Implementation and Performance Analysis of
Non-Blocking Collective Operations for MPI

Torsten Hoefler
Open Systems Laboratory
Indiana University
501 N. Morton Street
Bloomington, IN 47404 USA

htor@cs.indiana.edu

ABSTRACT

Collective operations and non-blocking point-to-point oper-
ations have always been part of MPI. Although non-blocking
collective operations are an obvious extension to MPI, there
have been no comprehensive studies of this functionality. In
this paper we present LibNBC, a portable high-performance
library for implementing non-blocking collective MPI com-
munication operations. LibNBC provides non-blocking ver-
sions of all MPI collective operations, is layered on top of
MPI-1, and is portable to nearly all parallel architectures.
To measure the performance characteristics of our imple-
mentation, we also present a microbenchmark for measuring
both latency and overlap of computation and communica-
tion. Experimental results demonstrate that the blocking
performance of the collective operations in our library is
comparable to that of collective operations in other high-
performance MPI implementations. Our library introduces
a very low overhead between the application and the un-
derlying MPI and thus, in conjunction with the potential to
overlap communication with computation, offers the poten-
tial for optimizing real-world applications.

Keywords

MPI, non-blocking communication, collective operations, non-

blocking collective operations, overlap

1. INTRODUCTION

The Message Passing Interface (MPI) standard is a widely
used programming interface for parallel high-performance
computing that includes a wide variety of point-to-point and
group communication operations. The blocking collective
operations currently defined by MPI offer a high-level inter-
face to the user, insulating the user from implementation de-
tails and giving MPI implementers the freedom to optimize
their implementations for specific architectures. That is,
although collective algorithms do not provide unique func-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SCO7 November 10-16, 2007, Reno, Nevada, USA

Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

Andrew Lumsdaine
Open Systems Laboratory
Indiana University
501 N. Morton Street
Bloomington, IN 47404 USA

lums@cs.indiana.edu

Wolfgang Rehm
Dept. of Computer Science
Chemnitz University of
Technology
Strasse der Nationen 62
Chemnitz, 09107 GERMANY
rehm@cs.tu-chemnitz.de

tionality per se (they can be implemented manually with
basic point-to-point operations), collective operations pro-
vide important advantages in programmability, safety (with
regards to programming errors) and performance.

In this respect, collective operations can be compared
to BLAS [31] operations. For example a high-level BLAS
matrix multiply (e.g., DGEMM) operation could be easily
composed of three nested loops®, but the vendor supplied
DGEMM implementation, because of special machine op-
timized tuning (e.g., cache/register optimization), usually
provides much better performance. The same principle is
used for collective operations as these operations can be op-
timized for the communication subsystem of a specific ma-
chine. Thus, many research groups have provided machine-
optimized implementations and have investigated the opti-
mal and non-trivial implementation of collective algorithms
for particular machine architectures (cf. [7, 13, 19, 34, 41,
43, 44]).

The performance portability benefits of collective oper-
ations have long been recognized and collective operations
play an important role in many applications (cf. [40]). Con-
sider for example a three-dimensional Fast Fourier Trans-
formation implemented for a central-switch-based architec-
ture (e.g., InﬁniBandTM). If the developer does not use the
MPI_Alltoall function, a fully connected send pattern (lit-
erally an all-to-all) should deliver the best performance?.
However, if this implementation were to be ported to torus-
based systems (e.g., an IBM BlueGene), the performance
of the send-pattern mentioned above would be much worse
than a torus-optimized MPI_Alltoall on that machine. How-
ever, because the collective operation interface is architec-
ture independent, using it can avoid this performance de-
crease transparently, i.e., without changes to the user appli-
cation.

A second MPI feature that plays a significant role in par-
allel programming is non-blocking point-to-point communi-
cation. These operations potentially allow communication
and computation to be overlapped and thus to leverage hard-
ware parallelism. The parallelism exists because most high-
performance interconnect networks (like InfiniBand™ [42],
Quadrics [39], Myrinet [38], Portals, or Ethernet with TOE)
have their own communication co-processors that take the

Lor lower level BLAS operations

2in fact, most MPI implementations use this communication
pattern to implement MPI_Alltoall on central-switch-based
architectures

burden of message processing of the main CPU. However,
this parallelism does not decrease the latency significantly,
and it does not show its full potential if the programmer
uses blocking send/receive. Non-blocking send /receive tech-
niques allow the programmer to leverage the CPU during
the asynchronous (and network-offloaded) message trans-
mission. Several studies showed that the performance of
parallel applications can be significantly enhanced with over-
lapping techniques (cf. [1, 3, 6, 9, 33]).

Our work investigates the possibility of combining the ad-
vantages of collective operations with overlapped commu-
nication and computation in modern communication archi-
tectures. We propose a low-overhead and portable imple-
mentation of non-blocking collective operations that hides
all the complexity of the internal implementation from the
user. A new benchmark that measures the possible overlap
of collective operations and overlap-optimized application
kernels demonstrate the potential of our implementation.
The following section will introduce the idea of non-blocking
collective operations. Section 3 describes our portable im-
plementation, followed by a microbenchmark that assess the
possible overlap and evaluates our implementation and the
underlying layers in Section 4. Application kernels are dis-
cussed in Section 5. Final conclusions and an outlook to
future work in this field are presented in the last section.

