Optimization of a parallel 3d-FFT with non-blocking collective operations

Torsten Hoefler, Gilles Zérah

Chair of Computer Architecture Département de Physique Théorique et Appliquée Technical University of Chemnitz Commissariat à l'Énergie Atomique/DAM

< □ > < 同 > < 回 >

3rd International ABINIT Developer Workshop Liège, Belgium 29th January 2007

Introduction

- Short introduction to non-blocking collectives
- 2 Three dimensional FFTs
 - Traditional parallel 3d-FFT
 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap
- Implementation in ABINIT
 - Avoidance of the transformation of zeroes
 - Autotuning of parameters
 - Preliminary Performance Results

Introduction

- Short introduction to non-blocking collectives
- Three dimensional FFTs
 - Traditional parallel 3d-FFT
 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap
- Implementation in ABINIT
 - Avoidance of the transformation of zeroes
 - Autotuning of parameters
 - Preliminary Performance Results G V

Short introduction to non-blocking collectives

ヘロン 人間 とくほど 人間 と

Non-blocking Collective Operations

Advantages - Overlap

- leverage hardware parallelism (e.g. InfiniBandTM)
- overlap similar to non-blocking point-to-point

Usage?

- extension to MPI-2
- "mixture" between non-blocking ptp and collectives
- uses MPI_Requests and MPI_Test/MPI_Wait

```
MPI_Ibcast(buf1, p, MPI_INT, 0, comm, &req);
MPI_Wait(&req);
```

Availability

Prototype LibNBC: requires ANSI-C and MPI-2
LibNBC dowload and documentation:
http://www.unixer.de/NBC

Documentation

T. HOEFLER, J. SQUYRES, W. REHM, AND A. LUMSDAINE: A Case for Non-Blocking Collective Operations. In Frontiers of High Performance Computing and Networking, pages 155-164, Springer Berlin, ISBN: 978-3-540-49860-5 Dec. 2006

T. HOEFLER, J. SQUYRES, G. BOSILCA, G. FAGG, A. LUMSDAINE, AND W. REHM: Non-Blocking Collective Operations for MPI-2. Open Systems Lab, Indiana University. presented in Bloomington, IN, USA, Aug. 2006

Short introduction to non-blocking collectives

Performance Benefits?

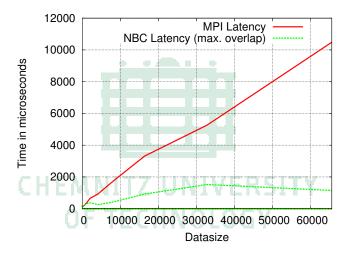


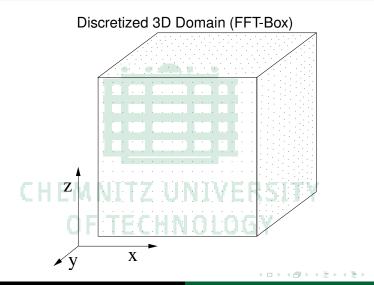
Figure: MPI_Alltoall latency on the "tantale" cluster@CEA

Torsten Hoefler, Gilles Zérah Overlap in 3d-FFTs

Traditional parallel 3d-FFT

Short introduction to non-blocking collectives

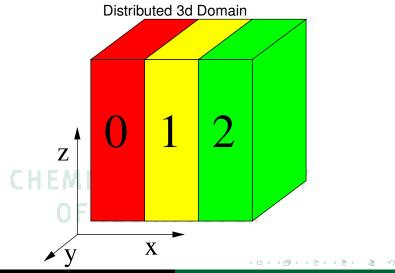
2 Three dimensional FFTs


- Traditional parallel 3d-FFT
- Parallel 3d-FFT with maximum overlap
- Parallel cache optimized 3d-FFT with partial overlap

Implementation in ABINIT

- Avoidance of the transformation of zeroes T y
- Autotuning of parameters
- Preliminary Performance Results G V

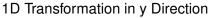
Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

