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Abstract

The impact of operating system noise on the performance

of large-scale applications is a growing concern and amelio-

rating the effects of OS noise is a subject of active research.

A related problem is that of network noise, which arises

from shared use of an interconnection network by parallel

processes. To characterize the impact of network noise on

parallel applications we conducted a series of simulations

and experiments using a newly-developed benchmark. Ex-

periment results show a decrease in the communication

performance of a parallel reduction operation by a factor

of two on 246 nodes. In addition, simulations show that

influence of network noise grows with the system size.

Although network noise is not as well-studied as OS noise,

our results clearly show that it is an important factor that

must be considered when running large-scale applications.

1. Introduction

The influence of external effects to the performance of

large-scale parallel application has attracted recent inter-

est [1], [2], [3], [4], [5], [6]. Even though such effects

usually impose a relatively small overhead to applications

when run at smaller scales, they can become problematic

at larger scale. For example a single context switch every

second is very unlikely to cause a measurable perturbation to

a small-scale application run. However, it was shown before

that such small periodic events can significantly perturb

large-scale applications, if they resonate with synchroniza-

tion (often caused by communication). Such effects can be

multiplied by global (collective) communication operations.

Most existing studies focus on perturbations on the host

side, i.e., operating system (OS) noise. Such perturbations

are caused by resource-sharing between the application

process and entities that belong to the computing platform

(e.g., OS, daemons, monitoring processes). Host-side delays

are caused by such things as hardware interrupts, translation

lookaside buffer (TLB) misses, context switches or cache

misses—all of which result from time-sharing the main

CPU among different processes. Due to the serial nature

and obvious source of such overheads, there are some

obvious approaches to minimize their influence, such as
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Figure 1. Different Sources of Noise

the use of low-noise operating systems specialized for high

performance computing (HPC) (such as Catamount [7] or

Blue Gene Linux [8]).

In addition to OS noise, network noise, can also affect

parallel application performance. Just as processes sharing

a computing resource can interfere with each other, parallel

processes sharing an interconnection network can interfere

with each other. The way that network noise manifests

itself in an application, i.e., delay in effective message

transmission, is also similar to OS noise. Figure 1 compares

the influence of network noise and OS noise in a parallel

application with four processes. The arrows represent com-

munication, green areas show computation, and the red areas

represent overhead caused due to OS or network noise. Time

is indicated by horizontal dashed lines.

In the noiseless case every process does some computation

for one time slice, then all processes exchange data in a tree

based manner with rank 1 as the root. This process sends

data to rank 2 and 3. All data transmissions have a latency

of two time slices in our example. Between two consecutive

transmissions there is always a gap of unit of time. This gap

models the senders host overhead. In Figure 1(b) rank 2 can

not progress and send data to rank 4 after it received the

message from rank 1 because it is interrupted by OS noise

for 2 time units. So both, rank 2 as well as rank 4 finish

2 slices later as in the noiseless case. Figure 1(c) shows

an demonstrates network noise: the data transfer from rank

1 to rank 2 is slowed down by congestion in the network,

because of this the latency doubles. As a result rank 2 and

4 receive their data two time slices later as in the noiseless

case.

Other effects, such as the resonance mentioned may also



amplify the effects network noise, but require complex in-

teractions of different communications. Similar to OS noise,

network noise can be absorbed in synchronization times

or can accumulate in communication algorithms. Section 3

discusses absorption and accumulation of network noise in

detail.

While OS noise can be modelled with statistical meth-

ods [1], [3] or signal processing methods [9], modelling

network noise is much harder. Common sources of network

noise are other applications that share the network, file I/O

operations or monitoring activities. The network topology

and the network routing plays also a very important role in

this context and makes a precise prediction or modelling of

the perturbation hard.

We designed a microbenchmark in order to assess the

influence of other applications to specific communication

patterns. Section 2 describes the benchmark and presents

results for several systems. Section 3 describes a simulation

methodology to assess the influence of network noise to

existing large-scale networks. Section 4 describes a way

to artificially generate future large-scale networks based

on current established design principles and assess their

properties with regards to network noise.

1.1. Related Work

Petrini et. al found in [6] that frequent short noise intervals

together with a synchronizing collective operation such as

Allreduce can cause a dramatic performance loss at large

scale. In this particular case, the performance loss was

caused by the resonance between the fine-grained OS noise

and the synchronizing global communication.

Several studies, such as [1], [2], [3], [4], [5], [10] bench-

mark, model and quantify the impact of OS noise to parallel

applications. However, those studies fully ignore the network

as a source of additional noise.