2. NON-BLOCKING COLLECTIVE OPER-
ATIONS

Non-blocking collective operations to overlap communica-
tion and computation are not directly supported by the MPI
standard. The approach (long accepted by the conventional
wisdom) to emulating this functionality is to perform the
blocking collective operation in a separate thread on the a
duplicated communicator. Unfortunately, this approach has
not been proven to be usable in practice. First, this ap-
proach would require an MPI-2 implementation that offers
full MPLLTHREAD_MULTIPLE (cp. [15]) support without a
“big lock” (the use of which would limit performance signif-
icantly). There have been few, if any, such implementations
widely available. Second, the administration of threads is a
complex task for programmers (particularly with languages
like Fortran that were not intended for systems program-
ming) and would consist of significant amounts of “boiler-
plate” code. This approach is contrary to the philosophy of
MPI which is to isolate the user from these kinds of complex-
ities. Third, the needed communicator duplication, being a
collective operation in itself, can also be very expensive. Fi-
nally, we remark that the conventional wisdom seems to be
unevenly applied. That is, absent the above objections (e.g.,
even if the administration of threads could be simplified),
one could make the argument that non-blocking point-to-
point operations could also be provided using blocking op-
erations plus threads. Yet, MPI provides a direct interface
to non-blocking point-to-point operations.

These complications have led different groups to the con-
clusion that a non-blocking interface for collective opera-
tions would be useful. The MPI Journal of Development
[36] defines so called “split collectives” that enable overlap-
ping in a very limited way. Another interface was proposed
by IBM for their parallel environment [24]. Some research
groups experimented with non-blocking collective operations
based on non-blocking point-to-point messages (e.g., [12,

1 |MPI_Request req;
int arr[100];

MPI_Ibcast (arr, 100, MPI_INT, O,

5 MPI_COMM_WORLD, &req);
/* do independent computation */
MPI_Wait (&req);

Listing 1: Non-blocking Interface to Collective Rou-
tines

28]). MPI/RT [29] also offers a non-blocking interface to
collective operations. But due to the channel semantics, this
interface is different from the MPI interface and can not be
easily adopted to existing programs. Additionally, to the
best knowledge of the authors, neither performance analy-
ses nor implementation details about overlappable collective
operations in MPI/RT have been published.

Using key ideas from these approaches we defined a stan-
dard proposal for non-blocking collective operations in [20].
For example, an MPI_lbcast is nearly identical to its block-
ing variant MP|_Bcast. Listing 1 shows an example code for
a non-blocking broadcast.

Non-blocking collectives offer the possibility of overlap-
ping communication and computation for collective oper-
ations while additionally mitigating the effects of pseudo-
synchronization. Pseudo-synchronization occurs for many
collective algorithms due to data-dependencies in the com-
munication pattern (receivers have to wait for senders). This
turns out to be a problem on large-scale machines when
the process skew between processing units becomes signif-
icant [4, 27]. Non-blocking collective operations can move
the pseudo-synchronization to the background and allow the
user application to tolerate process skew to a certain extent.
A detailed discussion of pseudo-synchronization and its ef-
fect on parallel program runs is given in [20, 21].

All those effects can benefit real-world applications. Pre-
liminary results show that non-blocking collectives are also
able to decrease the latency and bandwidth sensitivity of
some applications. A study with a 3d-Poisson solver [17]
shows that Gigabit Ethernet is able to deliver nearly the
same performance as InfiniBand™ because the algorithm
supports full overlap.

3. IMPLEMENTATION IN LIBNBC

LibNBC is written in ANSI C and is a portable imple-
mentation of our non-blocking collective proposal on top of
MPI-1 [18]. All currently implemented algorithms are op-
timized for central-switch based networks and extensively
tested with InfiniBand™ connected systems. The full im-
plementation is open source and available for public down-
load on the LibNBC website [32]. The central part of LibNBC
is the collective schedule. A schedule consists of the opera-
tions that have to be performed to accomplish the collective
task (e.g., an MPI_Isend, MPl_Irecv). The collective algo-
rithm is implemented as in the blocking case, based on point-
to-point messages. However, instead of performing all oper-
ations immediately, they are saved in the collective schedule
together with their dependencies. New algorithms can read-
ily be incorporated into LibNBC as the internal API to do
so is nearly identical to MPI. A detailed manual about the

addition of new collective algorithms and the internal and
external programming interfaces of LibNBC is available in
[18].

Data-dependencies in many collective algorithms (e.g., an
intermediate rank in a broadcast tree can not pass the data
on until it receives it) make it necessary to provide some
synchronization mechanism. Our collective schedule intro-
duces a round-based scheme, where operations of round n
can only be started if all operations of round n—1 have been
finished locally. The round based scheme is applicable to all
collective algorithms because the simplest schedule, where
all rounds consist of a single operation, exists for all algo-
rithms (equals to a blocking execution). However, the ability
to issue more than one operation per round provides an ad-
ditional level of parallelism and benefits the non-blocking
execution (i.e., it adds the ability to overlap communication
with communication as described by Bell et al. in [5]).

