
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER, ROBERTO BELLI

Scientific Benchmarking of Parallel Computing Systems
Twelve ways to tell the masses when reporting performance results

presented at University of Stuttgart/HLRS, Germany



spcl.inf.ethz.ch

@spcl_eth

 This is an experience talk (published at SC 15 – State of the Practice)!

 Explained in SC15 FAQ: 

“generalizable insights as gained from experiences with particular HPC 

machines/operations/applications/benchmarks, overall analysis 

of the status quo of a particular metric of the entire field or 

historical reviews of the progress of the field.”

 Don’t expect novel insights

I hope to communicate new knowledge nevertheless

 My musings shall not offend anybody

 Everything is (now) anonymized

 Criticism may be rhetorically exaggerated

 Watch for tropes!

 This talk should be entertaining!
2

Disclaimer(s)



spcl.inf.ethz.ch

@spcl_eth

 We are all interested in High Performance Computing

 We (want to) see it as a science – reproducing experiments is a major pillar of the scientific method

 When measuring performance, important questions are

 “How many iterations do I have to run per measurement?”

 “How many measurements should I run?”

 “Once I have all data, how do I summarize it into a single number?”

 “How do I compare the performance of different systems?”

 “How do I measure time in a parallel system?”

 …

 How are they answered in the field today?

 Let me start with a little anecdote … a reaction to this paper 

3

How does Garth measure and report performance?



spcl.inf.ethz.ch

@spcl_eth

 Original findings:

 If carefully tuned, NBC speeds up a 3D solver

Full code published

 8003 domain – 4 GB array

1 process per node, 8-96 nodes

Opteron 246 (old even in 2006, retired now)

 Super-linear speedup for 96 nodes

~5% better than linear

 9 years later: attempt to reproduce !

System A: 28 quad-core nodes, Xeon E5520

System B: 4 nodes, dual Opteron 6274

“Neither the experiment in A nor the one in B could 

reproduce the results presented in the original paper, 

where the usage of the NBC library resulted in a 

performance gain for practically all node counts, 

reaching a superlinear speedup for 96 cores (explained 

as being due to cache effects in the inner part of the 

matrix vector product).”

4

(2006)

(2015)

A

B
1 node 

(system B)



spcl.inf.ethz.ch

@spcl_eth

 Stratified random sample of three top-conferences over four years

 HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)

 10 random papers from each (10-50% of population)

 120 total papers, 20% (25) did not report performance (were excluded)

5

State of the Practice in HPC

 Main results:

1. Most papers report details about the hardware but fail to describe the software environment.

Important details for reproducibility missing

2. The average paper’s results are hard to interpret and easy to question

Measurements and data not well explained

3. No statistically significant evidence for improvement over the years 

 Our main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough 

information to allow scientists to understand the experiment, draw own conclusions, assess their 

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!



spcl.inf.ethz.ch

@spcl_eth

Yes, this is a 

garlic press!

Well, we all know this - but do we really know how to fix it?

6

1991 – the classic!

2012 – the shocking

2013 – the extension



spcl.inf.ethz.ch

@spcl_eth

Yes, this is a 

garlic press!

This is not new – meet Eddie!

7

1991 – the classic!

2012 – the shocking

2013 – the extension

Our constructive approach: provide a set of (12) rules

 Attempt to emphasize interpretability of performance experiments

 The set is not complete

 And probably never will be

 Intended to serve as a solid start

 Call to the community to extend it

 I will illustrate the 12 rules now 

 Using real-world examples

All anonymized!

 Garth and Eddie will represent the scientists



spcl.inf.ethz.ch

@spcl_eth

8

The most common issue: speedup plots

Check out my 

wonderful 

Speedup!

I can’t tell if 

this is useful 

at all!

 Most common and oldest-known issue

 First seen 1988 – also included in Bailey’s 12 ways

 39 papers reported speedups

15 (38%) did not specify the base-performance 

 Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015



spcl.inf.ethz.ch

@spcl_eth

9

The most common issue: speedup plots

Check out my 

wonderful 

Speedup!

I can’t tell if 

this is useful 

at all!

 Most common and oldest-known issue

 First seen 1988 – also included in Bailey’s 12 ways

 39 papers reported speedups

15 (38%) did not specify the base-performance 

 Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as 

well as the absolute execution performance of the base case.

