

TORSTEN HOEFLER, ROBERTO BELLI

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

presented at University of Stuttgart/HLRS, Germany

Platform for Advanced Scientific Computing Conference

_ausanne

1e 08-10 June 2016

PHYSICS COMPUTER SCIENCE & MATHER ENGINEERING EMERGING DOMAINS

CHEMISTRY & MATERIAL

SOLID EARTH

acm

Disclaimer(s)

- This is an experience talk (published at SC 15 State of the Practice)!
 - Explained in SC15 FAQ:

"generalizable insights as gained from experiences with particular HPC machines/operations/applications/benchmarks, overall analysis of the status quo of a particular metric of the entire field or historical reviews of the progress of the field."

Don't expect novel insights

I hope to communicate new knowledge nevertheless

- My musings shall not offend anybody
 - Everything is (now) anonymized
- Criticism may be rhetorically exaggerated
 - Watch for tropes!
- This talk should be entertaining!

How does Garth measure and report performance?

- We are all interested in High Performance Computing
 - We (want to) see it as a science reproducing experiments is a major pillar of the scientific method
- When measuring performance, important questions are
 - "How many iterations do I have to run per measurement?"
 - "How many measurements should I run?"
 - "Once I have all data, how do I summarize it into a single number?"
 - "How do I compare the performance of different systems?"
 - "How do I measure time in a parallel system?"

• • •

- How are they answered in the field today?
 - Let me start with a little anecdote \dots a reaction to this paper \odot

Original findings:

- If carefully tuned, NBC speeds up a 3D solver Full code published
- 800³ domain 4 GB array
 1 process per node, 8-96 nodes
 Opteron 246 (old even in 2006, retired now)
- Super-linear speedup for 96 nodes
 ~5% better than linear

9 years later: attempt to reproduce ©!

System A: 28 quad-core nodes, Xeon E5520 System B: 4 nodes, dual Opteron 6274 "Neither the experiment in A nor the one in B could reproduce the results presented in the original paper, where the usage of the NBC library resulted in a performance gain for practically all node counts, reaching a superlinear speedup for 96 cores (explained as being due to cache effects in the inner part of the matrix vector product)."

spcl.inf.ethz.ch

State of the Practice in HPC

- Stratified random sample of three top-conferences over four years
 - HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)
 - 10 random papers from each (10-50% of population)
 - 120 total papers, 20% (25) did not report performance (were excluded)

Main results:				Tot 🗸
Experimental Design 201				
 Most papers report details 	about the hardware but f	ail to describe the soft	ware environment.	
Hardware Important details for reproc	lucibility missing			
2. The average paper's resul	Its are hard to interpret ar	nd easy to question		
Measurements and data no	ot well explained			
3. No statistically significant e	evidence for improvemen	t over the years 😣		
Our main thesis:				
Performance results are oft information to allow sciention	en nearly impossible to sts to understand the e	reproduce! Thus, we xperiment, draw own	e need to provide enough conclusions, assess their	(30/95) (7/95)
Data Analycertainty, and possibly gene	eralize results.	•		
Mean ₩.				

Results This is especially important for HPC conferences and activities such as the Gordon Bell award!

Well, we all know this - but do we really know how to fix it?

This is not new – meet Eddie!

Our constructive approach: provide a set of (12) rules

Performance Results on Parallel Computers

- Attempt to emphasize interpretability of performance experiments
- The set is not complete
- Many of us quite difficu supercompu scientific pa these results
- And probably never will be Intended to serve as a solid start
- Call to the community to extend it

- I will illustrate the 12 rules now
 - Using real-world examples
 - All anonymized!
 - Garth and Eddie will represent the scientists

⁽¹⁾Department for Computer Science

Erlangen Regional Computing Center

Friedrich-Alexander-Universität Erlangen-Nürnberg

res, this is a garlic press!

The most common issue: speedup plots

Most common and oldest-known issue

- First seen 1988 also included in Bailey's 12 ways
- 39 papers reported speedups
 15 (38%) did not specify the base-performance Ø
- Recently rediscovered in the "big data" universe
 A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012
 F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

The most common issue: speedup plots

Rule 1: When publishing parallel speedup, report if the base case is a single parallel process or best serial execution, as well as the absolute execution performance of the base case.

Most comm

- A simple generalization of this rule implies that one should never report ratios without absolute values.

Garth's new compiler optimization

Charles and

The mean parts of means - or how to summarize data

Rule 3: Use the arithmetic mean only for summarizing costs. Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios; summarize the costs or rates that the ratios base on instead. Only if these are not available use the geometric mean for summarizing ratios.