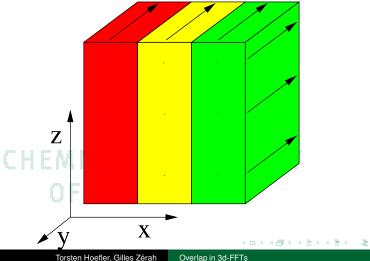

Domain Decomposition

3

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

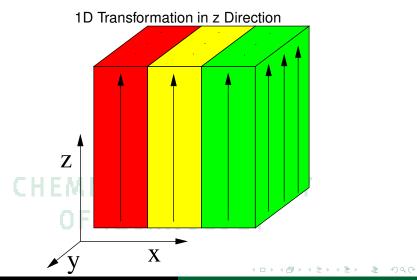
Domain Decomposition

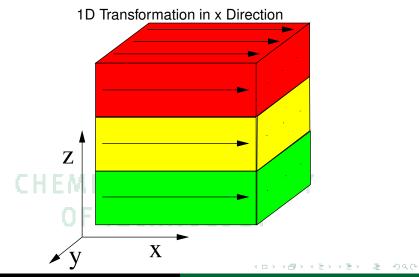



Torsten Hoefler, Gilles Zérah

Overlap in 3d-FFTs

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap


1D Transformation


Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

1D Transformation

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

1D Transformation

- Short introduction to non-blocking collectives
- Three dimensional FFTs

 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap

Implementation in ABINIT

- Avoidance of the transformation of zeroes T y
- Autotuning of parameters
- Preliminary Performance Results G V

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Non-blocking 3D-FFT

Derivation from "normal" implementation

- distribution identical to "normal" 3D-FFT
- first FFT in y direction and local data transpose

Design Goals to Minimize Communication Overhead

- start communication as early as possible
- achieve maximum overlap time

Solution

- start NBC_lalltoall as soon as first xz-plane is ready
- calculate next xz-plane
- start next communication accordingly ...
- collect multiple xz-planes (A2A data size)

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Non-blocking 3D-FFT

Derivation from "normal" implementation

- distribution identical to "normal" 3D-FFT
- first FFT in y direction and local data transpose

Design Goals to Minimize Communication Overhead

- start communication as early as possible
- achieve maximum overlap time

Solution

- start NBC_lalltoall as soon as first xz-plane is ready
- calculate next xz-plane
- start next communication accordingly ...
- collect multiple xz-planes (A2A data size)

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Non-blocking 3D-FFT

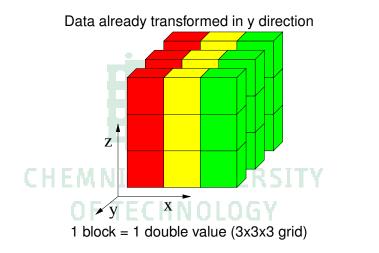
Derivation from "normal" implementation

- distribution identical to "normal" 3D-FFT
- first FFT in y direction and local data transpose

Design Goals to Minimize Communication Overhead

- start communication as early as possible
- achieve maximum overlap time

Solution

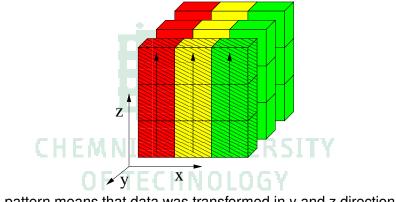

- start NBC_lalltoall as soon as first xz-plane is ready
- calculate next xz-plane
- start next communication accordingly ...
- collect multiple xz-planes (A2A data size)

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

イロト イポト イヨト イヨト

3

Transformation of in z Direction



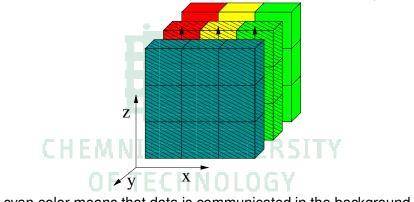
Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

3

Transformation of in z Direction

Transform first xz plane in z direction in parallel

pattern means that data was transformed in y and z direction

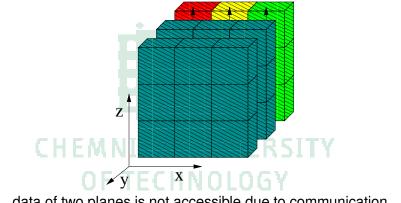

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

3

Transformation of in z Direction

start NBC_Ialltoall of first xz plane and transform second plane

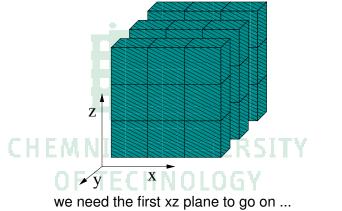

cyan color means that data is communicated in the background

Parallel 3d-FFT with maximum overlap

イロト イポト イヨト イヨト

Transformation of in z Direction

start NBC lalltoall of second xz plane and transform third plane

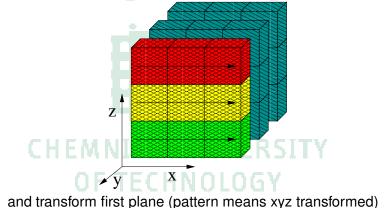

data of two planes is not accessible due to communication

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

3

Transformation of in z Direction

start communication of the third plane and ...