Braccini et. al [11] examine the effect of network load

on the bandwidth of point-to-point TCP/IP connections by

inducing load on the data link layer in small Ethernet net-

works. In [12] demonstrated the sensibility of applications

performance to bandwidth and latency at scale by changing

the link speed of the used InfiniBand network.

Badia et. al [13] model the performance of parallel MPI

applications based on MPI traces. The used network model

considers a varying traffic function which influences the

transmission speed. The model for collective operations

assumes that all networking resources are busy during the

whole transmission which does not apply to some collective

algorithm, such as binary or binomial trees.

Sottile et. al [14] also model the performance of parallel

applications based on MPI message traces. Sottile et al.

recognize the effect of network noise and use a simple

statistical model to assess the variation in latency and

bandwidth. The applied model for collective communication,

which assumes log2(P ) message transmissions models the

worst case. Our work extends this model to fully simulate

collective algorithms and the influence of the interconnection

topology of variable-sized networks. We did not choose

the tracing approach in order to analyze communication

algorithms at variable scale.

Mraz showed in [15] that operating system noise can

cause delays for global communication patterns. He uses a

ring pattern which represents the worst case in this spectrum.

Mraz concludes that the observed delays result from either

other processes or interrupt processing without considering

variances in the network transmission.

In a previous work [16], we investigated the influence of

static routing and congestion to large scale networks. This

analysis only considered congestion in a given allocation

without external influence or perturbations or dependencies

between messages in collective operations. In this work,

we extend the model to give a more accurate dependency-

based prediction of the running time of collective operations.

We also analyze the effects of perturbations from other

applications in the network.

2. Design of a Microbenchmark

We describe a microbenchmark scheme to measure the

influence of network noise to a parallel application. For this,

we assume that other communications (either from other

applications, I/O or monitoring) is the biggest source of

network noise on parallel systems. The only way to prevent

application noise on parallel systems is either to allocate

the whole system or a separate partition which is not used

by other jobs. While partitioning is simple for some network

topologies such as three dimensional tori (allocate a partition

in the network which is not crossed by other processes), it

can be very tricky for topologies like Fat Trees that use a

common “backplane”. Thus, we assume that it’s unlikely to

get a separate, noise-less partition for our benchmark and

that we have to accept the usual background network noise.

The same applies to OS noise such that the benchmark has

to be tolerant to OS noise too.

As an example, we investigate MPI collective operations

which play a critical role for many large-scale applications.

POP [17], CTH [18] and SAGE [19] rely on global allre-

ductions which are, by definition, synchronization points.

It has been shown [2] that those applications are heavily

influenced by OS noise. Based on those results and the appli-

cation study in [20], we investigate the collective operations

MPI Allreduce, MPI Reduce and MPI Bcast without the
loss of generality. For our studies, we assume the com-

munication of small data because large-scale applications

commonly communicate very small number of elements.

POP for example relies on a global eight-byte reduction

operation.



Since we can not guarantee a noise-free system during the

run, we choose a pro-active approach which generates noise

on top of the “background noise”. For this, we assume that

the background noise follows a normal distribution during

the run of the benchmark which enables us to consider the

differences to our artificially generated noise (perturbation).

Our benchmark simulates an MPI application, repre-

sented only by its communication, and a background

noise pattern. To do this, we split the full allocation

(MPI COMM WORLD) into two independent communi-

cators, the application communicator and the perturbation

communicator. The ratio between the size of the applica-

tion communicator and the perturbation communicator is

called “perturbation ratio” in the following. The selection

of MPI COMM WORLD ranks for each communicator is

completely randomized. New communicators with random

subsets of nodes from MPI COMM WORLD are generated

for each benchmark.

The communicators are “warmed up” (cf. Gropp’s com-

ments on correct benchmarking [21]) before each use. The

benchmark uses the collective benchmarking principles and

the synchronization scheme proposed in [22]. Each bench-

mark run starts with a global synchronization, then all nodes

in the perturbation communicator start to communicate

with a random large-message perturbation pattern. Now, the

independent application communicator benchmarks the time

to perform a specific communication (in our case a collective

MPI operation). Then, in a second step, the benchmark of

the collective operation is repeated without the perturbing

communication. This procedure is repeated multiple times

with different communicators and perturbation ratios and

analyzed statistically to show the influence of network noise.

The benchmark is schematically shown in Figure 2.

2.1. Benchmark Results

We implemented our benchmark scheme in the open-

source tool Netgauge [23] and ran several mid-scale tests

on the CHiC cluster system. The CHiC system has 528

quad-core nodes connected with a full bisection bandwidth

SDR InfiniBand Fat Tree network with 24 port switches.

