good combination of input parameters was done by Stew-
art et al. [31], so we had a starting point for individual tuning. We used the
parameters from Listing 1.3 for the run that was scored at the start of the
challenge.

Listing 1.1. HPCC compiler flags

-DUSING_FFTW -DRA_SANDIA_OPT2 -DHPCC_MEMALLCTR -xS -axS -O3 \

-fno -alias -ansi -alias -no -prec -div -no -prec -sqrt -restrict \

-fomit -frame -pointer -funroll -loops -ip -Zp16 -malign -double

Listing 1.2. Additional STREAM compiler flags

STREAMCCFLAGS = -fno -alias -opt -streaming -stores always

Listing 1.3. Relevant lines from the hpccinf.txt we used

112640 Ns

220 NBs

8 Ps

8 Qs

0 RFACTs (0= left , 1= Crout , 2= Right)

0 BCASTs (0=1 rg ,1=1 rM ,2=2 rg ,3=2 rM ,4=Lng ,5= LnM)
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0 DEPTHs (>=0)

96 swapping threshold

16 memory alignment in double (> 0)

For the HPCC run completed at the challenge, eight nodes (64 cores) were
used. Our optimization, i.e. compiler flags, libraries and input parameters, yielded
significant performance gain in comparison to the first test runs as shown in Ta-
ble 3.

Table 3. HPCC micro-benchmark results in comparison to initial results

Benchmark Value (challenge run) Performance gain

HPL 526.3 Gflop/s ≈ 6%

MPIFFT 15.581 Gflop/s ≈ 60%

StarSTREAM Triad 1.030176 GiB/s ≈ 45%

MPIRandomAccess 0.129382439 GUP/s ≈ 20%

3.2 General Atomic and Molecular Electronic Structure System
(GAMESS)

The application is a general ab initio quantum chemistry package. GAMESS-
US [32] (hereafter referred to as GAMESS) is able to compute a wide range of
self-consistent field molecular wave functions. Nuclear gradients can be used for
automatic geometry optimization, transition state searches, or reaction path fol-
lowing. Many other computations are available, including calculation of analytic
energy gradients, energy hessians, third order Douglas-Kroll scalar corrections,
and various spin-orbit coupling options. The main parts of GAMESS – I/O
management and calculation – are written in FORTRAN77. The parallelization
of GAMESS started in 1991 with the use of the TCGMSG [33] library. The
TCGMSG library was replaced by the Distributed Data Interface (DDI) [34],
which sets a layer between the computation and communication to have a fixed
interface for the chemistry algorithms and an exchangeable communication li-
brary. Supported communication libraries are sockets, MPI, SHMEM, LAPI and
ARMCI.

Analysis Profiling and tracing with gprof and VampirTrace showed GAMESS
having no real hot spots in code. We compared four different types of communi-
cation, in detail sockets, mixed mode (sockets for intranode, MPI for internode
communication), MPI and ARMCI, which were usable for our system config-
uration. For shared memory systems GAMESS forks the number of compute
processes specified in the run command. When using distributed memory sys-
tems like HPC clusters, GAMESS creates one additional data server for each
compute process. When executing internode test runs, the MPI or mixed mode
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version was twice as slow as the sockets version of GAMESS, because the data
servers are in a sleep mode for the sockets version and only work when needed
while the data servers for MPI are constantly spinning for requests. If there is
one compute process on each core, in MPI mode, the additional data server over-
subscribes the node and decreases performance. One solution for this problem
is to use only half the cores for computation, but that would waste CPU time.
ARMCI [35], which simulates a shared memory system, was as slow as the MPI
version.

Another difficult aspect of running GAMESS are temporary files, which are
written by each compute process and can grow up to several GiB in size. The
presentation by B.J. Lynch [36] includes an example GAMESS run showing the
utilization of a local hard drive being 40% faster than an NFS mounted directory.

Optimization Most modifications of source code to gain performance result in
erroneous runs with incorrect output. The check routine reports variations in the
results for the test cases delivered with GAMESS. Therefore source modifications
were discarded. With regard to temporary files, we could not use RAM disks on
the nodes since the cluster had not been equipped with sufficient memory to both
allocate memory for GAMESS and create scratch filesystem on a RAM disk. The
workaround was to use suspended local disks as described in Section 2.4.

