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?
Dx = 35 m (1x)

A factor 2x in resolution roughly corresponds to a factor 10x compute

Image credit: Oliver Fuhrer, MeteoSwiss
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Dx = 70 m (10x)

A factor 2x in resolution roughly corresponds to a factor 10x compute

Image credit: Oliver Fuhrer, MeteoSwiss
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Dx = 140 m (100x)

A factor 2x in resolution roughly corresponds to a factor 10x compute

Image credit: Oliver Fuhrer, MeteoSwiss
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Dx = 280 m (1,000x)

A factor 2x in resolution roughly corresponds to a factor 10x compute

Image credit: Oliver Fuhrer, MeteoSwiss
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Dx = 550 m (10,000x)

A factor 2x in resolution roughly corresponds to a factor 10x compute

Image credit: Oliver Fuhrer, MeteoSwiss
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Dx = 1100 m (100,000x)

Operational model of MeteoSwiss today!

A factor 2x in resolution roughly corresponds to a factor 10x compute

Image credit: Oliver Fuhrer, MeteoSwiss
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Dx = 2200 m (1,000,000x)

Operational model of MeteoSwiss before 2016!

?

A factor 2x in resolution roughly corresponds to a factor 10x compute

We’re a factor of 100,000 away!

Image credit: Oliver Fuhrer, MeteoSwiss
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Changing hardware constraints and the physics of computing

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary  

[2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012

130nm

90nm

65nm

45nm

32nm

22nm
14nm

10nm

0.9 V [1]

32-bit FP ADD:  0.9 pJ

32-bit FP MUL:  3.2 pJ

2x32 bit from L1 (8 kiB):    10 pJ

2x32 bit from L2 (1 MiB):  100 pJ

2x32 bit from DRAM:         1.3 nJ

…

Three Ls of modern computing:
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Load-store vs. Dataflow architectures

Memory

Cache

RegistersControl

x=a+b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y=(a+b)*(c+d)

a b

+

x

a b c d

a+b c+d

y

Turing Award 1977 (Backus): "Surely there must be a less primitive 

way of making big changes in the store than pushing vast numbers of 

words back and forth through the von Neumann bottleneck."

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non von Neumann”)
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Single Instruction Multiple Data/Threads (SIMD - Vector CPU, SIMT - GPU)

Memory

Cache

RegistersControl

ALUALU

ALUALU

ALUALU

ALUALU

ALUALU
45nm, 0.9 V [1]

Random Access 

SRAM:

8 kiB: 10 pJ

32 kiB: 20 pJ

1 MiB: 100 pJ

Memory

+

c d ya b

+

x

a b c d

45nm, 0.9 V [1]

Single R/W registers: 

32 bit: 0.1 pJ

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary  

(High Performance) Computing really 

became a data management challenge
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But memory architectures are becoming more and more complex

CPU

L1

DDR

CPU

L1

DDR

CPU

L1

CPU

L1

DDR

CPU

L1

L2

CPU

L1

DDR

CPU

L1

L2

… CPU

L1

DDR

CPU

L1

L2

…

CPU
L1
L2

CPU
L1
L2

CPU
L1
L2

CPU
L1
L2

…

…

GDDR5 GDDR5

12Xeon Phi KNL: 3 memory models, 5 configuration modes each  15 options for configuring the system!
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▪ Performance engineering: “encompasses the set of roles, skills, activities, practices, tools, 

and deliverables applied at every phase of the systems development life cycle which 

ensures that a solution will be designed, implemented, and operationally supported to meet 

the non-functional requirements for performance (such as throughput, latency, or memory 

usage).”

▪ Manually profile codes and tune them to the given architecture

▪ Requires highly-skilled performance engineers

▪ Need familiarity with

NUMA (topology, bandwidths etc.)

Caches (associativity, sizes etc.)

Microarchitecture (number of outstanding loads etc.)

…

How do we optimize codes for these complex architectures?

