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ABSTRACT
Remote memory access (RMA) is an emerging high-
performance programming model that uses RDMA hard-
ware directly. Yet, accessing remote memories cannot in-
voke activities at the target which complicates implementa-
tion and limits performance of data-centric algorithms. We
propose Active Access (AA), a mechanism that integrates
well-known active messaging (AM) semantics with RMA to
enable high-performance distributed data-centric computa-
tions. AA supports a new programming model where the
user specifies handlers that are triggered when incoming puts
and gets reference designated addresses. AA is based on
a set of extensions to the Input/Output Memory Manage-
ment Unit (IOMMU), a unit that provides high-performance
hardware support for remapping I/O accesses to memory.
We illustrate that AA outperforms existing AM and RMA
designs, accelerates various codes such as distributed hashta-
bles or logging schemes, and enables new protocols such as
incremental checkpointing for RMA. We also discuss how
extended IOMMUs can support a virtualized global address
space in a distributed system that offers features known from
on-node memory virtualization. We expect that AA and
other IOMMU features can enhance the design of HPC op-
erating and runtime systems in large computing centers.

1. INTRODUCTION
Scaling on-chip parallelism alone cannot satisfy growing

computational demands of datacenters and HPC centers with
tens of thousands of nodes [15]. Remote direct memory ac-
cess (RDMA) [35], a technology that completely removes the
CPU and the OS from the messaging path, enhances perfor-
mance in such systems. RDMA networking hardware gave
rise to a new class of Remote Memory Access (RMA) pro-
gramming models that offer a Partitioned Global Address
Space (PGAS) abstraction to the programmer. Languages
such as Unified Parallel C (UPC) [38] or Fortran 2008 [23],
and libraries such as MPI-3 [26] or SHMEM implement the
RMA principles and enable direct one-sided low-overhead
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put and get access to the memories of remote nodes, out-
performing Message Passing (MP) routines [19].

Active Messages (AMs) [40] are another scheme for im-
proving performance in distributed environments. An active
message invokes a handler at the receiver’s side and thus
AMs can be viewed as lightweight remote procedure calls
(RPC). AMs are widely used in a number of different ar-
eas (example libraries include IBM’s DCMF, IBM’s PAMI,
Myrinet Express (MX), GASNet [11], and AM++ [41]). Un-
fortunately, AMs are limited to message passing and cannot
be directly used in RMA programming.

In this work we propose Active Access (AA), a mechanism
that enhances RMA with AM semantics. The core idea is
that a remote memory access triggers a user-definable CPU
handler at the target. As we explain in § 1.1, AA eliminates
some of the performance problems specific to RMA.

Intercepting and processing puts or gets requires control
logic to identify memory accesses, to decide when to run
a handler, and to buffer necessary data. To preserve all
RDMA benefits (OS-bypass, zero-copy, etc.) in AA, we pro-
pose a hardware-based design that extends the input/output
memory management unit (IOMMU), a hardware unit that
supports I/O virtualization. IOMMUs evolved from simple
DMA remapping devices to units offering advanced hard-
ware virtualization [8]. Still, AA shows that many potential
benefits of IOMMUs are yet to be explored. For example, as
we will later show (§ 3.5), moving the notification function-
ality from the NIC to the IOMMU enables high performance
communication with the CPU for AA. Moreover, AA based
on IOMMUs can generalize the concept of virtual memory
and enable hardware-supported virtualization of networked
memories with enhanced data-centric paging capabilities.

In summary, our key contributions are as follows:

• We propose Active Access (AA), a mechanism that com-
bines active messages and RMA to improve the perfor-
mance of RMA-based applications and systems.

• We illustrate a detailed hardware design of simple exten-
sions to IOMMUs to construct AA.

• We show that AA enables a new data-centric program-
ming model that facilitates developing RMA applications.

• We evaluate AA using microbenchmarks and four large-
scale use-cases (a distributed hashtable, an access counter,
a logging system, and fault-tolerant parallel sort). We
show that AA outperforms other communication schemes.

• We discuss how the IOMMU could enable hardware-based
virtualization of remote memories.



1.1 Motivation
Consider a distributed hashtable (DHT): RMA program-

ming improves its performance in comparison to MP 2-10
times [19]. Yet, hash collisions impact performance as han-
dling them requires to issue many expensive remote atomics
(see § 4). Figure 1 shows how the performance varies by a
factor of ≈10 with different collision rates.
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Figure 1: Inserts/s in our
RMA hashtable (§ 1.1)

Figure 2: Comparison of the IOMMU
and the MMU (§ 2.2)

We will show later (§ 4) how AA reduces the number of
remote accesses from six to one. Intuitively, the design of
AA, based on IOMMU remapping logic, intercepts mem-
ory requests and passes them for direct processing to the
local CPU. Thus, AA combines the benefits of AMs and
OS-bypass in RMA communications.

2. BACKGROUND
We now briefly outline RMA programming. Then, we

discuss the parts of the IOMMU design (DMA remapping,
IOMMU paging) that we later use to design Active Access.

2.1 RMA Programming Models
RMA is a programming model in which processes commu-

nicate by directly accessing one another’s memories. RMA
is typically built on OS-bypass RDMA hardware to achieve
highest performance. Thus, RMA put (writes to remote
memories) and get (reads from remote memories) have very
low latencies, and significantly improve performance over
MP [19]. RDMA is available in virtually all modern net-
works (e.g., IBM’s Cell on-chip network, InfiniBand [37],
IBM PERCS, iWARP, and RoCE). In addition, numerous
existing languages and libraries based on RMA such as UPC,
Titanium, Fortran 2008, X10, Chapel, or MPI-3.0 RMA are
actively developed and offer unique features for parallel pro-
gramming. Consequently, the number of applications in the
RMA model is growing rapidly.

Here, we use source or target to refer to a process that is-
sues or is targeted by an RMA access. We always use sender
and receiver to refer to processes that exchange messages.

2.2 IOMMUs
IOMMUs are located between peripheral devices and main

memory and can thus intercept any I/O traffic. Like the
well-known memory management units (MMUs), they can
be programmed to translate device addresses to physical
host addresses. Figure 2 shows the similarities between
MMUs and IOMMUs. An IOMMU can virtualize the view
of I/O devices and control access rights to memory pages.