Application tuning with compiler flags was done under the premise of all
examples provided by GAMESS passing the built-in correctness check. As a first
attempt the source code was compiled with aggressive compiler flags for the Intel
Fortran Compiler

-xS -axS -O3 -fno -exceptions -fno -instrument -functions

-funroll -loops -ip

producing incorrect computation results. To eliminate numerical inaccura-
cies, several objects must be generated applying -O2 instead of -O3. Addition-
ally, the use of -fp-model precise was necessary for a limited set of source
files, e.g. eigen.src. This optimization brought us a performance gain of ap-
proximately 5%–15%. This depends on the input data and thereby on the type
of calculation, with its specific functions. For example the zeolite dataset, one
of the last years input data, was 9% faster with optimization.

3.3 Open Field Operation and Manipulation (OpenFOAM)

OpenFOAM [37] takes a very general approach to solving various problems that
can be described using partial differential equations. OpenFOAM itself defines a
framework that helps scientists to implement problem specific solvers. Developers
made extensive usage of object-oriented features of the C++ language, e.g.,
inheritance, polymorphism, and class templates.

Analysis Since automatic instrumentation done by the compiler cannot be
used to trace code inside shared libraries with VampirTrace [38], we had to write
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extensive additions to the supplied build system. Trace size proved to be another
problem caused by millions of function calls, filling the memory segments and
ruining the trace with interrupts caused by frequent flushes. A combination of
filters applied at runtime and short trace runs enabled us to make significant
statements on communication patterns and hot spots, but it also degraded the
quality of those statements.

 0

 10

 20

 30

 40

 50

 60

 70

 80

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

50.26
51.92 51.45

46.45
42.7

Binary Distribution
Gnu C Compiler

Intel Compiler 10.1 -fexceptions
Intel Compiler 10.1 -fno-exceptions

Intel Compiler 11.0Beta -fno-exceptions

Fig. 10. OpenFOAM performance results, damBreakFine case, 1 core

Optimization We had to modify3 the source code to compile with Intel’s C++
Compiler which is known to optimize numerical code very well [39] on x86 sys-
tems. Although exceptions can rarely be found in the OpenFOAM source code,
we suspected some potential for optimizations in eliminating them. The result-
ing code4 compiles with icpc’s -fno-exceptions flag and crashes in case of an
internal error that would otherwise have been caught and processed. We encoun-
tered this neither in our preparation tests nor during the challenge. Figure 10
shows that these modifications caused a significant decrease in run time, pro-
viding us with a significant advantage over the other teams, while automatic
compiler optimizations like Interprocedural Optimization which are designed to
optimize this sort of code [40] had no notable effect on OpenFOAM’s runtime
performance.

3 http://wwwpub.tu-dresden.de/˜jmuelle/of icc.patch.bz2
4 http://wwwpub.tu-dresden.de/˜jmuelle/of no-exceptions.patch.bz2
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3.4 Phylogenetic Analysis of DNA and other Data using Dynamic
Homology (POY)

POY [41] is a phylogenetic analysis program for molecular and morphological
sequences used to study evolutionary relations among species or populations of
organisms by building a “relationship tree” that shows their probable evolu-
tion. POY implements the concept of dynamic homology allowing optimization
of unaligned sequences and supports algorithms like multiple random addition
sequence, swapping, tree fusing, tree drifting and ratcheting. It also allows the
analysis of entire chromosomes and genomes, taking into account large-scale
genomic events (translocations, inversions and duplications).

Analysis POY is written in Objective Caml (OCaml) and C. OCaml is a multi-
paradigm programming language supporting functional, imperative and object-
oriented programming. Profiling the execution of a non interactive analysis with
gprof provided not much insight for eventual optimization approaches. Aside
from two functions belonging to garbage collection no particular function accu-
mulated more than 5% of the run time.

Fully analyzing our test runs with VampirTrace and Vampir would have re-
quired instrumenting not only POY itself but also OCaml. On the other hand,
for evaluating just POY’s communication structure it was sufficient to use Vam-
pirTrace’s automatic instrumentation capabilities only on POY. Admittedly the
structure of POY’s MPI communication appeared too complex to optimize it
with the time and effort we could devote to it.

Using a sophisticated programming language like OCaml may facilitate de-
velopment of scientific applications. Then again, it makes performance analysis
and optimization very aggravating for people not versed in its peculiarities. Re-
garding POY we found it difficult to evaluate its overall performance, so we
decided not to spend additional time on optimization attempts.