Each schedule is specific to each rank of a communicator
and depends on the MPI-argument set. A particular ex-
ample for the creation of a binomial tree-based MPI_Bcast
schedule is shown in Figure 1. The left side if Figure 1
shows the broadcast tree with 7 processes where the ver-
tices in the graphs denote the ranks in the communicator;
the edges stand for the send operations. The edge-numbers
indicate the virtual communication round in which the send
occurs. The pseudocode to create the schedule is shown in
the right side of Figure 1. The schedule for rank 1 consists of
three rounds. The first round contains only a single receive
(NBC_Sched_recv which represents an MPI_Irecv) and is ter-
minated with a call to NBC_Sched_barr() (which represents
an MPI_Waitall on all open requests). This means that the
second round is not started before the message is received
(necessary for correctness of the broadcast). The following
two rounds could be merged into a single round with two
sends (NBC_Sched_send which represents an MPI_lsend), but
we begin the second send after waiting for the first one to
finish to avoid network congestion. Note that a schedule
could be reused if the same collective operation with the
same arguments is issued by the user again.

5 3 3
Figure 1: Example of a schedule creation of rank 1
in a communicator with 7 processes.

Pseudocode for schedule at rank 1:
NBC_Sched_recv(buf, count, dt, 0, schedule);
NBC_Sched_barr(schedule);
NBC_Sched_send(buf, count, dt, 3, schedule);
NBC_Sched_barr(schedule);
NBC_Sched_send(buf, count, dt, 5, schedule);

To ensure cache-efficiency, a schedule is stored as a lin-
ear array in memory. Its building blocks are C structs that
represent the arguments of an operation. A send opera-
tion structure, for example, accommodates buffer pointer
(void*), count (int), datatype (MPIl_Datatype) and destina-
tion rank (int), which equals a total of 32 bytes on a typical
64 bit machine. The biggest struct, representing the exe-
cution of an MPI_Op, is 48 bytes. This design makes the
schedule-execution extremely cache-friendly and keeps the

memory overhead low. However, the schedule creation can
be expensive because of the need to use dynamically sized
contiguous arrays.

recv from 0 | end send to 3 end | sendto5

Figure 2: Schedule layout in memory.

We introduced a low overhead implementation technique
for non-blocking collective operations. The next section
presents data from a benchmark we designed to document
the benefits inherent in overlapping communication and com-
putation.

4. MEASURING THE POSSIBLE OVERLAP

We designed a microbenchmark, named NBCBench, to
measure the performance of all blocking and non-blocking
collective operations. The benchmark source code is avail-
able at the LibNBC website [32]. One important difference
of our design, compared to established benchmarks such as
the Intel (formerly Pallas) Microbenchmarks (IMB), is that
we benchmark the exact time for a single collective opera-
tion on each node. We do not measure pipelining effects as
most benchmarks do by issuing N collective operations in a
row and dividing the measured time by N. Measuring single
operations can often deliver interesting results that differ sig-
nificantly from pipelined transfers (cf. [22]). Single message
measurements require a high precision timer that is typically
offered as a platform dependent CPU instruction and a low
process skew. Our implementation uses the X856 RDTSC
[26] instruction to measure times with the accuracy of CPU-
ticks. However, the timing routine can be easily exchanged
with any other high-precision timer (e.g., MPI_Wtime). A
low inter-process skew is guaranteed by a call to MPI_Barrier
or an internal Dissemination Barrier (cf. [16]) implementa-
tion, which limits the inter-process skew to a single latency,
before every measurement.

4.1 Benchmarking MPI collective operations

The use of high-precision timers enables us to accurately
measure the node-local time of every operation. As a result,
every node measures the execution time of its part of the
collective operation. The local time to perform a collective
operation can be split up into two parts. The first part is
the synchronization time, i.e., the time a node waits until
it receives its first data element. This time depends on the
algorithm® and on the parallel skew among the processes
(e.g., if one process is delayed). The second part is the time
during which the nodes perform the actual algorithm. A
benchmark is usually only able to measure the sum of these
parts. However, our benchmark minimizes the process skew
by synchronizing all nodes with a barrier call before every
measurement. The user is free to select between MPI_Barrier
or an internal dissemination barrier implementation based
on MPI_Send/MPI_Recv that guarantees the skew will be no
more than a single point-to-point latency (cf. dissemination
barrier described in [16]) .

The benchmark performs a user-defined number of opera-
tions (default: 50) for every communicator size and message

3Nota bene: the time is zero for some operations or nodes,
e.g., all nodes in MPI_Alltoall, or the root node in MP|_Bcast.

1 |MPI_Barrier (comm) or Internal_Barrier (comm);
start_time = take_time();

MPI_Bcast(buf, count, type, root, comm);
total_time = take_time() - start_time;

Listing 2: Pseudocode for NBCBench to measure
(example MPI_Bcast)

size (also user-definable). Listing 2 shows pseudo-code for
the part of the inner loop that measures the MPI perfor-
mance of the blocking collective operations.

4.2 Benchmarking non-blocking collective op-
erations

The goal of the microbenchmark introduced in this arti-
cle is to study the overlap potential and the remaining non-
overlappable overhead of non-blocking collective operations.
In order to study and discuss these issues we first make the
distinction between network latency and CPU overhead (cf.
LogP model in [11]). Latency is the time to perform the col-
lective communication operation and overhead is the CPU
time that is needed in this process. In the case of blocking
operations, the overhead is larger than the latency because
the function may only return after the communication has
finished. Non-blocking operations allow the user to overlap
parts of the latency with independent computation (cf. Sec-
tion 1) while the overhead still accounts towards the parallel
running time. As long as independent computation can pro-
ceed, the latency is not significant for the running time of
the parallel computation because it is overlapped. However,
the overhead, because it blocks the CPU, still increases the
parallel execution time. In practice, the overhead denotes
the time that is spent in communication functions and in the
network stack of the operating system. We assume that the
full communication latency can potentially be overlapped by
the user application?.

