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Abstract. Designing and tuning parallel applications with MPI, par-
ticularly at large scale, requires understanding the performance impli-
cations of different choices of algorithms and implementation options.
Which algorithm is better depends in part on the performance of the
different possible communication approaches, which in turn can depend
on both the system hardware and the MPI implementation. In the ab-
sence of detailed performance models for different MPI implementations,
application developers often must select methods and tune codes without
the means to realistically estimate the achievable performance and ratio-
nally defend their choices. In this paper, we advocate the construction
of more useful performance models that take into account limitations on
network-injection rates and effective bisection bandwidth. Since collec-
tive communication plays a crucial role in enabling scalability, we also
provide analytical models for scalability of collective communication al-
gorithms, such as broadcast, allreduce, and all-to-all. We apply these
models to an IBM Blue Gene/P system and compare the analytical per-
formance estimates with experimentally measured values.

1 Motivation

Performance modeling of parallel applications leads to an understanding of their
running time on parallel systems. To develop a model for an existing application
or algorithm, one typically constructs a dependency graph of computations and
communications from the start of the algorithm (input) to the end of the algo-
rithm (output). This application model can then be matched to a machine model
in order to estimate the run time of the algorithm on a particular architecture.

Performance models can be used to make important early decisions about
algorithmic choices. For example, to compute a three-dimensional Fast Fourier
Transformation (3d FFT), one can either use a one-dimensional decomposition
where each process computes full planes (2d FFTs) or a two-dimensional decom-
position where each process computes sets of pencils (1d FFTs). If we assume



an N3 box and P processes, the 1d decomposition only requires a single par-
allel transpose (alltoall) and enables the use of more efficient 2d FFT library
calls (for example, FFTW) but is limited in scalability to P ≤ N . A 2d de-
composition scales up to P ≤ N2 processes but requires higher implementation
effort and two parallel transpose operations going on in parallel on subsets of
the processes [6]. Thus, the best choice of distribution mostly depends on the
communication parameters and the number of processes.

Application designers typically have a basic understanding and expectation
of the performance of some operations on which they base their algorithmic deci-
sions. For example, most application developers would assume that transmitting
a message of size S has linear costs in S and that broadcasting a small mes-
sage to P processes would take logarithmic time in P . Such simple assumptions
of performance models, or general folklore, often guide application models and
algorithm development.

One problem with this approach is that inaccuracies in the model often do
not influence the medium-scale runs in which they are verified but have signifi-
cant impact as the parameters (S or P ) grow large. One particular example is
that several application models assume that broadcast or allreduce scale with
Θ(S log(P )) (e.g., [3, 17]) while, as demonstrated in Section 4, a good MPI im-
plementation would implement a broadcast or allreduce with Θ(S + log(P ))
[5,13,21]. Generally speaking, performance models for middleware libraries such
as MPI depend on the parameters of the network (e.g., bandwidth, latency,
topology, routing) and the implemented algorithms (e.g., collective algorithms,
eager and rendezvous protocols) and are thus hard to generalize.

In this paper, we advocate the importance of communication models for MPI
implementations at large scale. We contend that such models should be supplied
by each MPI implementation to allow users to reason about the performance. We
sketch a hierarchical method to derive communication models of different accu-
racies so that an implementer can trade off the effort to derive such a model with
the accuracy of the model. We provide guidance for MPI modeling by demon-
strating that simple asymptotic models can be very helpful in understanding
the communication complexity of a parallel application. We also mention some
pitfalls in modeling MPI implementations.

2 Previous Work and a General Approach to Modeling

Designing a performance model for MPI communication is a complex task. Nu-
merous works exist that model the performance of a particular MPI implemen-
tation on a particular system [1, 15, 16, 19, 20]. Other works focus on modeling
particular aspects of MPI, such as collective communication [11, 15, 18].

Those works show that accurate models are only possible in very limited
cases and require high effort. Handling the whole spectrum, even for a partic-
ular MPI implementation on one particular system, is very challenging. In the
extreme case, such a model would require the user to consider all parameters
of a parallel application run that are (intentionally) outside the scope of MPI
(e.g., process-to-node mappings or contention caused by traffic from other jobs).