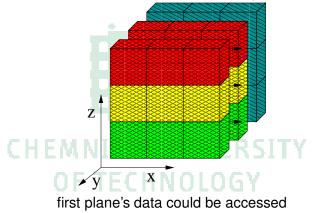


Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

(日)

Transformation of in x Direction

... so NBC_Wait for the first NBC_Ialltoall!

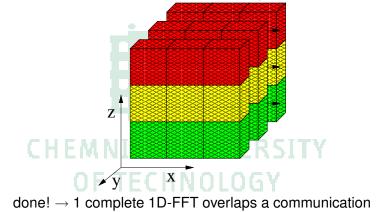

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

(日) (同) (日) (日)

3

Transformation of in x Direction

Wait and transform second xz plane


Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・

3

Transformation of in x Direction

wait and transform last xz plane

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Parameter and Problems

Tile factor

- # of z-planes to gather before NBC_lalltoall is started
- very performance critical!
- not easily predictable

Window size and MPI_Test interval

- Window size = number of outstanding communications
- not very performance critical \rightarrow fine-tuning
- MPI_Test progresses internal state of MPI
- unneccessary in threaded NBC implementation (future)

Problems?

• NOT cache friendly :-(

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Parameter and Problems

Tile factor

- # of z-planes to gather before NBC_Ialltoall is started
- very performance critical!
- not easily predictable

Window size and MPI_Test interval

- Window size = number of outstanding communications
- not very performance critical \rightarrow fine-tuning
- MPI_Test progresses internal state of MPI
- unneccessary in threaded NBC implementation (future)

Problems?

NOT cache friendly :-(

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

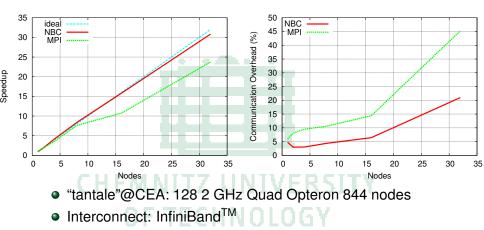
Parameter and Problems

Tile factor

- # of z-planes to gather before NBC_Ialltoall is started
- very performance critical!
- not easily predictable

Window size and MPI_Test interval

- Window size = number of outstanding communications
- not very performance critical \rightarrow fine-tuning
- MPI_Test progresses internal state of MPI
- unneccessary in threaded NBC implementation (future)


Problems?

• NOT cache friendly :-(

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

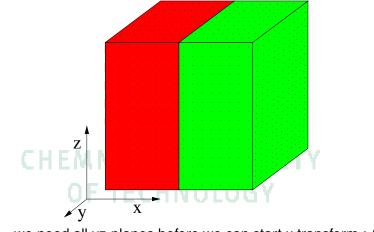
(日) (同) (日) (日)

3D-FFT Benchmark Results (small input)

• System size 128x128x128 (1 CPU \approx 0.75 s)

- Short introduction to non-blocking collectives
- Three dimensional FFTs

 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap


Implementation in ABINIT

- Avoidance of the transformation of zeroes T y
- Autotuning of parameters
- Preliminary Performance Results G V

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Cache optimal implementation

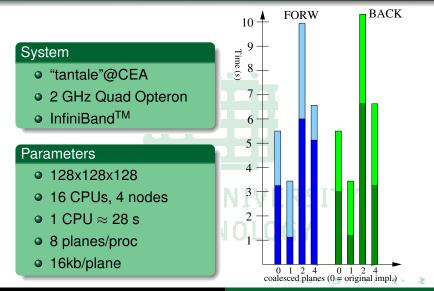
cache optimality by yz transforming plane by plane (in cache)!

 \rightarrow we need all yz-planes before we can start x transform :-(

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

Applying Non-blocking collectives

Pipelined communication


- retain plane-by-plane transform
- simple pipelined scheme
- start A2A of plane as soon as it is transformed
- wait for all before x transform
- A2A overlapped with computation of remaining planes
- last A2A blocks (immediate wait :-()

Issues

- less overap potential
- plane coalescing to adjust datasize
- new parameter: "pipeline depth" (# of A2As)

Traditional parallel 3d-FFT Parallel 3d-FFT with maximum overlap Parallel cache optimized 3d-FFT with partial overlap

3D-FFT Benchmark Results (small input)

Torsten Hoefler, Gilles Zérah

Overlap in 3d-FFTs

1) Introduction

3

- Short introduction to non-blocking collectives
- 2 Three dimensional FFTs
 - Traditional parallel 3d-FFT
 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap

Implementation in ABINIT

- Avoidance of the transformation of zeroes
- Autotuming of parameters
- Prelimingr Perferrance, Resulted G Y

Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

Avoidance of the transformation of zeroes

ABINIT Implementation

- changed routines back, forw, back_wf and forw_wf
- some minor changes to others (input params ...)