All major hardware vendors such as IBM, Intel, AMD,
Sun, and ARM offer IOMMU implementations to support
virtualized environments; Table 1 provides an overview. We
conclude that IOMMUs are a standard part of modern com-
puter architecture and the recent growth in virtualization for
cloud computing ensures that they will remain important in

Vendor IOMMU and its application

AMD

GART [1]: address translation for the use by AGP

DEV [8]: memory protection

AMD IOMMU [2]: address translation & memory protection

IBM

Calgary PCI-X bridge [8]: address translation, isolation

DART [8]: address translation, validity tracking

IOMMU in Cell processors [8]: address translation, isolation

IOMMU in POWER5 [5]: hardware enhanced I/O virtualization

TCE [21]: enhancing I/O virtualization in pSeries 690 servers

Intel VT-d [22]: memory protection, address translation

ARM
CoreLink SMMU [25]: memory management in System-on-Chip
(SoC) bus masters, memory protection, address translation

PCI-SIG IOV & ATS [33]: address translation, memory protection

Sun IOMMU in SPARC [29]: address translation, memory protection

SolarFlare IOMMU in SF NICs [34]: address translation, memory protection

Table 1: An overview of existing IOMMUs (§ 2.2).

the future. However, IOMMUs are a relatively new concept
with many unexplored opportunities. Their ability to in-
tercept any memory access and provide full address space
virtualization can be the basis for many novel mechanisms
for managing global (RDMA) address spaces.

To be as specific as possible, we selected Intel’s IOMMU
technology [22] to explain concepts of generic IOMMUs.
Other implementations vary in some details but share the
core features (per-page protection, DMA remapping, etc.).

DMA Remapping DMA remapping is the IOMMU func-
tion that we use extensively to design AA. The IOMMU
remapping logic allows any I/O device to be assigned to its
own private subset of host physical memory that is isolated
from accesses by other devices. To achieve this, IOMMUs
utilize three types of remapping structures (all located in
main memory): root-entry tables, context-entry tables, and
IOMMU page tables. The first two are used to map I/O
devices to device-specific page tables. To improve the ac-
cess time, the remapping hardware maintains several caches
such as the context-cache (device-to-page-table mappings)
and the I/O Translation Lookaside Buffer (IOTLB) (trans-
lations from device addresses to host physical addresses).

Page Tables & Page Faults IOMMU page tables allow
to manage host physical memory in a hierarchical way; they
are similar to standard MMU page tables (still, MMU and
IOMMU page tables are set up independently). A 4-level
table allows 4KB page granularity on 64 bit machines (su-
perpages of various sizes are also supported).

IOMMU page tables implement a page fault mechanism
similar to MMUs. Every page table entry (PTE) contains
two protection bits, W and R, which indicate whether the page
is writable and readable, respectively. Any access that vi-
olates the protection conditions is blocked by the hardware
and a page fault is generated, logged, and reported to the
OS. The IOMMU logs the fault information using special
registers and in-memory fault logs. The OS is notified using
Message Signal Interrupts (MSI). Every page fault is logged
as a fixed-sized fault entry that contains the fault metadata
(the address of the targeted page, etc.); the data being trans-
ferred is discarded. We will later extend this mechanism to
log active accesses and their data and to bypass the OS.

3. THE ACTIVE ACCESS MECHANISM
Active Access combines the benefits of RMA and AMs.

AMs enhance the message passing model by allowing mes-
sages to actively integrate into the computation on the re-



Figure 3: The overview of the IOMMU and the cooperating devices. The proposed extensions are marked with dashed edges and bold-italic text. Solid circles
with numbers ( - ) indicate the specific steps discussed in detail in § 3.1. Dashed circles ( - ) are extensions pointed out in § 3.1-§ 3.7.

ceiver side. In RMA, processes communicate by accessing
remote memories instead of sending messages. Thus, an
analogous scheme for RMA has to provide the active se-
mantics for both types of remote operations; puts and gets
become active puts (AP) and active gets (AG), respectively.

Listing 1 shows the interface of AM and AA. An active
message sent to a process receiver_id carries arguments and
payload that will be used by a handler identified by a pointer
hlr_addr. In AA, the user issues puts and gets at trgt_addr
in the address space of a process trgt_id. No handler ad-
dress is specified. Instead, we enable the user to associate
an arbitrary page of data with a selected handler and with
a set of additional actions (discussed in § 3.3 and § 3.4).
When a put or a get touches such a page, it becomes active:
first, it may or may not finalize its default memory effects
(depending on the specified actions); second, both its meta-
data and data are ultimately processed by the associated
handler. AA is fully transparent to RMA and, as Listing 1
shows, it entails no changes to the traditional interface.

1 /* **************** interface of AM *************** */
2 void send_active_message(ptr hlr_addr , void* arguments ,

void* payload , int receiver_id) { ... }
3 /* **************** interface of AA *************** */
4 void put(void* trgt_addr , void* data , int trgt_id) {
5 /* Attempt to copy data from the local memory into
6 the memory location trgt_addr of a process trgt_id.*/
7 }
8 void get(void* trgt_addr , void* l_addr , int trgt_id) {
9 /* Attempt to fetch the data from the memory location

10 trgt_addr of a process trgt_id to l_addr.*/
11 }
12 void assoc_page(void* addr , void* act , int hlr_id) {
13 /* Associate a page at addr with actions act and
14 with a handler identified by the id hlr_id. */

Listing 1: Interface of Active Messages and Active Access (§ 3)

We now show how to extend IOMMUs to implement the
above AA interface and to enable active puts and gets. From
now on, we will focus on designs based on PCI Express
(PCIe) [32]. We first describe the interactions between an
RDMA request and current IOMMUs. The numbers in cir-
cles ( - ) refer to the corresponding numbers in Figure 3.

3.1 State-of-the-art IOMMU Processing Path
Consider an RDMA put or a get that is issued by a remote

process. First, the local NIC receives the RDMA packet .
The NIC attempts to access the main memory with DMA
and thus it generates appropriate PCIe packets (one or more
depending on the type of the PCIe transaction [32]) .
Each packet is intercepted by the IOMMU . First, the
IOMMU resolves the mapping from the device to its page
table (using the packet header [22]). Here, the IOMMU uses
the context cache or, in case of a cache miss, it walks the
remapping tables - . Finally, the IOMMU obtains the

location of the specific page-table . The IOMMU then
resolves the mapping from a device address to a physical
address using the IOTLB or, in the event of a miss, the
page-table . When it finds the target PTE, it checks its
protection bits W and R . The next steps depend on the
request type. For puts, if W=1, the value is simply written to
the target location. If W=0, the IOMMU raises a page fault
and does not modify the page. For gets, if R=1, the request
returns the accessed value to the NIC. If R=0, the IOMMU
raises a page fault and does not return the value.