13

Trust me, I’m an 

engineer!
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An engineering example – Tacoma Narrows Bridge
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Scientific Performance Engineering

1) Observe
2) Model

3) Understand
4) Build
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Part I: Observe

Measure systems

Collect data

Examine documentation

Gather statistics

Document process

Experimental design

Factorial design
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The latency of 

Piz Dora is 

1.77us!

How did you get 

this number?

I averaged 106

runs, it must be 

right!

u
s
e
c

sample

Why do you 

think so? Can I 

see the data?

Example: Simple ping-pong latency benchmark

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

~1.77us

~1.2ms
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Dealing with variation

19

The 99.9% confidence 

interval is 1.765us to 

1.775us

Did you assume 

normality?

Can we test for 

normality?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

What? Isn’t that always 

the case with many 

measurements?

Ugs, the data is not normal at 

all. The nonparametric

99.9% CI is much wider: 

1.6us to 1.9us!
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Looking at the data in detail

This CI makes 

me nervous. 

Let’s check!

Clearly, the 

mean/median are 

not sufficient!

Try quantile 

regression!

Image credit: nersc.gov

S

D
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Scientific benchmarking of parallel computing systems

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as 

well as the absolute execution performance of the base case.
Rule 2: Specify the reason for only reporting subsets of 

standard benchmarks or applications or not using all system 

resources.Rule 3: Use the arithmetic mean only for summarizing costs. 

Use the harmonic mean for summarizing rates.
Rule 4: Avoid summarizing ratios; summarize the costs or 

rates that the ratios base on instead. Only if these are not 

available use the geometric mean for summarizing ratios.
Rule 5: Report if the measurement values are deterministic. 

For nondeterministic data, report confidence intervals of the 

measurement.Rule 6: Do not assume normality of collected data (e.g., 

based on the number of samples) without diagnostic checking.
Rule 7: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.
Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

Rule 9: Document all varying factors and their levels as well 

as the complete experimental setup (e.g., software, hardware, 

techniques) to facilitate reproducibility and provide 

interpretability.

Rule 10: For parallel time measurements, report all 

measurement, (optional) synchronization, and summarization 

techniques.
Rule 11: If possible, show upper performance bounds to 

facilitate interpretability of the measured results.
Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if 

they indicate trends and the interpolation is valid.

ACM/IEEE Supercomputing 2015 (SC15)
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Simplifying Measuring and Reporting: LibSciBench

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

▪ Simple MPI-like C/C+ interface

▪ High-resolution timers

▪ Flexible data collection

▪ Controlled by environment variables

▪ Tested up to 512k ranks

▪ Parallel timer synchronization

▪ R scripts for data analysis and visualization

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/
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We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

t(n=1510)?

t(n=2100)?

Matrix Multiply

t(n) = a*n3

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11
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We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

The adjusted R2 of the model fit is 0.99

t(n=1510)=0.248s

t(n=2100)=0.667s

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11
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Part II: Model

Burnham, Anderson: “A model is a simplification or approximation of 

reality and hence will not reflect all of reality. ... Box noted that “all 

models are wrong, but some are useful.” While a model can never 

be “truth,” a model might be ranked from very useful, to useful, to 

somewhat useful to, finally, essentially useless.”

This is generally true for all kinds of modeling.

We focus on performance modeling in the following!

Model
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Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements Model
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Requirements modeling I: Six-step performance modeling

[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11

[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’10

Input 
parameters

Describe application 
kernels

Communication 
pattern

Communication / 
computation overlap

Fit sequential 
baseline

Communication 
parameters

10-20% speedup [2]


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▪ Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

▪ Idea: Automatically select best (scalability) model from predefined search space

29

Requirements modeling II: Automated best-fit modeling

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13


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c1 × p2 × log(p)

Number of 
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(model) constant

number of terms
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▪ Manual kernel selection and hypothesis generation is time consuming (and boring)

▪ Idea: Automatically select best model from predefined space

30

Requirements modeling II: Automated best-fit modeling
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[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13
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▪ Extra-P selects model based on best fit to the data

▪ What if the data is not sufficient or too noisy? 