 A simple generalization of this rule implies that one should never report ratios without 

absolute values.



spcl.inf.ethz.ch

@spcl_eth

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NAS CG NAS LU NAS EP

Performance in Gflop/s

ICC LLVM GarthCC

10

Garth’s new compiler optimization

Check out my 

new compiler!

How did it 

perform for FT 

and BT?

Well, GarthCC

segfaulted for FT 

and was 20% 

slower for BT.

Rule 2: Specify the reason for only reporting subsets of 

standard benchmarks or applications or not using all system 

resources.

 This implies: Show results even if your code/approach stops scaling!



spcl.inf.ethz.ch

@spcl_eth

11

The mean parts of means – or how to summarize data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NAS CG NAS LU NAS EP NAS BT

Performance in Gflop/s

ICC GarthCC

+20% +20% +20% -20%

But GarthCC is 

10% faster than 

ICC on average!

Ugs, well, BT ran much longer 

than the others. GarthCC is 

actually 10% slower!

Ah, true, the 

geometric mean 

is 8% speedup!

You cannot use the 

arithmetic mean for 

ratios!

The geometric mean has no 

clear interpretation! What 

was the completion time of 

the whole workload?

Rule 3: Use the arithmetic mean only for summarizing costs. 

Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios; summarize the costs or 

rates that the ratios base on instead. Only if these are not 

available use the geometric mean for summarizing ratios.

 51 papers use means to summarize data, only four (!) specify which mean was used

 A single paper correctly specifies the use of the harmonic mean

 Two use geometric means, without reason

 Similar issues in other communities (PLDI, CGO, LCTES) – see N. Amaral’s report

 harmonic mean ≤ geometric mean ≤ arithmetic mean



spcl.inf.ethz.ch

@spcl_eth

12

The latency of 

Piz Dora is 

1.75us!

How did you 

get to this?

I averaged 106

tests, it must be 

right!

u
s
e
c

sample

Why do you 

think so? Can I 

see the data?

Dealing with variation

Rule 5: Report if the measurement values are deterministic. 

For nondeterministic data, report confidence intervals of the 

measurement.

 Most papers report nondeterministic measurement results

 Only 15 mention some measure of variance

 Only two (!) report confidence intervals

 CIs allow us to compute the number of required measurements!

 Can be very simple, e.g., single sentence in evaluation:

“We collected measurements until the 99% confidence interval was within 5% of our reported means.”



spcl.inf.ethz.ch

@spcl_eth

Dealing with variation

13

The confidence 

interval is 1.745us 

to 1.755us

Did you assume 

normality?

Yes, I used the central 

limit theorem to 

normalize by summing 

subsets of size 100!

Can we test for 

normality?

Ugs, the data is not 

normal at all! The real 

CI is actually 1.6us to 

1.8us!

Rule 6: Do not assume normality of collected data (e.g., 

based on the number of samples) without diagnostic checking.

 Most events will slow down performance

 Heavy right-tailed distributions

 The Central Limit Theorem only applies asymptotically

 Some papers/textbook mention “30-40 samples”, don’t trust them!

 Two papers used CIs around the mean without testing for normality



spcl.inf.ethz.ch

@spcl_eth

 Rank-based measures (no assumption about distribution)

 Almost always better than assuming normality

 Example: median (50th percentile) vs. mean for HPL

 Rather stable statistic for expectation

 Other percentiles (usually 25th and 75th) are also useful

14

Dealing with non-normal data – nonparametric statistics



spcl.inf.ethz.ch

@spcl_eth

15

Comparing nondeterministic measurements

I saw variance 

using GarthCC as 

well!

Retract the 

paper! You have 

not shown 

anything!

ICC GarthCC

E
x
e
c
u
ti
o
n
 T

im
e

20%

Show me the 

data!

95% CI

Rule 7: Compare nondeterministic data in a statistically sound

way, e.g., using non-overlapping confidence intervals or 

ANOVA.

 None of the investigated papers used statistically sound comparisons

 The “effect size” can even be a stronger metric



spcl.inf.ethz.ch

@spcl_eth

16

What if the data looks weird!?

Look what 

data I got!

Clearly, the 

mean/median are 

not sufficient!