The routines back_wf and forw_wf

- avoid transformation of zeroes
- less computation and less communication
- changed communication (boxcut=2):
 - forw_wf: nz/p planes, each has $nx/2 \cdot ny/(2 \cdot p)$ doubles
 - back_wf: $nz/(2 \cdot p)$ planes, each has $nx/2 \cdot ny/p$ doubles

New Parameters

• all routines have different # planes \rightarrow three parameters

1) Introduction

- Short introduction to non-blocking collectives
- 2 Three dimensional FFTs
 - Traditional parallel 3d-FFT
 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap

Implementation in ABINIT

- Avoidance of the transformation of zeroes T v
- Autotuning of parameters
- Preliminar Perfer management of y

Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

Autotuning of parameters

Three new input parameters

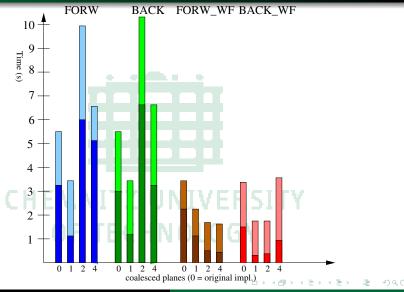
- fftplanes_fourdp,fftplanes_forw_wf,and
 fftplanes_back_wf
- default = 0 \rightarrow standard MPI implementation
- performance critical
- complicated to determine by hand

Autotuning

- automatically determine them at runtime
- each planes parameter is benchmarked (after warmup round)
- fastest is chosen automatically
- relatively accurate but problems with jitter

Introduction	Avoidance of the transformation of zeroes
Three dimensional FFTs	Autotuning of parameters
Implementation in ABINIT	Preliminary Performance Results

- Short introduction to non-blocking collectives
- Three dimensional FFTs
 - Traditional parallel 3d-FFT
 - Parallel 3d-FFT with maximum overlap
 - Parallel cache optimized 3d-FFT with partial overlap

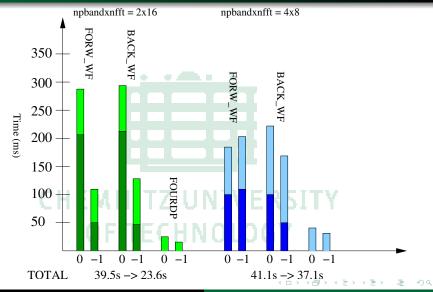

Implementation in ABINIT

- Autotuning of parameters
- Preliminary Performance Results

Introduction Avoida Three dimensional FFTs Autotur Implementation in ABINIT Prelimi

Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

Microbenchmarks



Torsten Hoefler, Gilles Zérah

Overlap in 3d-FFTs

Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

ABINIT - Si, 60 bands, 128³ FFT

Torsten Hoefler, Gilles Zérah

Overlap in 3d-FFTs

Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

< 17 ▶

Conclusions & Future Work

Conclusions

- applying NBC requires some effort
- NBC can improve parallel efficience
- cache usage vs. overlap potential

Future Work

- tune FFT further (reduce serial overhead)
- better automatic parameter assessment (?)
- parallel model for 3d-FFT
- use NBC for parallel orthogonalization
- apply NBC at higher level (LOBPCG?)

Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

(日)

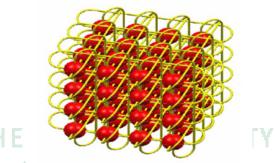
Conclusions & Future Work

Conclusions

- applying NBC requires some effort
- NBC can improve parallel efficience
- cache usage vs. overlap potential

Future Work

- tune FFT further (reduce serial overhead)
- better automatic parameter assessment (?)
- parallel model for 3d-FFT
- use NBC for parallel orthogonalization
- apply NBC at higher level (LOBPCG?)


Avoidance of the transformation of zeroes Autotuning of parameters Preliminary Performance Results

A B + A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Discussion

ABINIT patch (soon):

http://www.unixer.de/research/abinit/

Thanks to the CEA/DAM for support of this work and you for your attention!

Torsten Hoefler, Gilles Zérah Overlap in 3d-FFTs