Upon a page fault, the IOMMU tries to record the fault
information (fault entry) in the system-wide fault log
(implemented as an in-memory ring buffer). In case of an
overflow (e.g., if the OS does not process the recorded entries
fast enough) the fault entry is not recorded. If the fault
entry is logged , the IOMMU interrupts the CPU with
MSI to run one of the specified handlers .

We now analyze the extensions that enable active put-
s/gets (symbols - refer to the related symbols in Fig-
ure 3). Our goal is to enable the IOMMU to multiplex inter-
cepted accesses among processes, buffer them in designated
memory locations, and pass them for processing to a CPU.

3.2 Processing the Intercepted Data
In the original IOMMU design the fault log is shared

by all the processes running on the node where the IOMMU
resides; a potential performance bottleneck. In addition, the
IOMMU does not enable multiplexing the data coming from
the NIC across the processes and handlers, limiting perfor-
mance in multi/manycore environments. Finally, the data
of a blocked RDMA put is lost as the fault log entry only
records the address (see steps - ). To alleviate these is-
sues, we propose to enhance the design of the IOMMU and
its page tables to enable a data-centric multiplexing mech-
anism in which the PTEs themselves guide the incoming re-
quests to be recorded in the specified logging data structures
and processed by the designated user-space handlers.

We first add a programmable field IOMMU User Domain
ID (IUID) to every IOMMU PTE . This field enables as-
sociating pages with user domains. The OS and the NIC can
ensure that one IUID is associated with at most one local
process, similarly to Protection Domains in RDMA [35]. To
add IUID we use bits 52-61 of IOMMU PTEs (ignored by the
current IOMMU hardware [22]). We can store 210 domains
on each node; enough to fully utilize, e.g., BlueGene/Q (64
hardware threads/node) or Intel Xeon Phi (256 hardware
threads/chip). Second, our extended IOMMU logs both the
generated fault entry and the carried data to the access
log, a new in-memory circular ring buffer . A process can
have multiple private IUIDs/access logs located in its ad-
dress space . Third, the IOMMU maintains the access log



(a) An active put (§ 3.3) (b) An active get (§ 3.4)

Figure 4: Active puts and gets. Here, the numbers in circles are independent of the numbering in Figure 3.

table , a simple internal associative data structure with tu-
ples (IUID,base,head,tail,size). One entry maps an IUID
to three physical addresses (the base, the head, and the tail
pointer) and the size of the respective access log ring buffer.
The access log table is implemented as content addressable
memory (CAM) for rapid access and it can be programmed
in the same way as other Intel IOMMU structures [22].

3.3 Controlling Active Puts (APs)
Active puts enable redirecting data coming from the NIC

and/or related metadata to a specified access log. Figure 4a
illustrates active puts in more detail. Two additional PTE
bits control the logging of fault entry and data: WL (Write
Log) and WLD (Write Log Data) . If WL=1 then the IOMMU
logs the fault entry for the written page and if WLD=1 then the
IOMMU logs both the fault entry and the data. The flags
W, WL and WLD are independent. For example, an active put
page is marked as W=0, WL=1, WLD=1. The standard way, in
which IOMMUs manage faults triggered by writes, is defined
by the values W=0, WL=1, WLD=0.

3.4 Controlling Active Gets (AGs)
Active gets enable the IOMMU to log a copy of the re-

motely accessed data locally. When a get succeeds and the
returned data is flowing from the main memory to the NIC,
it is replicated by the IOMMU and saved in the access log
(see Figure 4b). Similar to active puts, two additional PTE
bits control the logging behavior of such accesses: RL (Read
Log) and RLD (Read Log Data) . If RL=1 then the IOMMU
logs the fault entry for the read page and if RLD=1 then the
IOMMU logs the fault entry and the returned data.

The proposed control bit extensions for active puts and
active gets can easily be implemented in practice. For ex-
ample, bits 7-10 in the Intel IOMMU PTEs are ignored [22].
These bits can be used to store WL, WLD, RL, and RLD.

3.5 Interactions with the Local CPU
Finally, the IOMMU has to notify the CPU to run a han-

dler to process the logs. Here, we discuss interrupts/polling
and we propose a new scheme where the IOMMU directly
accesses the CPU, bypassing the main memory.

Interrupts Here, one could use a high-performance MSI
wakeup mechanism analogous to the scheme in Infini-
Band [37]. The developer specifies conditions for trigger-
ing interrupts (when the amount of free space in an access
log is below a certain threshold, or at pre-determined inter-
vals). If the access log is sufficiently large and messages are
pipelined then the interrupt latency may not influence the
overall performance significantly (cf. § 5.2).

Polling As the IOMMU inserts data directly into a user
address space, processes can monitor the access log head/-
tail pointers and begin processing the data when required.

Polling can be done either directly by the user, or by a run-
time system that runs the handlers transparently to the user.

Direct CPU Access This mechanism is motivated by
the architectural trends to place scratchpad memories on
processing units, a common practice in today’s NVIDIA
GPUs [31] and several multicore architectures [24]. One
could add a scratchpad to the CPU , connect it directly
with the IOMMU , and place the head/tail pointers in it.
A dedicated hyperthread polls the pointers and runs the
handlers if a free entry is available . If the size of the han-
dler code is small, it can also be placed in the scratchpad,
further reducing the number of memory accesses .

The IOMMU and the CPU also have to synchronize while
processing the access log. This can be done with a simple
lock for mutual access. The IOMMU and the CPU could
also synchronize with the pointers from the access log table.

3.6 Consistency Model
We now enhance AA to enable a weak consistency model

similar to MPI-3 RMA [20]. In RMA, a blocking flush syn-
chronizes nonblocking puts/gets. In AA, we use an active
flush (flush(int target_id)) to enforce the completion of
active accesses issued by the calling process and targeted at
target_id. One way to implement active flushes could be to
issue an active get targeted at a special designated flushing
page in the address space of target_id. The IOMMU, upon
intercepting this get, would wait until the CPU processes
the related access log and then it would finish the get to
notify the source that the accesses have been committed.