Ah, true, the

- NAS LU NAS EP NAS B
- 51 papers use means to summarize data, only four (!) specify which mean was used
 - A single paper correctly specifies the use of the harmonic mean
 - Two use geometric means, without reason
 - Similar issues in other communities (PLDI, CGO, LCTES) see N. Amaral's report ine o

harmonic mean ≤ geometric mean ≤ arithmetic mean

Dealing with variation

- Most papers report nondeterministic measurement results
 - Only 15 mention some measure of variance
 - Only two (!) report confidence intervals
- Cls allow us to compute the number of required measurements!
- Can be very simple, e.g., single sentence in evaluation:

"We collected measurements until the 99% confidence interval was within 5% of our reported means."

Dealing with variation

The confidence interval is 1.745us to 1.755us

Rule 6: Do not assume normality of collected data (e.g., based on the number of samples) without diagnostic checking.

- Most events will slow down performance
 - Heavy right-tailed distributions
- The Central Limit Theorem only applies asymptotically
 - Some papers/textbook mention "30-40 samples", don't trust them!
- Two papers used CIs around the mean without testing for normality

Can we test for normality?

Dealing with non-normal data – nonparametric statistics

- Rank-based measures (no assumption about distribution)
 - Almost always better than assuming normality
- Example: median (50th percentile) vs. mean for HPL
 - Rather stable statistic for expectation
 - Other percentiles (usually 25th and 75th) are also useful

spcl.inf.ethz.ch

Comparing nondeterministic measurements

I saw variance sing GarthCC as

Rule 7: Compare nondeterministic data in a statistically sound way, e.g., using non-overlapping confidence intervals or ANOVA.

- None of the investigated papers used statistically sound comparisons
- The "effect size" can even be a stronger metric

Retract the paper! You have not shown anything!

What if the data looks weird!?

and the state of t

spcl.inf.ethz.ch

Quantile Regression

Wow, so Pilatus is better for (worstcase) latency-critical workloads even though Dora is expected to be faster

P99% Clifference to Piz Dora

 Check Oliveira et al. "Why you should care about quantile regression". SIGARCH Computer Architecture News, 2013.

How many measurements are needed?

- Measurements are expensive!
 - Yet necessary to reach certain confidence
- How to determine the minimal number of measurements?
 - Measure until the confidence interval has a certain acceptable width
 - For example, measure until the 95% CI is within 5% of the mean/median
 - Can be computed analytically assuming normal data
 - Compute iteratively for nonparametric statistics
- Often heard: "we cannot afford more than a single measurement"
 - E.g., Gordon Bell runs
 - Well, then one cannot say anything about the variance Even 3-4 measurement can provide very tight CI (assuming normality)

Experimental design

don't believe you, try other numbers of processes!

Rule 9: Document all varying factors and their levels as well as the complete experimental setup (e.g., software, hardware, techniques) to facilitate reproducibility and provide interpretability.

- We recommend factorial design
- Consider parameters such as node allocation, process-to-node mapping, network or node contention
 - If they cannot be controlled easily, use randomization and model them as random variable
- This is hard in practice and not easy to capture in rules

Summarizing times in parallel systems!

Come on, show me the data!

whiskers depict the 1.5 IO

My new reduce

Rule 10: For parallel time measurements, report all measurement, (optional) synchronization, and summarization techniques.

- Measure events separately
 - Use high-precision timers
 - Synchronize processes
- Summarize across processes:
 - Min/max (unstable), average, median depends on use-case

Give times a meaning!

I have no clue.

Rule 11: If possible, show upper performance bounds to facilitate interpretability of the measured results.

Model computer system as k-dimensional space

- Each dimension represents a capability Floating point, Integer, memory bandwidth, cache bandwidth, etc.
- k Tee Features are typical rates
- Determine maximum rate for each feature
 - E.g., from documentation or benchmarks
- Can be used to proof optimality of implementation
 - If the requirements of the bottleneck feature are minimal

- Can you provide?
- Ideal speedup
- Amdahl's speedup
- Parallel overheads

Plot as much information as possible!

My most common request was "show me the data"

Rule 12: Plot as much information as needed to interpret the experimental results. Only connect measurements by lines if they indicate trends and the interpolation is valid.

Marcales and

his is how I should have presented the Dora results.

- Performance may not be reproducible
 - At least not for some (important) results
- Interpretability fosters scientific progress
 - Enables to build on results
 - Sounds statistics is the biggest gap today
- We need to foster interpretability
 - Do it ourselves (this is not easy)
 - Teach young students
 - Maybe even enforce in TPCs
- See the 12 rules as a start
 - Need to be extended (or concretized)
 - Much is implemented in LibSciBench [1]

Acknowledgments

- ETH's mathematics department (home of R)
 - Hans Rudolf Künsch, Martin Maechler, and Robert Gantner
- Comments on early drafts
 - David H. Bailey, William T. Kramer, Matthias Hauswirth, Timothy Roscoe, Gustavo Alonso, Georg Hager, Jesper Träff, and Sascha Hunold
- Help with HPL run
 - Gilles Fourestier (CSCS) and Massimiliano Fatica (NVIDIA)

spcl.inf.ethz.ch

Backup slides