The inner benchmark loop is similar to the loop explained
in the previous section. However, the time to issue a non-
blocking operation in a blocking manner without any overlap
(calling the initiation function and the finish function with-
out any delay between them) is benchmarked before the ac-
tual run. The measurement, presented as pseudo-code in
Listing 3, begins, like in the blocking case, with a synchro-
nization to avoid process skews larger than a single point-
to-point latency. The next operation issues a non-blocking
communication operation and measure the time of this func-
tion call that is added to the overhead later. The second op-
eration simulates the independent computation that runs at
least as long as the blocking latency measured before the ac-
tual benchmark. This computation issues several NBC_Test
calls to progress LibNBC internally® (progression strategies
are discussed later). The time to perform the test calls is
also added to the overhead. The last operation, NBC_Wait,
finishes the communication and is ideally a no-op (i.e., the

41f the time of the independent communication and the over-
head is known, it is trivial to calculate the potential overlap
for real applications, even if the full-overlap criteria is not
met.

®This is not necessary to ensure the non-blocking seman-
tics but improves the overlap, similar to calling MPI_Test on
outstanding MPI_Requests.

MPI_Barrier (comm) or Internal_Barrier (comm);
start_time = take_time();

NBC_Ibcast (buf, count, type, root, comm,

4 handle);

init_time = take_time() - start_time;
test_time = do_computation_test (duration);
before_wait = take_time();

8 | NBC_Wait (handle)

wait_time = take_time() - before_wait;
total_time = take_time() - start_time;

Listing 3:
MPI_Bcast)

Pseudocode for NBCBench (example

communication has already been finished). The time to per-
form this call is also measured seperately and added to the
overhead.

The results gathered with this benchmark can be consid-
ered a bound on the minimum possible overhead and the
maximum possible overlap.

The measurement results in a distributed two-dimensional
matrix of values. Every node has its own times for the mul-
tiple measurements. The reduction of those node-specific
results can be chosen by a command-line parameter (mini-
mum, maximum, average, median); the median will be used
for all results of this paper. The final output can either
be the reduced times of all nodes, which gets messy if the
node-number is reasonably high but it is useful to analyze
process skew introduced by the collective algorithm itself, or
the maximum time of all nodes. We chose the maximum,
because this will usually determine the parallel running time
of a load-balanced parallel application.

The possible overlap of LibNBC is highly MPI implemen-
tation and network dependent because non-blocking MPI
send /receive calls are used to perform the operations. Sev-
eral studies and benchmarks [23, 25, 30] assess the possible
overlap of non-blocking point-to-point operations for differ-
ent MPI implementations and show different results. Our
benchmark is able to measure the overlap potential and over-
head of blocking and non-blocking point-to-point as well as
blocking and non-blocking collective operations.

4.3 Experimental Setup

We conducted all benchmarks on the odin cluster sys-
tem at Indiana University. This system consists of 128 dual
Opteron 270 dual core nodes with 4 GB RAM. The nodes
are interconnected with 10 GBit/s InfiniBand™ and Giga-
bit Ethernet.

We used MVAPICH 0.9.4 [35] for the communication over
InfiniBand™ and Open MPI 1.1 [14] for the communication
over InfiniBand™ and Gigabit Ethernet (TCP). We used
LibNBC version 0.9 available at [32].

4.4 Benchmark Results

We investigated two MPI implementations, MVAPICH
and Open MPI, that are able to use InfiniBand™ to com-
municate. The left graph in Figure 3 shows the relation
between communicated datasize and the overhead for a non-
blocking all-gather on 64 nodes for LibNBC (NBC) and the
native MPI implementation (MPI) running with Open MPI
and MVAPICH on InfiniBand™. The share of the over-

lappable latency (compared to a blocking execution) using
LibNBC with the both MPI implementations is presented
in the right graph in Figure 3. Both graphs show that the
performance as well as the overlap depends heavily on the
used MPT library. A blocking execution of LibNBC, i.e.,
NBC_lallgather immediately followed by NBC_Wait, delivers
similar performance to the implementation of MPI_Allgather
in MVAPICH because it is based on a similar point-to-point
communication pattern.

Figure 4 shows comparative results between fully over-
lapped operations with LibNBC and blocking operations
with MVAPICH, which offers currently the fastest imple-
mentation of collective algorithms on InfiniBand™. Bench-
mark results for all collective operations of Open MPI with
TCP and InfiniBand™, MVAPICH, and MPICH2 can be
found on [32].

These results show that the advantage of non-blocking col-
lective operations can be quite substantial on InfiniBand™
cluster systems. This assumption can theoretically be
extended to all offloading-based interconnects. However,
the overlap potential for small messages is naturally much
lower than for large messages. This is mostly due to non-
overlappable overhead, which we discuss in the next section.
It can also be seen that some algorithms, as for example
MPI_Bcast, require further tuning to support better overlap.
This is subject of future research and can be done with the
collective schedule framework of LibNBC.