Extending the IOMMU We add an IOMMU internal
data structure called the flushing buffer to store tuples
(address,IUID,active,requester-ID,tag), where address
is the address of the flushing page, active is a binary value
initially set to false, and requester-ID,tag are values of
two PCIe packet fields with identical names; they are ini-
tially zeroed and we discuss them later in this section. The
flushing buffer is implemented as CAM for rapid access.

Selecting a Flushing Page Here, the system could re-
serve a high virtual address for this purpose. We then add a
respective entry (with the selected address and the related
IUID) to the flushing buffer.

Finalizing an Active Flush The IOMMU intercepts the is-
sued get, finds the matching entry in the flushing buffer, sets
active=true, copies the values of the tag and requester-ID
PCIe fields to the matching entry, and discards the get. Pro-
cessing of the targeted access log is then initiated with any
mechanism from § 3.5, depending on user’s choice.

Alternative Mechanism The proposed consistency mech-
anism sacrifices one page from the user virtual address space.
To alleviate this issue, we propose a second scheme similar
to the semantics offered by, e.g., GASNet [11]. Here, AA



does not guarantee any consistency. Instead, it allows the
user to develop the necessary consistency by issuing a re-
ply (implemented as an active put) from within the handler.
This reply informs which elements from the access log have
been processed. To save bandwidth, replies can be batched.
The reply would be targeted at a designated page (with bits
W=0, WL=1, WLD=1) with an IUID pointing to a designated
access log. The user would poll the log and use the replies
to enforce an arbitrary consistency.

Mixing AA/RMA Accesses At times, mixing AA and
RMA puts/gets may be desirable (see § 4.1). The consis-
tency of such a mixed scheme can be managed with active
and traditional RMA flushes as these two calls are orthog-
onal. The completion of pending AA/RMA accesses is en-
forced with AA/RMA flushes, respectively.

3.7 Hardware Implementation Issues
We now describe solutions to several PCIe and RDMA

control flow, ordering, and backward compatibility issues in
the proposed extensions. If the reader is not interested in
these details then they may skip this part and proceed to § 4.
Numbers and capitals in circles refer to Figure 3.

Logging Data of PCIe Write Requests Every RDMA put
is translated into one or more PCIe write requests flowing
from NIC to main memory. The ordering rules for Posted
Requests from the PCIe specification (§ 2.4.1 in [32], entry
A2a) ensure that the packets for the same request arrive in
order and may thus be simply appended to the log.

Logging Data of PCIe Read Requests A PCIe read trans-
action consists of one read request (issued by the NIC) and
one or more read replies (issued by the memory controller).
The IOMMU has to properly match the incoming and out-
going PCIe packets. For this, we first enable the IOMMU to
intercept PCIe packets flowing back to the NIC (standard
IOMMUs process only incoming memory accesses). Second,
we add the packet tag buffer (implemented as CAM)
to the IOMMU to temporarily maintain information about
PCIe packets. The IOMMU would add the transaction tags
of incoming PCIe read requests that access a page where
RLD=1 to the tag buffer. PCIe read reply packets are then
matched against the buffer and logged if needed.

We require the tag buffer as PCIe read replies only contain
seven lower bits of the address of the accessed memory region
(see § 2.2.9 in [32]), preventing the IOMMU from matching
incoming requests with replies. The PCIe standard also en-
sures ordering of read replies (see § 2.3.1.1 in [32]).

Order of PCIe Packets from Multiple Devices The final
ordering issue concerns multiple RMA puts or gets concur-
rently targeted at the same IOMMU. If several multi-packet
accesses originate from different devices then the IOMMU
may observe an arbitrary interleaving of PCIe packets. To
correctly reassemble the packets in the access log, we extend
the tag buffer so that it also stores pointers into the access
log. Upon intercepting the first PCIe packet of a new PCIe
transaction, the IOMMU inserts a tuple (transaction-tag,
tail) into the tag buffer, records the packet in the access log,
and adds the size of the whole PCIe transaction to the tail
pointer. Thus, if some transactions interleave, the IOMMU
leaves “holes” in the access log and fill these holes when ap-
propriate PCIe packets arrive1. The IOMMU removes an

1
PCI Express 3.0 Specification limits the PCIe transaction size to

4KB. Thus, the maximum size of an active put or get also amounts to
4 KB. This limitation can be easily overcome in future PCIe systems.

entry from the buffer after processing the last transaction
packet. To ensure that the CPU only processes packets with
no holes, the IOMMU increments tail or sets appropriate
synchronization variables only when each PCIe packet of the
next transaction is recorded in the respective access log.

Control Flow IOMMUs, unlike MMUs, cannot suspend a
remote process and thus buffers may overflow if they are not
emptied fast enough. To avoid data loss, we utilize the back-
pressure mechanism of the PCIe transaction layer protocol
(TLP) as described in § 2.6.1. in [32]. This will eventually
propagate through a reliable network and block the sending
process(es). Issues such as head of line blocking and dead-
locks are similar to existing reliable network technologies
and require efficient programming at the application layer
(regular emptying of the queues). Head of line blocking can
also be avoided by dropping packets and retransmission [6].

Support for Legacy Codes Some codes may rely on the
default IOMMU behavior to buffer the metadata in the de-
fault fault log . To cover such cases, we add the E bit
to IOMMU PTEs to determine if the page fault is recorded
in the fault log (E=0) or in one of the access logs (E=1).

4. ACTIVE ACCESS PROGRAMMING
We now discuss example RMA-based codes that leverage

AA. AA improves the application performance by reduc-
ing the amount of communication and remote synchroniza-
tion. First, it reduces the number of puts, gets, and remote
atomic operations in distributed data structures and other
codes that perform complex remote memory accesses. For
example, enqueueing an element into a remote queue costs
at least two remote accesses (atomically get and increment
the tail pointer and put the element). With AA, this would
be a simple put to the list address and a handler that inserts
the element; our DHT example is very similar. Second, since
handlers are executed by local cores, the usual on-node syn-
chronization mechanisms are utilized with no need to issue
expensive remote synchronization calls such as remote locks.