▪ Back to first principles

▪ The source code describes all possible executions 

▪ Describing all possibilities is too expensive, focus on counting loop iterations symbolically

32

Requirements modeling III: Source-code analysis [1]

for (j = 1; j <= n; j = j*2)

for (k = j; k <= n; k = k++)

OperationInBody(j,k);

2log)1( 2  nnnN

Parallel program
Loop extraction









p

p

ND

NW
1

Requirements Models
Number of iterations

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14
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Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements ModelInput 
paramet

ers

Describe 
application 

kernels

Commu
nication 
pattern

Communicat
ion / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commu
nication 
paramet

ers

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)
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Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input 
paramet

ers

Describe 
application 

kernels

Commu
nication 
pattern

Communicat
ion / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commu
nication 
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC
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Capability models for network communication

[1]: TH, T. Schneider and A. Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, LSAP 2010, https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/

[2]: TH, T. Mehlan, A. Lumsdaine and W. Rehm: Netgauge: A Network Performance Measurement Framework, HPCC 2007, https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

The LogP model family and the LogGOPS model [1]

Finding LogGOPS parameters

Netgauge [2], model from first principles, fit to data 

using special 

kernels

Large scale LogGOPS Simulation

LogGOPSim [1], simulates LogGOPS with 10 

million MPI ranks

<5% error

Source

Dest.

o

o o

o
L L

Ping-pong in simplified LogP (g<o, P=2)

https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
https://spcl.inf.ethz.ch/Research/Performance/Netgauge/
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Capability models for cache-to-cache communication

X =

| = Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13
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Performance Modeling

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input 
paramet

ers

Describe 
application 

kernels

Commu
nication 
pattern

Communicat
ion / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commu
nication 
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Performance Model
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▪ Use models to

1. Proof optimality of real implementations

• Stop optimizing, step back to algorithm level

2. Design optimal algorithms or systems in the model

• Can lead to non-intuitive designs

▪ Proof optimality of matrix multiplication

▪ Intuition: flop rate is the bottleneck

▪ t(n) = 76ps * n3

▪ Flop rate: R = 2flop * n3/(76ps * n3) = 27.78 Gflop/s

▪ Flop peak: 3.864 GHz * 8 flops = 30.912 Gflop/s

Achieved ~90% of peak (IBM Power 7 IH @3.864GHz)

▪ Gets more complex quickly

▪ Imagine sparse matrix-vector

38

Part III: Understand

Understand

☺
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2) Design optimal algorithms – small broadcast in LogP

0 4

L=2, o=1, P=7

8 12

0

4 5

8

16 20

9

24

9 10

4

8

6

9 9

5 6 7

8

8

0

5

Binary Tree Binomial Tree

0

4

Fibonacci Tree

o

o o

o
L L

40%

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI 2015
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Design algorithms – bcast in cache-to-cache model

Tree cost

Tree depth

Reached 

threads

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

0

2

4 5 6 7

Multi-ary tree example

3 8

1

depth d = 2

k1 = 2

k2 = 3

Level size
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Measured results – small broadcast and reduction

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

Intel Xeon Phi 5110P (60 cores at 1052 MHz), Intel MPI v.4.1.4 – each operation timed separately, reporting maximum across processes

4.7x
3.3x

P=10

P=58
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Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input 
paramet

ers

Describe 
application 

kernels

Commu
nication 
pattern

Communicat
ion / 

computation 
overlap

Fit 
sequenti

al 
baseline

Commu
nication 
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC
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Part IV: Build
4) Build

▪ Enables to focus on 

essential aspects of 

a system

Abstraction is Key

▪ Observe: optimize for cost, maintain performance:

▪ router radix, number of cables, number of routers  cost

▪ number of endpoints, latency, global bandwidth  capabilities

▪ Model: system as graph

▪ Understand: degree-diameter graphs

▪ Build: Slim Fly topology

▪ Result: non-trivial topology that is 1/3rd cheaper than all existing

Case study: Network Topologies

M. Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, ACM/IEEE Supercomputing 2014, SC14
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How to continue from here?