4.5 Sources of Overhead

To understand the results gathered by the microbench-
mark, we discuss the sources of overhead and the overhead
scaling with the communicator size. This overhead is the
part of the latency of a non-blocking collective operation
that is executed by the main CPU and can thus not be
overlapped. This makes the overhead-reduction one of the
most important goals in implementing a library that offers
non-blocking operations. The library can of course only use
the CPU when it gets called and overhead is spent in the ini-
tialization (e.g., NBC_lbcast), test and wait functions. Fur-
thermore, the sum of time spent in those functions is the
communication overhead.

The different parts of the overhead, named in the previous
sections, depend on many factors. All those partial costs
scale differently with communicator size and message size
and add up to the final overhead of LibNBC. The different
sources of non-overlappable overhead are:

e Schedule creation (costs to create the node-local sched-
ule). The schedule creation cost does not depend on
the message size but grows with the communicator
size.

e Copy overhead (costs for the required local copy opera-

tion from sendbuffer to receivebuffer, e.g., MPI_Alltoall).

The local copy overhead depends only on the message
size because the problem is massively parallel.

e MPI Isend/MPI_Irecv overhead (overhead of the
MPI_Isend/MPI_lrecv in the MPI library). The cost
of issuing MPI_Isends and MPI_Irecvs is determined by
both factors. The number of issued operations can de-
pend on the communicator size and data size (if seg-
menting and pipelining is used).

e MPI_Test/MPI_Wait overhead (costs to progress/finish
these operations in the MPI library). The time to is-
sue such an operation could depend on the datasize.
This is especially important for InfiniBand™ where
the registration of send and receive memory can be
expensive [37].

4.6 Different Progress Types

The current implementation of LibNBC does not offer
true asynchronous progress. The addition of a progress-
thread would be simple but would require the underly-
ing MPI implementation to be thread-safe (support of
MPI_THREAD_MULTIPLE). Most current MPI implemen-
tations do not offer this feature in a well performing way.
Thus, we did not use threads to keep LibNBC portable to
many parallel architectures and MPI libraries.

Because round-transitions in collective schedules can only
be done by LibNBC itself, it should be called periodically to
ensure the best overlap potential. NBC_Test tries to progress
all outstanding operations and starts a new round if the cur-
rently active one is finished. Besides LibNBC, the MPI li-
brary also needs to progress outstanding message transfers.
Without a separate progress thread, there is only one way
to progress an outstanding MPI operation. This is done by
giving the control to the MPI library by calling some MPI
function (e.g., MPl_Test). Most MPI implementations (e.g.
Open MPI, MVAPICH and MPICH) try to finish active re-
quests internally. NBC_Test calls MPI_Testall on all MPT re-
quests, so that NBC and MPI progress can be guaranteed.
NBC_Wait calls NBC_Test until the collective operation has
finished.

However, calling test functions introduces a constant over-
head (at least the function call and the status-check of all
requests). On one hand, progressing outstanding operations
with tests may accelerate the operation in the background,
but the constant overhead may decrease the overall perfor-
mance in case of many tests/requests.

The number of necessary tests depends mainly on the
length of outstanding requests because each NBC_Test tests
all outstanding operations to all hosts. The majority of
the overhead in NBC_Test is caused by the internal call to
MPI_Testall that is in itself highly implementation depen-
dent. It can be assumed that the cost for NBC_Test grows
linearly with the number of outstanding requests.

The overhead for a single NBC_Test for increasing commu-
nicator sizes on top of Open MPI and MVAPICH is shown
in Figure 5. The test-frequency was chosen proportional to
the data-size in this example; a NBC_Test is issued for each
2048 bytes sent/received.

S. APPLICATION RESULTS

We tested the effectiveness of overlapping communication
and computation in three situations. In the compression ap-
plication, we analyze data-gather in a pipelined fashion. We
applied similar pipelining techniques to a three-dimensional
Fourier Transformation and we optimized a conjugate gra-
dient solver with non-blocking collective operations.

5.1 Parallel Compression

Compression is widely used in the gathering and analy-
sis of scientific data. The tremendous amount of data and
computationally demanding compression algorithms (e.g.,
bzip?2 [8]) force scientists to parallelize the computation among

140000 : : :
MVAPICH/NBC ——
Open MPINBC - =
120000 1 MVAPICH/MPI -
Open MPI/MP] &
100000
s
o 80000
£
S 60000
o
40000
20000
0 Gmd——r——

0 50000 100000 150000 200000 250000 300000

Datasize (bytes)

Share of overlappable Latency

0.8
08 //
0.5

0.4 I "

SHAR

03 ¢

X
E 3

0.2

0.1 MVAPICH —— 7
Open MPI -

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

Figure 3: Left: NBC_lallgather and MPI_Allgather overhead on Open MPI 1.1 and MVAPICH 0.9.4 on 64
InfiniBandT™-connected nodes, Right: share of the overlappable latency

multiple processing units. This parallelization requires two
communication operations, the distribution of the input and
a gathering of the compressed data. Both operations are ide-
ally implemented as collective communications. We analyze
only the data gathering and apply a simple pipeline scheme
to overlap communication and computation for this prob-
lem. We gather the data with MPI_Gather for the original
blocking base-case. The non-blocking variant communicates
the first block of compressed data as soon as it is produced
with NBC_Igather in a non-blocking manner and pipelines
the communication of the remaining blocks..