Try quantile 

regression!



spcl.inf.ethz.ch

@spcl_eth

Quantile Regression

17

Wow, so Pilatus is better for (worst-

case) latency-critical workloads even 

though Dora is expected to be faster

Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

 Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH 

Computer Architecture News, 2013.



spcl.inf.ethz.ch

@spcl_eth

 Measurements are expensive!

 Yet necessary to reach certain confidence

 How to determine the minimal number of measurements?

 Measure until the confidence interval has a certain acceptable width

 For example, measure until the 95% CI is within 5% of the mean/median

 Can be computed analytically assuming normal data

 Compute iteratively for nonparametric statistics

 Often heard: “we cannot afford more than a single measurement”

 E.g., Gordon Bell runs

 Well, then one cannot say anything about the variance

Even 3-4 measurement can provide very tight CI (assuming normality)

18

How many measurements are needed?



spcl.inf.ethz.ch

@spcl_eth

19

Experimental design

MPI_Reduce

behaves much 

simpler!

I don’t believe you, try 

other numbers of 

processes!

Rule 9: Document all varying factors and their levels as well 

as the complete experimental setup (e.g., software, hardware, 

techniques) to facilitate reproducibility and provide 

interpretability.

 We recommend factorial design

 Consider parameters such as node allocation, process-to-node mapping, network or 

node contention

 If they cannot be controlled easily, use randomization and model them as random variable

 This is hard in practice and not easy to capture in rules 



spcl.inf.ethz.ch

@spcl_eth

20

Time in parallel systems

My simple 

broadcast takes 

only one latency!

That’s nonsense!

But I measured it 

so it must be true!

t = -MPI_Wtime();

for(i=0; i<1000; i++) {

MPI_Bcast(…);

}

t += MPI_Wtime();

t /= 1000;

…
Measure each 

operation 

separately!



spcl.inf.ethz.ch

@spcl_eth

21

Summarizing times in parallel systems!

My new reduce 

takes only 30us 

on 64 ranks.

Come on, show 

me the data!

Rule 10: For parallel time measurements, report all 

measurement, (optional) synchronization, and summarization 

techniques.

 Measure events separately

 Use high-precision timers

 Synchronize processes 

 Summarize across processes:

 Min/max (unstable), average, median – depends on use-case



spcl.inf.ethz.ch

@spcl_eth

22

Give times a meaning!

I compute 1010

digits Pi in 2ms 

on Dora!

I have no clue.

Can you provide?

- Ideal speedup 

- Amdahl’s speedup

- Parallel overheads

Ok: The code runs 

17ms on a single 

core, 0.2ms are 

initialization and it 

has one reduction!

Rule 11: If possible, show upper performance bounds to 

facilitate interpretability of the measured results.

 Model computer system as k-dimensional space

 Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.

 Features are typical rates

 Determine maximum rate for each feature

E.g., from documentation or benchmarks

 Can be used to proof optimality of implementation

 If the requirements of the bottleneck feature are minimal



spcl.inf.ethz.ch

@spcl_eth

My most common 

request was 

“show me the 

data”

23

Plot as much information as possible!

This is how I should 

have presented the 

Dora results.

Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if 

they indicate trends and the interpolation is valid.



spcl.inf.ethz.ch

@spcl_eth

Acknowledgments

 ETH’s mathematics department (home of R)

 Hans Rudolf Künsch, Martin Maechler, and Robert Gantner

 Comments on early drafts

 David H. Bailey, William T. Kramer, Matthias Hauswirth, Timothy 

Roscoe, Gustavo Alonso, Georg Hager, Jesper Träff, and Sascha

Hunold

 Help with HPL run

 Gilles Fourestier (CSCS) and Massimiliano Fatica (NVIDIA)
24

Conclusions and call for action

 Performance may not be reproducible

 At least not for some (important) results

 Interpretability fosters scientific progress

 Enables to build on results

 Sounds statistics is the biggest gap today

 We need to foster interpretability

 Do it ourselves (this is not easy)

 Teach young students

 Maybe even enforce in TPCs

 See the 12 rules as a start

 Need to be extended (or concretized)

 Much is implemented in LibSciBench [1]

No vegetables were harmed for creating these slides!

[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/.

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/


spcl.inf.ethz.ch

@spcl_eth

25

Backup slides