▪ Data-centric, explicit requirements 

models

Parallel Language

▪ User-supported, compile- and run-time

Transformation System

memlets

+
operators

DCIR=

[1]: M. Besta, TH: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, ACM HPDC’15

[2]: R. Belli, TH: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

[3]: S. Di Girolamo, P. Jolivet, K. D. Underwood, TH: Exploiting Offload Enabled Network Interfaces, IEEE Micro’16

Performance-transparent Platforms

RMA foMPI-NA [2] NISA [3]HTM [1]
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@dapp.program
def gemm(A, B, C):

# local definitions

@dapp.map(_[0:M, 0:K, 0:N])
def multiplication(i, j, k):

in_A << A[i,k]
in_B << B[k,j]
out  >> tmp[i,j,k]

out = in_A * in_B

@dapp.reduce(tmp, C, axis=2)
def sum(a,b):

return a+b

DAPPy – Data-centric Parallel Programming for Python

▪ Memory access decoupled from computation

▪ Programs are composed of Tasklets and Memlets

▪ Tasklets wrapped by simple primitives: Map, Iterate, Reduce

▪ Hide communication, caching and data-movement

▪ Easy-to-integrate Python programming interface

▪ Graph-based compilation pipeline

45
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Architecture 

ExpertPerformance Engineer
Domain 

Programmer

DAPPy Compilation Infrastructure

46

@dapp.program
def program(A, B):

@dapp.map(_[0:N,0:M])
def transpose(i, j):
a << A[i,j]
b >> B[j,i]

...

dappy Program

AST Analysis

CPU Library

GPU Library

FPGA Modules

System Probe

RuntimeCode

Partitioning,

Scheduling

DAPP Framework

Specialization

Performance ModelsSubgraph Matching

Custom Patterns Custom Models

Microbenchmarks

Stateful Dataflow Graph (SDFG)
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Performance

SDFG

Naïve
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Performance

SDFG

MapReduceFusionNaïve
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Performance

SDFG

LoopReorder
MapReduceFusionNaïve
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Performance

SDFG

BlockTiling
LoopReorder
MapReduceFusionNaïve
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Performance

SDFG

RegisterTiling

BlockTiling
LoopReorder
MapReduceFusionNaïve
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Performance

SDFG

LocalStorage

RegisterTiling

BlockTiling
LoopReorder
MapReduceFusionNaïve
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Performance

SDFG

PromoteTransient

LocalStorage

RegisterTiling

BlockTiling
LoopReorder
MapReduceFusionNaïve
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Performance

Intel MKL

OpenBLAS

25% difference

DAPP
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Generated DAPP/C++ Code (Excerpt)

void _program_gemm(int sym_0, int sym_1, int sym_2, double * __restrict__ A, double * __restrict__ B, double * __restrict__ C) {
// State s0
for (int tile_k = 0; tile_k < sym_2; tile_k += 128) {

#pragma omp parallel for
for (int tile_i = 0; tile_i < sym_0; tile_i += 64) {

for (int tile_j = 0; tile_j < sym_1; tile_j += 240) {
for (int regtile_j = 0; regtile_j < (min(240, sym_1 - tile_j)); regtile_j += 12) {

vec<double, 4> local_B_s0_0[128 * 3];
Global2Stack_2D_FixedWidth<double, 4, 3>(&B[tile_k*sym_1 + (regtile_j + tile_j)], sym_1, 

local_B_s0_0, min(sym_2 - tile_k, 128));

for (int regtile_i = 0; regtile_i < (min(64, sym_0 - tile_i)); regtile_i += 4) {
vec<double, 4> regtile_C_s0_1[4 * 3];
for (int i = 0; i < 4; i += 1) {

for (int j = 0; j < 3; j += 1) {
double in_A = A[(i + regtile_i + tile_i)*sym_2 + tile_k];
vec<double, 4> in_B = local_B_s0_0[0*3 + j];
// Tasklet code (mult)
auto out = (in_A * in_B);
regtile_C_s0_1[i*3 + j] = out;

}
}
for (int k = 1; k < (min(128, sym_2 - tile_k)); k += 1) {
// ...
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Backup