Figure 6 shows the parallel speedup for a fixed problem
size of 15.25 MiB random data (the compression is very
compute-intensive, i.e., a single processor needs 2:40 min
to compress the data). All measurements have been con-
ducted on the odin cluster system with MVAPICH using
InfiniBand™and Open MPI using TCP over Gigabit Eth-
ernet. Different parameters as block size and the number of
outstanding communications have been adjusted to achieve
the best possible result (this tuning process is outside the
scope of this article). The use of non-blocking collective
operations increases the parallel speedup substantially for
both interconnects (the performance gain on InfiniBand™
is naturally smaller because the communication latency is
much lower than for Gigabit Ethernet).

5.2 Parallel Fourier Transformation

The same pipelining technique can be applied to a par-
allel three-dimensional Fourier transform. We chose a well
known scheme [2, 10] as the base case to apply our trans-
formations. This scheme transforms the data in the x and y
directions, performs a parallel transpose (MPI_Alltoall) and
finishes the transformation in the z direction. We applied
non-blocking collective operations in a pipelined manner to
the transposition. The communication of a z-plane can be
started as soon as this plane is transformed in the x and
y directions (and runs concurrently to the transformation
of the remaining planes). However, we also applied tech-
niques that coalesces multiple planes to reach a reasonable
communication data size. Figure 7 shows the results for
InfiniBand™. The results show a substantial performance
improvement for the parallel Fourier transform.

14

" MPI_Alitoall
NBC_lalltoall

12

10 ,,,,;;:,

Speedup

0 2 4 6 8 10 12 14 16
Processors

Figure 7: Speedup of a parallel 3d-FFT using
InfiniBand ™

5.3 Parallel Conjugate Gradient Solver

We showed in a former study [17] that non-blocking col-
lective operations can easily be applied to problems that
exhibit some kind of data parallelism (i.e., independent com-
putation is available). Our example application uses a con-
jugate gradient method to solve a three-dimensional poisson
equation. The problem is distributed on a 3d-domain where
the communication of the halo zones is naturally overlapped
with the computation of the inner matrix elements. The
changes to the original algorithm are trivial and the per-
formance benefits are substantial. The communication uses
MPI_Alltoallv (in lack of a collective communication opera-
tion for nearest-neighbor communication). The performance
results ars shown in Figure 8.

6. CONCLUSIONS AND FUTURE WORK

Traditionally, scientists have not been able to fully lever-
age the performance benefit of overlapping communication
and computation because MPI only supports blocking col-
lective operations. In this paper, we introduce LibNBC, a
portable high-performance library that provides non-blocking

60000 60000

MPI_Aligatherv —— MPI_Alredugd ———
NBC_lallgatherv A NBC_lallredyte
50000 50000
. 40000 & 40000
2 =]
o o /
E 30000 £ 30000
5 / I
: : ol |
20000 / 20000 I
10000 10000 l
0 0 i i i
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
Datasize (bytes) Datasize (bytes)
50000 ; r T 3500 g T
MP1_Alltoall / MP|_Bcast
45000 - NBC_ lalltoall NBC_lbcast
3000
40000 »
35000 2500
] 0
% 30000 / < 2000
£ 25000 E
= S 1500
E 20000 & /
15000 1000
10000 con e
5000 -
0 0 /
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
Datasize (bytes) Datasize (bytes)
30000 T . . 30000 | : :
MPI_Gather —— MPI_Scatter ——
NBC_Igather NBC_Iscatter
25000 25000 A
& 20000 & 20000
2 2
£ 15000 £ 15000
g / =
>]
T 10000 / T 10000
5000 / 5000
0 ¥ i i 0 e i i
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
Datasize (bytes) Datasize (bytes)

Figure 4: Overhead comparison between blocking (e.g., MPI_Allgatherv) and non-blocking (e.g., NBC lallgatherv)
implementations with overlap for different collective operations on top of MVAPICH

25000 ‘ , ‘ 20000 : : :
MVAPICH/NBGC —#+— MVAPICH/NBC ——
Open MPI/NBC 18000 Open MPI/NBC
20000 16000
— 14000
8 15000 g 12000
£ £ 10000
S 10000 S 8000
o o
6000
5000 4000 e
2000 7 -
0 0 ==
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
Datasize (bytes) Datasize (bytes)

Figure 5: NBC_Test overhead for NBC_lallgather (left) and NBC_lallreduce (right) for Open MPI and MVAPICH
on 64 InfiniBand™ nodes.

90 ‘ ‘ ‘ ‘ 90 . ; ; ;
MPI_Gather —— MPI_Gather
80 NBC_Igather / 80 - NBC_lgather
70 70
60 60
g yd g
2 50 2 50
[0 (0]
§ 40 (‘% 40
I
30 b 30 B e
L
20 > 20
10 by 10 b
e
0% 0 =
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Processors # Processors

Figure 6: Speedup of a parallel compression using InfiniBand™ (left) and Gigabit Ethernet (right).

100 | "MPI_Alltoally —+— 100 | " "MPI_Alltoally —+—
NBC_lalltoallv NBC _lalltoallv
}.
80 - 80
o v o
= = Tt
3 60 /w 3 60 T
(0] (0] /
Q el Q A
D 40 @40 o
- —
20 iy 20 /}/
¥ ,;/"
e)/‘
0 : 0 :
8 16 24 32 40 48 56 64 72 80 88 96 8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs Number of CPUs

Figure 8: Speedup of a parallel conjugate gradient using InfiniBand™ (left) and Gigabit Ethernet (right).

versions of all collective operations. Thus, for the first time,
fully portable and MPI compliant non-blocking collective
operations are available for overlapping communication and
computation.