All benchmarks were done with Open MPI 1.2.8 and one

process per node to keep the impact of OS noise mini-

mal. We also performed runs with multiple processes per

node, which are omitted due to space restrictions, that

showed much higher perturbations. Figure 3 shows a detailed

statistical analysis of the effect of a random perturbation

communication to a variable size allreduction. We used a

fixed allocation of 32 nodes for this benchmark and varied

the number of nodes which took part in the allreduce

operation from 2 to 32, as shown on the x axis. All the

other nodes induced background noise in the network. The

boxplot shows the distribution of single measurements for

the perturbed and nonperturbed run. The sudden jump at 16
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nodes seems to indicate a protocol or algorithm change in

the collective implementation. For this graph the benchmark

shown in Figure 2 was run 128 times for each communicator

size. The black bars in the middle of each box represent

the sample median, while the upper and lower end of the

box indicates the 25th and 75th percentile. The whiskers

represent the total range of the sample. The notches in the

middle of the boxes indicate if two samples show statistically

significant difference—if the do not overlap the samples are

different with a 95% confidence [24].

Figure 4 shows the relative slowdown caused by per-

turbation. The perturbation ratio is changed during the

benchmark. We performed 128 measurements and used the

average value to plot the data point. The points have a

high variance due to other jobs on the system and the

relatively small set of the random mapping. However, the

results indicate a clear trend that is shown as the linear least

squares fit plotted in the diagram. We see that the impact to
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the communication performance is significant even though

the perturbation communication and the collective operation

run in different non-overlapping communicators.

Figure 5 shows the scaling of MPI Allreduce with a fixed

perturbation ratio of 0.5. As expected, the impact of network

noise grows with the number of communicating nodes.

The benchmarks show a perturbation of the communica-

tion even at a smaller scale. However, getting the necessary

allocations to analyze large-scale networks is often not possi-

ble or too expensive. Thus, we designed a simulation scheme

to model the effects of network noise to communication

patterns at large-scale machines. We discuss our model and

the simulation in the next section.

3. Simulating Network Noise

We propose a simple dependency-based simulation

scheme to assess the influence of network noise to com-
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Figure 5. Slowdown with increasing Communicator
Size and a fixed Perturbation Ratio of 0.5

plex application communication patterns. Communication

patterns usually consist of point-to-point messages and de-

pendencies between them. For example a small-message

broadcast operation is often implemented with a binomial

tree. Such an algorithm usually consists of multiple rounds

where each non-root and non-leaf node has to receive data

and pass this data on to its children. A broadcast tree

for 8 processes with 3 communication rounds is shown in

Figure 6. This scheme allows the construction of a global
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Figure 6. Binomial Tree Pattern

dependence graph in which the send operations of all nodes

but the root process depend on a previous receive (from a

previous communication round).

Our simulation considers an application communicator

of size x and a perturbation communicator of size y. The

communication in the application communicator is modeled

as a collective operation that consists of multiple rounds.

The perturbation communicator is modeled with random

communication (each process picks a random peer to send

data to, so that each process is receiving from exactly one

peer) for each round of the application communicator. The

simulation performs the routing of all messages (application

and perturbation) through the network and counts the con-

gestion of each physical link. Each edge in the dependence



graph is then annotated with the maximum congestion along

the corresponding logical link in the network simulation.

Then, a breadth first search is started at every root node

and the longest path in the dependence graph is reported as

the time for this collective operation (we assume that the

finishing time of the last process of the collective operation

is significant). The simulation is performed twice and the

result without perturbation is compared with the simulation

result with perturbation. Figure 7 visualizes one run of the

simulation of the third round in the eight-node binomial tree

communication pattern on a 16 node fat tree built from 4x4

port crossbars. The rank-to-node mapping is {(0,3), (1,6),
(2,5), (3,13), (4,7), (5,9), (6,0), (7,10)} and all other hosts

communicate randomly. The pattern itself is congestion-free
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Figure 7. Simulation Example. The output ports of the switches
are annotated with the target routes and the connecting cables
are annotated with the number of virtual connections. The ranks in
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for this particular mapping, i.e., congestion only happens due

to perturbation. The tree in Figure 6 is already annotated

with the congestion of all links in the tree rounds. The

BFS search will find the longest path 0-1-3-7 with a total

congestion of 5. The congestion of the unperturbed run (3

in this example) will be subtracted in the simulation.

We model the whole communication and all dependencies.

Thus, our model also captures the effect of noise absorption

and accumulation as described in [25], [26]. Both effects

happen in our example, the congestion in round 3 between

rank 0 and 4 is absorbed (in the BFS) while the congestion

between rank 0 and 1 in round 1 and node 3 and 7 in round

3 accumulate.