4.1 Designing Distributed Hash Tables
DHTs are basic data structures that are used to construct

distributed key-value stores such as Memcached [17]. In
our design, the DHT is open and each process manages its
part called the local volume. The volume consists of a table
of elements and an overflow heap for elements with hash
collisions. Both the table and the heap are implemented as
fixed-size arrays. To avoid costly array traversals, pointers
to most recently inserted items and to the next free cells are
stored along with the remaining data in each local volume.

Due to space constraints we discuss inserts and only
briefly lookups and deletes. In RMA, inserts are based
on atomics (Compare-and-Swap and Fetch-and-Op, denoted
as cas and fao), RMA puts (rma_put) and RMA flushes
(rma_flush); see Listing 2. For simplicity we assume that
atomics are blocking. The semantics of CAS are as follows:
int cas(elem, compare, target, owner); if compare ==
target then target is changed to elem and its previous value
is returned. For FAO we have int fao(op, value, target,
owner); it applies an atomic operation op to target using
a parameter value, and returns target’s previous value.
In both cas and fao, owner is the id of the process that
owns the targeted address space. The semantics for rma_put
and rma_flush are the same as for AA puts and flushes
(cf. § 3, § 3.6). ∅ indicates that the specific array cell is
empty. To insert elem we first issue a cas (line 9). Upon a



1 /* Volume is a structure that contains the fields:
2 owner: the id of the volume owner; vol_size: volume size ,
3 elems[]: the table + the overflow heap; each cell contains

two subfields: elem (the actual value) and ptr (the
pointer to the next element),

4 next_free_cell: a ptr to the next free cell in the heap ,
5 last_ptr[]: pointers to the most recent elements */
6
7 void insert(int elem , Volume v) {//put elem into volume v
8 int pos = hash(elem); //get the position of elem in v
9 if(cas(elem ,∅,v.elems[pos].elem ,v.owner) != ∅) {

10 int free_cell = fao(SUM ,1,v.next_free_cell ,v.owner);
11 if(free_cell >=v.vol_size) {/*an overflow - resize */}
12 rma_put(elem ,v.elems[free_cell ].elem ,v.owner);
13 rma_flush(v.owner);
14 int prev_ptr=fao(REPLACE ,free_cell ,v.last_ptr[pos],

v.owner);
15 if(cas(free_cell ,∅,v.elems[pos].ptr ,v.owner) != ∅) {
16 rma_put(free_cell ,v.elems[prev_ptr ].ptr ,v.owner);
17 rma_flush(v.owner); } } }

Listing 2: Insert in the traditional RMA-based DHT

1 void insert(int elem , Volume v) {
2 put(elem , v.elems[hash(elem)].elem , v.owner);
3 }
4
5 void insert_handler(Access_log log) {
6 while(log.tail != log.head) {
7 local_insert (*log.tail); log.tail += sizeof(int);
8 if(log.tail == log.base + log.size) {
9 log.tail = log.base;

10 } } }
11
12 void local_insert(int elem) {//lv is the local DHT volume
13 int pos = hash(elem); //get the position of elem in lv
14 if(cas(elem ,∅,lv.elems[pos].elem) != ∅) {
15 int free_cell = fao(SUM ,1,lv.next_free_cell);
16 if(free_cell >=lv.vol_size) {/*an overflow - resize */}
17 lv.elems[free_cell ].elem = elem;
18 int prev_ptr=fao(REPLACE ,free_cell ,lv.last_ptr[pos]);
19 if(cas(free_cell ,∅,lv.elems[pos].ptr) != ∅) {
20 lv.elems[prev_ptr ].ptr = free_cell; } } }

Listing 3: Insert in the AA-based DHT

collision we acquire a new element in the overflow heap (line
10). We then insert elem into the new position (lines 12-13),
update the respective last pointer and the next pointer of
the previous element in the heap (lines 14-17).

Implementation of Inserts with Active Puts We now
accelerate inserts with AA. We present the multi-threaded
code in Listing 3. The inserting process calls insert (lines
1-3). The PTEs of the hash table data are marked with W=0,
WL=1, WLD=1; thus, the metadata and the data from the
put is placed in the access log. The CPU then (after being
interrupted or by polling the memory/scratchpad) executes
insert_handler to insert the elements into the local volume
(lines 5-10). Here, we assume that a thread owns one access
log and that the size of the access log is divisible by the size
of int. Elements are inserted with local_insert, a function
similar to insert from Listing 2. The difference is that each
call is local (we thus skip the lv.owner argument).

Synchronization AA handlers are executed by the local
CPU, thus, local_insert requires no synchronization with
remote processes. In our code we use local atomics, however,
other simple local synchronization mechanisms (e.g., locks or
hardware transactional memory) may also be utilized.

Consistency The proposed DHT is loosely consistent. For
implementing any other consistency (e.g., sequential consis-
tency) one can use either active flushes or enforce the re-
quired consistency using replies from within the handler.

Lookups Contrary to inserts, lookups do not generate
hash collisions that entail multiple memory accesses. Thus,
we propose to implement a lookup as a single traditional
RMA get, similarly to [14]. For this, we mark the PTEs
associated with the hashtable data as R=1, RL=0, RLD=0. Here,
we assume that DMA is cache coherent (true on, e.g., Intel
x86 [14]) and that RMA gets are aligned. As the DHT
elements are word-size integers, a get is atomic with respect
to any concurrent accesses from Listing 3. Consistency with
other lookups and with inserts can be achieved with RMA
and active flushes, respectively. More complicated schemes
that fetch the data from the overflow heap are possible; the
details are outside the scope of the paper.

Deletes A simple protocol built over active puts performs
deletes. Here, we use a designated page P marked as W=0,
WL=1, WLD=1. The implementation of the delete issues an
active put. This put is targeted at P and it contains a key of
the element(s) to be deleted. The IOMMU moves the keys
to a designated access log and a specified handler uses them
to remove the elements from the local volume.

4.2 Collecting Statistics on Memory Accesses
Recent work [18] presents an active key-value store

“Comet”, where automated gathering of statistics is one of
the key functionalities. Such systems are usually imple-
mented in the application layer, which significantly limits
their performance. Architectures based on traditional RMA
suffer from issues similar to the ones described in § 4.1.