We further designed a microbenchmark to measure the
performance of all blocking and non-blocking operations.
Overlapping communication and computation using non-
blocking collective operations has been proven to be use-
ful. We showed that the communication of large messages
on large communicators can be efficiently overlapped on
InfiniBand™ systems. Smaller messages realize a lesser
gain due to different overheads. Application results also
demonstrate the benefits of our implementation.

One promising direction for future research is the offload-
ing of the progress engine to another processing unit, such
as an intelligent network interface, network co-processor or
even a dedicated core on a multi-core CPU. Furthermore,
we will develop a parallel model to assess running time and
overlap potential of our implementation and non-blocking
collectives in general. The optimization of the implemented
algorithms in LibNBC, to ensure highest parallelism and
overlap, will also be a direction of future research.

The NBC-Library is available at:
http://www.unixer.de/NBC

Acknowledgements

Pro Siobhan. The authors want to thank Laura Hopkins
from Indiana University for editorial comments and helpful
discussions. This work was supported by a grant from the
Lilly Endowment, National Science Foundation grant EIA-
0202048 and a gift the Silicon Valley Community Foundation
on behalf of the Cisco Collaborative Research Initiative and
a grant by the Saxon Ministry of Science and the Fine Arts.

7. REFERENCES

[1] T. S. Abdelrahman and G. Liu. Overlap of
computation and communication on shared-memory
networks-of-workstations. Cluster computing, pages
35-45, 2001.

[2] A. Adelmann, W. P. P. A. Bonelli and, and C. W.
Ueberhuber. Communication efficiency of parallel 3d
ffts. In High Performance Computing for
Computational Science - VECPAR 200/, 6th
International Conference, Valencia, Spain, June
28-30, 2004, Revised Selected and Invited Papers,
volume 3402 of Lecture Notes in Computer Science,
pages 901-907. Springer, 2004.

[3] F. Baude, D. Caromel, N. Furmento, and D. Sagnol.
Optimizing metacomputing with
communication-computation overlap. In PaCT "01:
Proceedings of the 6th International Conference on
Parallel Computing Technologies, pages 190-204,
London, UK, 2001. Springer-Verlag.

[4] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan.
Operating system issues for petascale systems.
SIGOPS Operating System Review, 40(2):29-33, 2006.

[5] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.
Optimizing Bandwidth Limited Problems Using
One-Sided Communication and Overlap. In
Proceedings, 20th International Parallel and
Distributed Processing Symposium IPDPS 2006 (CAC
06), April 2006.

[6] R. Brightwell, R. Riesen, and K. D. Underwood.
Analyzing the impact of overlap, offload, and
independent progress for message passing interface
applications. Int. J. High Perform. Comput. Appl.,
19(2):103-117, 2005.

[7] E. D. Brooks. The Butterfly Barrier. International
Journal of Parallel Programming, 15(4):295-307, 1986.

[8] BZIP2. http://www.bzip.org, 2006.

[9] P.-Y. Calland, J. Dongarra, and Y. Robert. Tiling on
systems with communication/computation overlap.
Concurrency - Practice and Fxperience,
11(3):139-153, 1999.

[10] C. E. Cramer and J. A. Board. The development and
integration of a distributed 3d fft for a cluster of
workstations. In Proceedings of the 4th Annual Linuz
Showcase € Conference, Atlanta, volume 4. USENIX
Association, 2000.

[11] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: towards a realistic model of parallel
computation. In Principles Practice of Parallel
Programming, pages 1-12, 1993.

[12] A. Dubey and D. Tessera. Redistribution strategies for
portable parallel FFT: a case study. Concurrency and
Computation: Practice and Ezxperience, 13(3):209-220,
2001.

[13] L. A. Estefanel and G. Mounie. Fast Tuning of
Intra-Cluster Collective Communications. In Recent
Advances in Parallel Virtual Machine and Message
Passing Interface: 11th European PVM/MPI Users
Group Meeting Budapest, Hungary, September 19 - 22,
2004. Proceedings, 2004.

[14] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,

B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004.

[15] W. D. Gropp and R. Thakur. Issues in developing a
thread-safe mpi implementation. In B. Mohr, J. L.
Traff, J. Worringen, and J. Dongarra, editors, Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, 13th Furopean PVM/MPI User’s
Group Meeting, Bonn, Germany, September 17-20,
2006, Proceedings, volume 4192 of Lecture Notes in
Computer Science, pages 12—21. Springer, 2006.

[16] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, and
W. Rehm. A practical Approach to the Rating of
Barrier Algorithms using the LogP Model and Open
MPI. In Proceedings of the 2005 International
Conference on Parallel Processing Workshops
(ICPP’05), pages 562-569, June 2005.

[17] T. Hoefler, P. Gottschling, W. Rehm, and
A. Lumsdaine. Optimizing a Conjugate Gradient
Solver with Non-Blocking Collective Operations. In
Recent Advantages in Parallel Virtual Machine and
Message Passing Interface. 13th European PVM/MPI
User’s Group Meeting, Proceedings, LNCS 4192, pages
374-382. Springer, 9 2006.