However, many of those parameters may have little influence on a useful model
and might thus be abstracted out. In this work, we build upon common mod-
eling methodologies from previous work and design a hierarchy of models that
allows one to trade-off design effort for accuracy. Our work is intended to en-
courage and guide MPI implementers to specify performance characteristics of
each implementation. Below we present different approaches at different levels
of detail.

Asymptotic Model A useful first approximation of communication perfor-
mance is to give the asymptotic time complexity of the communication op-
erations. We use the standard O, Θ, and o notation for asymptotic models.
Asymptotic models can often be deduced with relativey little effort and allow
assumptions about the general scalability, but do not allow for absolute state-
ments because the constants remain unspecified. For example, an MPI imple-
mentation could state that the implemented broadcast scales with TBC(S, P ) =
Θ(S + log(P )).

Dominant term exact model Sometimes it might be possible (or desirable) to
indicate that the significant terms are known, while lower-order terms are either
not known or do not play a role asymptotically. An optimal broadcast algorithm
that fully exploits the bandwidth of the underlying (strong) interconnect could
thus be specified as having running time TBC(S, P ) = Θ(log(P )) + βS [13]
in contrast to merely efficient broadcast algorithms with the same asymptotic
performance TBC(S, P ) = Θ(S+log(P )), but in reality behaving as TBC(S, P ) =
Θ(log(P )) + 2βS [5].

Bounded (Parametrized) Model It is often possible to specify some of the
constants for the asymptotic model and thus allow absolute statements. Such
constants often depend on many parameters, and it might be infeasible to specify
all of them (e.g., process-to-node mapping or contention). Thus, we propose to
specify parameterized upper and lower bounds (e.g., for the worst-possible and
best-possible mappings) for those costs. Such models allow the user to make
absolute statements about parallel algorithms under worst and best conditions.
For example, Equation (2) gives such an estimate for point-to-point messages
under congestion.

Exact (Parametrized) Model It might be possible to define exact models
for operations in some specified settings (for example, dedicated network links).
This is the most accurate technique in our hierarchy and most convenient for
the application developer. For example, the cost of a barrier on a BlueGene/P
(BG/P) is TBAR = 0.95µs [7], independent of P .

Parameter Ranges Implementations might adapt the communication algorithms
based on the input parameters. For example, point-to-point communications are
often implemented with two protocols, eager and rendezvous, depending on the



size of the message. Implementers can simply specify different models for different
parameter regions as shown in Equation (1).

In the remainder of the paper, we discuss a modeling strategy for point-
to-point operations (Section 3) and collective operations (Section 4). We show
common pitfalls that are often ignored and demonstrate their influence in prac-
tice. We focus on developing guidelines for modeling, similar to the guidelines
for performance measurement in [8]. To illustrate the techniques and to demon-
strate the importance of certain aspects of modeling, we use a BG/P system
as an example where we find it helpful. However, we do not specify a complete
communication model for BG/P.

3 The Deficiency of Current Point-to-Point Models

The asymptotic model for point-to-point communication is typically T (S) =
Θ(S). A good parametrized model could be the LogGP model [2]. The simpler
latency-bandwidth model T = α + Sβ is covered by setting g = 0, β = G to
the time to transmit a single byte, and α = L + 2o to the start-up overhead.
Those models are well understood and thus not further discussed. Figure 1(a)
shows an example for an accurate congestion-free point-to-point communication
on BG/P. The simple point-to-point model would have three components (we
use a piecewise linear latency-bandwidth model):

T (S) =











4.5µs+ 2.67ns/B · S : S ≤ 256B

5.7µs+ 2.67ns/B · S : 256B < S ≤ 1024B

9.8µs+ 2.67ns/B · S : 1024B < S

(1)

However, for modeling real applications such models suffer from the following
shortcomings:

Overlap and Progress A point-to-point model should cover the ability of the MPI
library to overlap computation and communication. The LogGP model provides
the parameter o to model the per-message overhead; however, this might not be
sufficient if the overhead grows with the message size. An additional parameter,
for example, O for the overhead per byte, could be introduced to capture those
effects [15]. Such a model and its derivation are well understood, and we omit
details for brevity.
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Fig. 1. Example Models for Latency and Datatypes on BlueGene/P.