3.1. Simulating Real-World Installations

In order to assess the influence of network noise to large-

scale installations, we used InfiniBand network maps (gen-

erated from ibnetdiscover and ibdiagnet output)

of large real-world systems. We investigate several sev-

eral large-scale cluster systems. The “Thunderbird” (TBird)

system is the largest installation with 4391 nodes. The

second largest system, the “Ranger” system at the Texas

Advanced Computing Center is connected with two 3456

port Sun Magnum switches and had a total of 3908 active

endpoints during the query. The third largest system in our

simulation, the Atlas system at the Lawrence Livermore

National Lab, had 1142 nodes when the network structure

was queried. The “CHiC” system at the Technical University

of Chemnitz had 566 endpoints during the query and “Odin”

at Indiana University has 128 nodes. All networks are

based on Fat Tree topologies [27] with 24 port crossbars.

Thunderbird is designed with half bisection bandwidth and

all other systems should deliver full bisection bandwidth.

We showed in [16] that the effective bisection bandwidth

of the systems is significantly lower with 40.6%, 57.6%

and 55.6% for Thunderbird, Ranger and Atlas. We used our

network simulator [28] for those simulations, as well as for

the simulations in this paper.

Figure 8 shows the average results of 1000 simulation runs

of the tree pattern, which is typically used for small mes-

sage reductions and broadcasts, for the analyzed systems.

We see clearly that the effect of network noise increases
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Figure 8. Simulated Networks with Tree Pattern

significantly with the network size and with the perturbation

ratio. Our simulations also exhibit similar scaling behavior

as the benchmark results in Section 2.1. However, different

architectural properties of the real-world networks (e.g.,

CHiC is not a pure Fat Tree or TBird has only half bisection

bandwidth) prohibits general statements about the scaling

with network size. To be able to make such statements, we

generate and analyze Fat Tree networks of different sizes

and similar properties (full bisection bandwidth) in the next

section.



4. Large-Scale Fat Tree Networks

In order to simulate future large-scale networks and eval-

uate the scaling with the system size, we decided to extend

our study to large artificially generated Fat Tree networks.

We used the recursive method described in [29] to generate

extended generalized Fat Trees (XGFTs). An extended gen-

eralized fat tree XGFT(h, m1, ..., mh, w1, ...wh) of height

h is generated in h recursion steps. In each step s, the

XGFT(s, m1, ..., mh, w1, ...wh) is built by ms copies of

XGFT(s−1, m1, ..., mh, w1, ...wh) and w1 · · ·ws additional

new top-level nodes. Exact construction and wiring rules can

be found in [29] and are omitted due to space restrictions.

All generated trees are built from 24-port switches and

are designed to have full bisection bandwidth. The generated

Fat Tree topologies are shown in Table 1. Figure 9 shows

Layout # Endpoints # Switches

xgft(2,12,6) 144 18

xgft(2,24,12) 288 36

xgft(3,12,8,12,4) 1152 240

xgft(3,12,16,12,8) 2304 480

xgft(3,12,24,12,12) 3456 720

xgft(4,12,12,6,12,12,3) 10368 3024

xgft(4,12,12,12,12,12,6) 20736 6048

Table 1. The simulated Fat Tree networks.

an XGFT(2, 12, 6) with 12 leaf switches and 144 ports.

We used the Fat Tree optimized routing of OpenSM [30]

Figure 9. An XGFT(2, 12, 6) network

together with ibsim to generate realistic routes for the

networks.

4.1. Simulation Results

We analyze the influence of network noise with growing

network sizes and a fixed perturbation ratio of 0.5. Fig-
ure 10 shows the simulated influence of network noise to

application runs on half of the nodes of Fat Tree networks

while the other half communicates randomly. Our simulation

results resemble the trend in the benchmark results from

Section 2.1—the CHiC simulation in this graph predicts

the same behaviour as the linear fitting of the measurement

results for MPI Reduce in Figure 4.

5. Conclusions and Future Work

We showed that network noise can have a significant im-

pact on the performance of large-scale parallel applications.
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Figure 10. Slowdown with increasing Communicator

Size and a fixed Perturbation Ratio of 0.5

Thus, network noise should be considered in addition to

OS noise when analyzing large-scale application runs. The

main factors that influence network noise are the network

type and routing scheme and the node allocation policy. Our

random allocation strategy resembles the average case for all

mappings. Based on our results, we argue that batch systems

for large-scale machines must be aware of these issues and

allocate intelligently in order to minimize network noise.

Interesting future directions are the analysis of the effects

of network noise on different topologies and mappings of

real-world machines and applications. This directly leads

to the idea to design noise-minimizing topology-dependent

communication algorithms which could be used in collective

operations. We also plan to improve the simulation accuracy,

which currently bases in distinct communication rounds to

a more precise (and more resource-intensive) LogGP-based

model.
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