[18] T. Hoefler and A. Lumsdaine. Design, Implementation,

(22]

29]

(30]

and Usage of LibNBC. Technical report, Open
Systems Lab, Indiana University, 08 2006.

T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. Fast
Barrier Synchronization for InfiniBand. In Proceedings,
20th International Parallel and Distributed Processing
Symposium IPDPS 2006 (CAC 06), April 2006.

T. Hoefler, J. Squyres, G. Bosilca, G. Fagg,

A. Lumsdaine, and W. Rehm. Non-Blocking Collective
Operations for MPI-2. Technical report, Open
Systems Lab, Indiana University, 08 2006.

T. Hoefler, J. Squyres, W. Rehm, and A. Lumsdaine.
A Case for Non-Blocking Collective Operations. In
Frontiers of High Performance Computing and
Networking - ISPA 2006 Workshops, volume
4331/2006, pages 155-164. Springer Berlin /
Heidelberg, 12 2006.

T. Hoefler, C. Viertel, T. Mehlan, F. Mietke, and

W. Rehm. Assessing Single-Message and Multi-Node
Communication Performance of InfiniBand. In
Proceedings of IEEE Inernational Conference on
Parallel Computing in Electrical Engineering,
PARELEC 2006, pages 227-232. IEEE Computer
Society, 9 2006.

C. lancu, P. Husbands, and P. Hargrove. Hunting the
overlap. In PACT ’05: Proceedings of the 1/th
International Conference on Parallel Architectures and
Compilation Techniques (PACT’05), pages 279-290,
Washington, DC, USA, 2005. IEEE Computer Society.
IBM. IBM Parallel

Environment for AIX, MPI Subroutine Reference, 1993.
http://publibfp.boulder.ibm.com/epubs/pdf/a2274230.pdf.
J. W. IIT and S. Bova. Where’s the Overlap? - An
Analysis of Popular MPI Implementations, 1999.

Intel Corporation. Intel Application Notes - Using the
RDTSC Instruction for Performance Monitoring.
Technical report, Intel, 1997.

K. Iskra, P. Beckman, K. Yoshii, and S. Coghlan. The
influence of operating systems on the performance of
collective operations at extreme scale. In Proceedings
of Cluster Computing, 2006 IEEE International
Conference, 2006.

L. V. Kale, S. Kumar, and K. Vardarajan. A
Framework for Collective Personalized
Communication. In Proceedings of IPDPS’03, Nice,
France, April 2003.

A. Kanevsky, A. Skjellum, and A. Rounbehler.
MPI/RT - an emerging standard for high-performance
real-time systems. In HICSS (3), pages 157-166, 1998.
W. Lawry, C. Wilson, A. B. Maccabe, and

R. Brightwell. Comb: A portable benchmark suite for
assessing mpi overlap. In 2002 IEEFE International
Conference on Cluster Computing (CLUSTER 2002),
23-26 September 2002, Chicago, IL, USA, pages
472-475. IEEE Computer Society, 2002.

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T.
Krogh. Basic Linear Algebra Subprograms for
FORTRAN usage. In In ACM Trans. Math. Soft., 5
(1979), pp. 308-328, 1979.

LibNBC. http://www.unixer.de/NBC, 2006.

G. Liu and T. Abdelrahman.
Computation-communication overlap on
network-of-workstation multiprocessors. In Proc. of

the Int’l Conference on Parallel and Distributed

Processing Techniques and Applications, pages

1635-1642, July 1998.

J. Liu, A. Mamidala, and D. Panda. Fast and Scalable

MPI-Level Broadcast using InfiniBand’s Hardware

Multicast Support. Technical report,

OSU-CISRC-10/03-TR57, 2003.

J. Liu, J. Wu, and D. K. Panda. High Performance

RDMA-Based MPI Implementation over InfiniBand.

Int’l Journal of Parallel Programming, 2004, 2004.

Message Passing Interface Forum. MPI-2 Journal of

Development, July 1997.

F. Mietke, R. Baumgartl, R. Rex, T. Mehlan,

T. Hoefler, and W. Rehm. Analysis of the Memory

Registration Process in the Mellanox InfiniBand

Software Stack. 8 2006. Accepted for publication at

Euro-Par 2006 Conference.

Myrinet. http://www.myrinet.com, 2006.

9] Quadrics. http://www.quadrics.com, 2006.

0] R. Rabenseifner. Automatic MPI Counter Profiling. In

42nd CUG Conference, 2000.

M. L. Scott and J. M. Mellor-Crummey. Fast,

contention-free combining tree barriers for

shared-memory multiprocessors. Int. J. Parallel

Program., 22(4):449-481, 1994.

M. Technologies. Infiniband - industry standard data

center fabric is ready for prime time. Mellanox White

Papers, December 2005.

S. S. Vadhiyar, G. E. Fagg, and J. Dongarra.

Automatically tuned collective communications. In

Supercomputing ’00: Proceedings of the 2000

ACM/IEEE conference on Supercomputing

(CDROM), page 3, Washington, DC, USA, 2000.

IEEE Computer Society.

[44] W. Yu, D. Buntinas, R. L. Graham, and D. K. Panda.
Efficient and scalable barrier over quadrics and
myrinet with a new nic-based collective message
passing protocol. In 18th International Parallel and
Distributed Processing Symposium (IPDPS 2004),
CD-ROM / Abstracts Proceedings, 26-30 April 2004,
Santa Fe, New Mexico, USA, 2004.