AA enables hardware-based gathering statistics. For ex-
ample, to count the number of puts or gets to a data struc-
ture, one has to appropriately set the control bits in the
PTEs that point to the memory region where this struc-
ture is located: W=1, WL=1, WLD=0 (for puts), and R=1, RL=1,
RLD=0 (for gets). Thus, the IOMMU ignores the data and
logs only metadata that is later processed in a handler to
generate statistics; the processing can be enforced with ac-
tive flushes. This mechanism would also improve the perfor-
mance of cache eviction schemes in memcached applications.

AA enables gathering separate statistics for each page of
data. Yet, sometimes a finer granularity could be required
to count accesses to elements of smaller sizes. In such cases
one could place the respective elements in separate pages.

4.3 Enabling Incremental Checkpointing
Recent predictions about mean time between failures

(MTBF) of large-scale systems indicate failures every few
hours [9]. Fault tolerance can be achieved with various
mechanisms. In checkpoint/restart [9] all processes synchro-
nize and record their state to memories or disks. Traditional
checkpointing schemes record the same amount of data dur-
ing every checkpoint. However, often only a small subset
of the application state changes between two consecutive
checkpoints [39]. Thus, saving all the data wastes time, en-
ergy, and bandwidth. In incremental checkpointing only the
modified data is recorded. A popular scheme [39] tracks
data modifications at the granularity of pages and uses the
dirty bit (DB) to detect if a given page requires checkpoint-
ing. This scheme cannot be directly applied to RMA be-
cause memory accesses performed by remote processes are
not tracked by the MMU paging hierarchy [35].

AA enables incremental checkpointing in RMA codes.
The combination W=1, WL=1, WLD=0 (set to the data that re-
quires checkpointing) enables tracking the modified pages.
To take a checkpoint all the processes synchronize and pro-
cess the access logs to find and record the modified data.
Our incremental checkpointing mechanism for tracking data
modifications is orthogonal to the details of synchronization
and recording; one could use any available scheme [9].



Most often both remote and local accesses modify the
memory. The latter can be tracked by the MMU and any ex-
isting method (e.g., the DB scheme [39]) can be used. While
checkpointing, every process parses both the access log and
the MMU page table to track both types of memory writes.

4.4 Reducing the Overheads of Logging
Another fault tolerance mechanism for RMA is uncoordi-

nated checkpointing combined with logging of puts and gets
where the crashed processes repeat their work and replay
puts and gets that modified their state before the failure;
these puts and gets are logged during the application run-
time [9]. While logging puts is simple and does not im-
pact performance, logging gets wastes network bandwidth
because it requires transferring additional data [9]. We now
describe this issue and propose a solution based on AA.

Logging Gets in Traditional RMA A get issued by process
A and targeted at B fetches data from B’s memory and
impacts the state of A. Thus, if A fails and begins recovery,
it has to replay this get. Still, A cannot log this get locally
because the contents of its memory are lost after the crash
(see Fig. 5, part 1). Thus, B can log the get [9].

The core problem in RMA is that B knows nothing of
gets issued by A, and cannot actively perform any logging
action. It means that A has to wait for the data to be
fetched from B and only then can it send this data back to
B. This naive scheme comes from the fundamental rules of
one-sided RMA communication: B is completely oblivious
to any remote accesses to its memory [9] (cf. Fig. 5, part 2).

Figure 5: Logging and replaying issued operations in RMA and AA.

Improving the Performance with Active Gets In AA, the
IOMMU can intercept incoming gets and log the accessed
data locally. First, we set up PTEs in the IOMMU page ta-
ble that point to the part of memory that is targeted by gets.
We set the control bits (R=1,RL=1,RLD=1) in these PTEs to
make each get touching this page active. Every such get
triggers the IOMMU to copy the accessed data into the ac-
cess log annihilating the need for the source to send the
same data back (see Figure 5, part 3). During the recovery
a crashed process fetches the logs and then uses them to
recover to the state before the failure. We omit further de-
tails of this scheme as this is outside the scope of this paper;
example protocols (e.g., for clearing the logs or replaying
puts and gets preserving the RMA consistency order) can
be found in the literature [9].

5. EVALUATION
To evaluate AA we first conduct cycle-accurate simula-

tions to cover the details of the interaction between the NIC,
the IOMMU, the CPU, and the memory system. Second, we
perform simplified large-scale simulations to illustrate how
AA impacts the performance of large-scale codes.

5.1 Microbenchmarks
We first perform cycle-accurate microbenchmarks that

evaluate the performance of data transfer between two ma-
chines connected with an Ethernet link. We compare system
configurations without the IOMMU (no-iommu) and with the
extended IOMMU presented in this paper (e-iommu). We
use the gem5 cycle-accurate full-system simulator [10] and
a standard testbed that allows for modeling two networked
machines with in-order CPUs, Intel 8254x 1GbE NICs with
Intel e1000 driver, a full operating system, TCP/IP stack,
and PCIe buses. The utilized OS is Ubuntu 11.04 with pre-
compiled 3.3.0-rc3 Linux kernel that supports 2047MB mem-
ory. We modify the simulated system by splitting the PCIe
bus and inserting an IOMMU in between the two parts. We
model the IOMMU as a bridge with an attached PTE cache
(IOTLB). The bridge provides buffering and a fixed delay
for passing packets; we set the delay to be 70ns for each
additional memory access. We also use a 5ns delay for sim-
ulating IOMMU internal processing. We base these values
on the L1/memory latencies of the simulated system.

We first measure the performance of data transfer with
PktGen [28] (a high-speed packet generator) enhanced with
netmap [36] (a framework for fast packet I/O). Second, we
evaluate the performance of a TCP and a UDP stream with
netperf, a popular benchmark for measuring network perfor-
mance. We show the results in Figures 6a-6b. The IOMMU
presence only marginally affects the data transfer bandwidth
(the difference between the no-iommu and e-iommu is 1-5%
with no-iommu, as expected, being marginally faster).

We also simulate a hashtable workload of one process in-
serting new elements at full link bandwidth into the mem-
ory of the remote machine; the results are presented in Fig-
ure 6c. Here, we compare AA with a traditional RMA design
of the DHT. As the collision rate increases, the performance
of both designs drops due to a higher number of memory
accesses. Still, AA is ≈3 times more performant than RMA.