3.5 Randomized Accelerated Maximum Likelihood (RAxML)

RAxML [42] is a phylogenetic analysis software which calculates a tree of life of
some organisms using their gene sequences. As its name implies, RAxML uses
randomized search heuristics. There are three different versions of RAxML:

– Single-threaded without parallelization

– Parallelized using POSIX Threads for shared memory systems

– MPI parallelized for distributed memory systems

Since the MPI version is parallelized in such a way that each rank computes
a different phylogenetic tree we could not use this variant for Cluster Challenge,
where we had to compute only one tree for each dataset. Therefore we used the
RAxML version which leverages POSIX Threads to do a fine grained parallel
tree inference.
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Analysis Profiling RAxML using gprof instantly revealed that a special set of
functions whose names begin with newview, e.g. newviewGTRGAMMA and
newviewGTRCAT consume about 70% of a typical job’s runtime. Further analysis
with Vampir showed that most of the algorithms distribute their workload over
several threads efficiently. It is worth noting that the MPI master thread is
idle most of the time, its main purpose being distributing work and writing
results. Thus, there is a note in RAxML’s manual that the program should be
executed with one more MPI process than physical CPUs (cores) available. This
communication structure may cause delays for worker threads, at the beginning
of a program run.

Altough several MPI Send calls could have been replaced by MPI Broadcast

we decided not to change the communication structure because, with growing
input data size (sequence length), the computing time increases rapidly while
communication overhead does not. When considering the entire run time the
impact of MPI communication becomes marginal.

Optimization Our attempts to tune the newview functions described above
have not been successful. Reading PAPI hardware counters showed that the Intel
Compiler was already making intense and efficient use of SSE instructions within
these functions. For RAxML, customizing compiler flags to fit our architecture
was the only optimization we applied for the binaries used during the challenge.

3.6 Wave Propagation Program (WPP)

WPP is a comprehensive wave propagation simulation program. Simulating seis-
mic waves caused by earthquakes or explosions (the main purpose of the soft-
ware) is important for many scientific fields; for instance the search for oil, the
construction of underground facilities, or the calculation of possible earthquake
effects on a big city. One of the advantages of WPP compared to most other
seismic simulation tools is the special treatment of complex geometries. Tradi-
tional finite element simulations in this field tend to be less accurate in case of a
very complex simulation (not box shaped, not in the direction of the grid shape).
WPP is able to utilize local mesh refinement to simulate local, high frequency
waves in higher detail.

As one result of our work we can state that WPP is a highly-optimized
tool which yields most of the computational power an x86 CPU can deliver.
Nevertheless, it was possible to apply optimizations which significantly reduce
run time.

Analysis A first analysis has shown that there are two major runtime con-
sumers. First, functions from the external Blitz++ library with a high call count
and, second, one of the core functions of WPP, inner loop 5() with a low call
count but long computational runtime. In a first Vampir analysis we learned that
there is a initialization phase of basically the same runtime for each input file.
A second phase is the actual calculation which consists of alternating blocks of
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Blitz++ functions and inner loop 5(). Finally there is a short end phase with
constant runtime. Hence, the two hotspots which could significantly influence
runtime were analyzed more deeply. With use of PAPI counters we determined
that inner loop 5() is already well-optimized with a low cache miss rate and a
high operation per second count. By looking at the call graphs of the Blitz++
blocks we saw a relatively high number of thrown exceptions and a very high
call count for some simple functions.

Optimization Because of the knowledge we gained from the analysis we de-
cided to first optimize WPP via Intel’s C/C++ Compiler and specially selected
compiler flags. For compiling with icc it was necessary to fix some non-standard
source code in sections of third party libraries. For best performance, Blitz++
needed to be compiled without exception handling and with aggressive inlin-
ing options. This decreases the runtime of the WPP example case Layer.in by
about 20%. The inner loop 5() function compiled with icc and aggressive loop
unrolling decreased its runtime by about 20%.

4 Conclusions

In this paper we described our approach to tune a commercially available cluster
system in order to minimize power usage and maximize time efficiency when run-
ning workloads from real world scientific applications. We modified both software
and hardware to create a system that performed better than the competition.

The usage of state-of-the-art analysis tools like Vampir allowed us to visualize
application behavior and to delve into the code where we saw potential perfor-
mance gain. Although software supported analysis made it very easy to achieve
results, the optimization itself still required hard work and creative ideas.

By being able to do all of this in advance of having access to the hardware
we used in the challenge, we could concentrate on hardware optimization as
soon as it was possible. As described in Sections 2.2, 2.3 and 2.4, we succeeded
in stripping the system of anything we did not essentially need, for example
the complete Gigabit Ethernet network, the Myrinet switch’s fan and half of the
system’s RAM. Not only did we save power, in real world scenarios we also would
have saved money we otherwise would have spent on hardware which we did not
need and which also would have increased the system’s total cost of ownership
by consuming power to no avail. This shows that purchasers of a cluster system
can benefit from carefully considering the requirements of their applications and
order just what they need.
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