BLUE WATERS SUSTAINED PETASCALE COMPUTING

Characterizing the Influence of System Noise on Large-Scale Applications by Simulation Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

System Noise – Introduction and History

- CPUs are time-shared
 - Deamons, interrupts, etc. steal cycles
 - No problem for single-core performance
 - Maximum seen: 0.26%, average: 0.05% overhead
 - "Resonance" at large scale (Petrini et al '03)
- Numerous studies
 - Theoretical (Agarwal'05, Tsafrir'05, Seelam'10)
 - Injection (Beckman'06, Ferreira'08)
 - Simulation (Sottile'04)

Measuring OS Noise on a Single Core

- Selfish Detour Benchmark (Beckman et al.)
 - Tight execution loop, benchmark iteration time
 - Record each outlier in iteration time
 - Improved detour (~30% better resolution)
- Detour implemented in Netgauge benchmark tool
 - Also FWQ, FTQ (not used in this work)
 - Available at: http://www.unixer.de/Netgauge

- 2152 Opteron cores, 11.2 Tflop/s Linux 2.6.18
- Resolution: 3.74 ns, noise overhead: 0.21%

- Altix 4700, 2048 Itanium II cores, 13.1 Tflop/s, Linux 2.6.16
- Resolution: 25.1 ns, noise overhead: 0.05%

- 164k PPC 450 cores, 485.6 Tflop/s, ZeptoOS 2.6.19.2
- Resolution: 29.1 ns, noise overhead: 0.08%

Measurement Results – Cray XT-4 (Jaguar)

- 150k Opteron cores, 1.38 Pflop/s, Linux 2.6.16 CNL
- Resolution: 32.9 ns, noise overhead: 0.02%

An Analytical Model for Noise Propagation

- Synchronization propagates or absorbs noise
 - Lamport's happens-before-relation for messages
 - Depends on relative time of send/recv (or wait)
- Several protocol-specific details
 - Small (eager), large (rendezvous), and nonblocking
- LogP model to express communication
 - Several missing pieces
 - LogGPS model (Ino et al.) captures most effects!
 - We added "O" to capture s/r overhead per byte

Collective Operations

- MPI-2.2: "[...] a collective communication call may, or may not, have the effect of synchronizing all calling processes. This statement excludes, of course, the barrier function."
- Main weaknesses in theoretical models:
 - Assumption 1: All collective operations synchronize
 - In fact, many do not (e.g., Bcast, Scan, Reduce, ...)
 - Assumption 2: Collectives synchronize instantaneously
 - In fact, they (most likely) communicate with messages
 - Assumption 3: All processes leave collective simultaneously
 - In fact, they leave as early as possible (when data is consistent)

Example: Binomial Broadcast Tree

- Violates all three assumptions:
 - No global or instant synchronization, asynchronous exit

Process 4 is delayed

Noise propagates "wildly" (of course deterministic)

LogGOPS Simulation Framework

- Detailed analytical modeling is hard!
- Model-based (LogGOPS) simulator
 - Available at: http://www.unixer.de/LogGOPSim
 - Discrete-event simulation of MPI traces (<2% error) or collective operations (<1% error)
 - > 10⁶ events per second!
- Allows for trace-based noise injection
 - In o_s, o_r, O, local reduction, and application time
- Validation
 - Simulations reproduce measurements by Beckman and Ferreira well!
- Details: Hoefler et al. LogGOPSim Simulating Large-Scale Applications in the LogGOPS Model (Workshop on Large-Scale System and Application Performance, Best Paper)

• 1 Byte, Dissemination, regular noise, 1000 Hz, 100 µs

Single Byte Dissemination on Jaguar

Single Byte Dissemination on ZeptoOS

1MiB Messages on Jaguar

Does the Network Speed Matter?

Observation: noise bottleneck independent of network speed

Distribution of Collective Operations

POP (Collective and Point-to-Point)

Influence of Network Speed on Applications

- Modeling OS noise is not that simple
 - Will validate used models with simulation
- Model-based simulation approach scales well
 - Results match previous benchmark studies (<6% error)
- Overhead depends on noise *shape* rather than *intensity*
 - ZeptoOS shows nearly no propagation! (0.08% overhead)
 - Cray XT is severely impacted! (0.02% overhead)
- Noise bottleneck is serious at scale!
 - Faster network or CPU cannot help, noise will dominate!
- We developed a tool-chain to adjust the bottleneck
 - Available online: http://www.unixer.de/LogGOPSim

Collaborators, Acknowledgments & Support

- Co-Authors:
 - Timo Schneider, Andrew Lumsdaine Ψ
- Thanks to (alphabetically)
 - Franck Cappello, Steven Gottlieb, William Gropp, William Kramer, and Marc Snir
- Sponsored by

INDIANA UNIVERSITY

PERVASIVE TECHNOLOGY INSTITUTE