5.2 Evaluation of Large-Scale Applications
The second performance-related question is how the AA

semantics, implemented using the proposed IOMMU design,
impacts the performance of large-scale codes. To be able to
run large-scale benchmarks on a real supercomputer we sim-
plify the simulation infrastructure. We simulate one-sided
RMA calls with MPI point-to-point messages. We replace
one-directional RMA puts with a single message and two-
directional RMA calls (gets and atomics) with a pair of mes-
sages exchanged by the source and target, just like packets
in hardware. We then emulate extended IOMMUs by appro-
priately stalling message handlers. As the IOMMU performs
data replication and redirection bypassing the CPU, there
are four possible sources of such overheads: interrupts, mem-
ory accesses due to the logging, IOMMU page table lookups,
and accesses to the scratchpads on the CPU.

First, we determine the interrupt and memory access la-
tencies on our system to be 3µs and ≈70ns, respectively.
Second, we simulate the IOTLB and page table lookups
varying several parameters (PTE size, associativity, eviction
policy). Finally, we assume that an access to the scratchpad
to notify a polling hyperthread is equal to the cost of an L3
access and we evaluate it to ≈15ns.

All the experiments are executed on the CSCS Monte
Rosa Cray XE6 system. Each node contains four 8-core
AMD processors (Opteron 6276 Interlagos 2.3 GHz) and is
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Figure 6: Microbenchmarks (Figures 6a-6c) and finding optimum configuration for AA-Onload (Figure 6d).

connected to a 3D-Torus Gemini network. We use 32 pro-
cesses/node and the GNU Environment 4.1.46 for compiling.

We compare the following communication schemes:

AA-Int, AA-Poll, AA-SP: AA based on the IOMMU com-
municating with the CPU using: interrupts, polling the
main memory, and accessing the scratchpad, respectively.

RMA: traditional RMA representing RDMA architectures.

AM: an AM scheme in which processes poll at regular in-
tervals to check for messages. Note that this protocol is
equivalent to traditional message passing.

AM-Exp: an AM variant based on exponential backoff to
reduce polling overhead. If there is no incoming message,
we double the interval after which a process will poll.

AM-Onload: an AM scheme where several cores are only
dedicated to running AM handlers and constantly poll on
flags that indicate whether new AMs have to be processed.

AM-Ints: an AM mechanism based on interrupts generated
by the NIC that signal to the CPU it has to run the handler.

5.2.1 Distributed Hashtable
We implement eight hashtable variants using each of the

schemes above. Here, processes insert random elements with
random keys (delete evaluation gives similar performance
and is skipped due to space constraints). Each DHT vol-
ume can contain 221 elements. We vary different parameters
to cover a broad spectrum of possible scenarios. First, we
study the scalability by changing the number of inserting
processes P . Second, we evaluate benchmarks with differ-
ent numbers of hash collisions (Rcols, the ratio between the
number of hash collisions and the total number of inserts).
Third, we simulate different applications by varying compu-
tation ratios (Rcomp, the ratio between the time spent on
local computation and the total experiment runtime). We
also vary the IOTLB parameters: IOTLB size, associativity,
and the eviction policy. Finally, we analyzed two variants of
AA-Ints/AM-Ints in which an interrupt is issued every 101

and 102 inserts (the differences in performance were negligi-
ble (<5%); we only report numbers for the former).

AM-Onload depends on the number of cores (C) per node
that are dedicated to processing AM requests. Thus, to
make the comparison fair, we run AM-Onload for every C
between 1 and 31 in order to find the most advantageous
configuration for every experiment. Figure 6d shows that
C = 11 delivers maximum performance. If C < 11 the cores
become congested and the performance decreases. C > 11
limits performance as receiving cores become underutilized.

Varying P and Rcols Figure 7a shows the results for
Rcols = 5% and Figure 7b for Rcols = 25%. Here, both
AA-SC and AA-Poll outperform all other schemes by a fac-
tor of ≈2. As expected, AA-SC is slightly (≈1%) more per-
formant than AA-Poll. AA-Ints is comparable to AM-Ints;

both mechanisms suffer from interrupt latency overheads.
The reasons for performance differences in the remaining
schemes are as follows: in AM-Exp and AM the computing
processes have to poll on the receive buffer and, upon ac-
tive message arrival, extract the payload. In AA this part
is managed by the IOMMU and the computing processes
only have to insert the elements into the local hashtable.
AM-Onload devotes smaller number of processes to compute
and thus, even in its best configuration, cannot outperform
AA. RMA issues costly atomics for every insert and 6 more re-
mote operations for every collision, degrading performance.

Varying Rcomp Increasing Rcomp from 0% to 95% did
not significantly influence the performance patterns between
evaluated schemes. The only noticeable effect was that the
differences between the results of respective schemes were
smaller (which is expected as scaling Rcomp reduces appro-
priately the amount of communication per time unit).

Varying the IOTLB Parameters We now analyze the in-
fluence of various IOTLB parameters on the performance
of DHT; the results are presented in Figure 7c. The name
of each plot encodes the used eviction policy (lru: least
recently used, rnd: random) and associativity (a1: direct-
mapped, a2: 2-way, a4: 4-way, af: fully-mapped). For plot
clarity we only analyze AA-Poll; both AA-SP and AA-Ints
follow similar performance patterns. For a given associa-
tivity, lru is always better than rnd as it entails fewer
IOTLB misses. Increasing associativity and IOTLB size im-
proves the performance, for example, using lru_af instead
of lru_a4 allows for an up to 16% higher insert rate.

5.2.2 Access Counter
We now test the performance of a simple tool that counts

accesses to an arbitrary data structure. We compare AA-Poll
(counting done by the IOMMU), RMA (increasing counters
with remote atomics), and two additional designs: an ap-
proach based on the “active key-value” store [18] (A-KV), and
a scheme where counting is done at the source and the fi-
nal sums are computed with the Allreduce collective oper-
ation [26] (Allreduce). Finally, we test a scenario with no
counting (No-Cnt). The number of accesses per second is pre-
sented in Figure 7d. AA-Poll outperforms A-KV (overheads
caused by the application-level design), RMA (issuing costly
atomics), and All-Reduce (expensive synchronization).

5.2.3 Performant Logging of Gets
In the next step we evaluate the performance of active

gets by testing the implementation of the mechanism that
logs RMA gets. Here, processes issue remote gets targeted
at random processes. Every get transfers one 8-byte integer
value. In this benchmark we do not compare to AM-Exp,
AM-Onload, and AM-Ints because these schemes were not
suitable for implementing this type of application. Instead,
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Figure 7: The performance of the DHT (Figures 7a, 7b, 7c) and the access counter (Figure 7d). We use 32 processes/node.

we compare to No-FT: a variant with no logging (no fault-
tolerance overhead) that constitutes the best-case baseline.
We illustrate the scalability of AA in Figure 8a. AA achieves
the best performance, close to No-FT. In all the remaining
protocols the data to be logged has to be transferred back
to a remote storage using a put (RMA) or a send (AM), which
incurs significant overheads. Varying the remaining param-
eters (Rcomp, IOTLB parameters) follows the same perfor-
mance pattern as in the hashtable evaluation.

5.2.4 Fault-Tolerant Performant Sort
To evaluate the performance of active gets we also im-

plemented an RMA-based version of the parallel sort Coral
Benchmark [13] that utilizes gets instead of messages, and
made it fault-tolerant. We present the total time required
to communicate the results of sorting 1GB of data between
processes in Figure 8b. Again, AA is close to No-FT (< 1%)
and reduces communication time by ≈50% and ≈80% in
comparison to AM and RMA, respectively.
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Figure 8: The performance of the AA-based fault tolerance scheme.

6. RELATED WORK AND DISCUSSION
Not all possible use cases for IOMMUs have been studied

so far. Ben-Yehuda et al. [8] discuss IOMMUs for virtu-
alization in Linux. Other works target efficient IOMMU
emulation [4], reducing IOTLB miss rates [3], isolating
Linux device drivers [12], and mitigating IOMMUs’ over-
heads [7]. There are also vendors’ white papers and speci-
fications [1, 2, 5, 21, 22, 25, 33]. Our work goes beyond these
studies by proposing a new a mechanism and a programming
model that combines AM with RMA and uses IOMMUs for
high-performance distributed data-centric computations.

There are several mechanisms that extend the memory
subsystem to improve the performance of various codes. Ac-
tive Pages [30] enable the memory to perform some simple
operations allowing the CPU to operate at peak computa-
tional bandwidth. Active Memory [16] and in-memory com-
puting [42] add simple compute logic to the memory con-
troller and the memory itself, respectively. AA differs from
these schemes as it targets distributed RMA computations

and its implementation does not modify the memory subsys-
tem requiring minor extensions to the commodity IOMMUs.

Scale-Out NUMA [27] is an architecture, programming
model, and communication protocol that offers low latency
of remote memory accesses. It differs from AA as it does
not provide the active semantics for both puts and gets and
it introduces significant changes to the memory subsystem.

Active messages were introduced by von Eicken et al [40].
Scalable programming for RMA was discussed by Gersten-
berger et al [19]. Some of AA’s functionalities could be
achieved using existing RMA/AM interfaces such as Por-
tals [6], InfiniBand [37], or GASNet [11]. However, Portals
would introduce additional memory overheads per NIC be-
cause it requires descriptors for every memory region. These
overheads may grow prohibitively for multiple NICs. Con-
trarily, AA uses a single centralized IOMMU with exist-
ing paging structures, ensuring no additional memory over-
heads. Furthermore, AA offers notifications on gets and it
enables various novel schemes such as incremental check-
pointing for RMA and performant logging of gets.

AA could also be implemented in the NIC. Still, using
IOMMUs provides several advantages. Modern IOMMUs
are integrated with the memory controller/CPU and thus
can be directly connected with CPU stratchpads for a high-
performance notification mechanism (see § 3.5). This way,
all I/O devices could take advantage of this functionality
(e.g., Ethernet RoCE NICs). Moreover, we envision other
future mechanisms that would enable even further integra-
tion with the CPU. For example, the IOMMU could be di-
rectly connected to the CPU instruction pipeline to directly
feed the CPU with handler code.

Finally, AA’s potential can be further explored to provide
hardware virtualization of remote memories. There are three
major advantages of virtual memory: it enables an OS to
swap memory blocks into disk, it facilitates the application
development by providing processes with separate address
spaces, and it enables useful features such as memory pro-
tection or dirty bits. Some schemes (e.g., PGAS languages)
emulate a part of these functionalities for networked mem-
ories. Extending AA with features specific to MMU PTEs
(e.g., invalid bits) would enable a hardware-based virtual
global address space (V-GAS) with novel enhanced paging
capabilities and data-centric handlers running transparently
to any code accessing the memory; see Fig. 9.

The IOMMUs could also become the basis of V-GAS for
Ethernet. All the described IOMMU extensions are generic
and do not rely on any specific NIC features, leaving the
possibility of moving the V-GAS potential into commod-
ity machines that do not provide native RDMA support.
For example, by utilizing Single Root I/O Virtualization
(SR/IOV), a standard support for hardware virtualization



Figure 9: V-GAS together with some example features.

combined with multiple receive and transmit rings, one can
utilize IOMMUs to safely divert traffic right into userspace.

7. CONCLUSION
RMA is becoming more popular for programming dat-

acenters and HPC computers. However, its traditional
one-sided model of communication may incur performance
penalties in several types of applications such as DHT.

To alleviate this issue we propose the Active Access
scheme that utilizes IOMMUs to provide hardware support
for active semantics in RMA. For example, our AA-based
DHT implementation offers a speedup of two over optimized
AMs. The novel AA-based fault tolerance protocol enables
performant logging of gets and adds negligible (1-5%) over-
heads to the application runtime. Furthermore, AA enables
new schemes such as incremental checkpointing in RMA. Fi-
nally, our design bypasses the OS and enables more effective
programming of datacenters and HPC centers.

AA enables a new programming model that combines the
benefits of one-sided communication and active messages.
AA is data-centric as it enables triggering handlers when
certain data is accessed. Thus, it could be useful for future
data processing and analysis schemes and protocols.

The proposed AA design, based on IOMMUs, shows the
potential behind currently available off-the-shelf hardware
for developing novel mechanisms. By moving the notifica-
tion functionality from the NIC to the IOMMU we adopt
the existing IOMMU paging structures and we eliminate the
need for expensive memory descriptors present in, e.g., Por-
tals, thus reducing memory overheads. The IOMMU-based
design may enable even more performant notification mech-
anisms such as direct access from the IOMMU to the CPU
pipeline. Thus, AA may play an important role in designing
efficient codes and OS/runtime systems in large datacenters,
HPC computers, and highly parallel manycore environments
which are becoming commonplace even in commodity off-
the-shelf computers.
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