Synchronization For some applications, it is important to know about the syn-
chronization properties of messages. MPI implementations typically use receiver
buffering for small messages and, for large messages, a rendezvous protocol that
delays the sender until the receiver is ready. This effect can be modeled easily
and is covered by the parameter S in the LogGPS model [12].

Datatypes MPI offers a rich set of primitives to define derived datatypes for
sending and receiving messages. As these datatypes can reach high complex-
ities, the time to gather all the data from memory can vary significantly for
different datatypes. Figure 1(b) shows the influence of the stride in a simple vec-
tor datatype when sending 16 kiB MPI CHAR data. The contiguous case takes
53µs, while a stride of 1 increases the latency to 1292µs due to the ≈ 214 memory
accesses. The memory hierarchy in modern computer systems makes modeling
datatypes complex; however, one can often provide a worst case that is bound
by the slowest memory. In our example, the worst-case (2090µs) is reached at a
stride of 128 when the buffer exceeds the L3 cache on BG/P.
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Fig. 2. Example Models for Matching and Congestion on BlueGene/P.

Matching Queue Length The length of the matching queue can dramatically in-
fluence performance as shown in Figure 2(a). We represent the worst-case over-
head of a matching queue with R outstanding messages on BG/P as Tmatch(R) ≤
100ns ·R. A simple 27-point stencil would cause a traversal of an average of 13
requests, adding Tmatch(13) = 1.3µs to the latency before the right message is
matched.

Topology (Mapping) The network topology and the process-to-node mapping
is also of crucial importance [4]. Information about topology and potentially
the mapping is needed for an accurate point-to-point model. For a torus, for
example, one could simply multiply the latency with the number of hops. We
note that L in the LogP model, by definition, represents the upper bound (i.e.,
the maximum latency between any two endpoints).



Congestion Point-to-point models often ignore network congestion, which might
be problematic for certain communication patterns. Even networks with full
bisection bandwidth are not free of congestion [10]. One way to model congestion
would be to define the effective bisection bandwidth (formally defined in [10]) as
upper bound for 1/G.

It is now clear that Equation (1) represents the ideal case: free of congestion,
minimal queue lengths, consecutive memory accesses, and an optimal mapping.
We will now present an example model for congestion in the general case. First,
since we know the upper bound to the bandwidth (Equation (1)), we derive the
lower bound, that is, the maximum congestion possible. For this purpose, we
assume a cubic allocation on a 3-d torus (k-ary 3-cube) network of size Nx =
Ny = Nz = k, and (ideal) adaptive routing along shortest paths. Per convention,
nodes are identified by three digits ranging from 0 . . . k−1. In order to cause the
maximum congestion in the network, we choose pairs with maximum distance.
In a k-ary 3-cube, the maximum distance between two nodes is d3 = 3 · ⌊k/2⌋.
We assume that each node can inject into all of its six links simultaneously
and present the following simple argument: Each node injects six packet streams
along the shortest paths to a node at distance d3 (such a pattern can be generated
by connecting each node at coordinate xyz with another node at distance ⌊k/2⌋
in each dimension). Since each stream occupies d3 links, a total of 6 ·k3 ·d3 = 9k4

links would be needed for a congestion-free routing (WLOG, we assume that k
is even). Now, we assume that the traffic is spread evenly across the 6 · k3 total
(unidirectional) links in the steady state of our ideal adaptive routing. This
results in a congestion of 3/2k = O( 3

√
P ) per link. Thus, the model presented in

Equation (1) must be corrected to reflect congestion on P processes, for example
for S > 1024B:

9.8µs+ 2.67ns/B · S ≤ T (S, P ) < 9.8µs+ 2.67ns/B · S · 3/2 3
√
P (2)

Upper and lower bounds for the other characteristics can be derived simi-
larly. It is sometimes important to determine the average case congestion/band-
width, for example, to estimate the scalability of pseudo-random communication
patterns as found in many parallel graph computations. The effective bisection
bandwidth [10] is a good average-case metric and can be measured by bench-
marking a huge number of bisection communications between random subsets of
processes. Figure 2(b) shows the effective bisection bandwidth as benchmarked
on BG/P. The figure also shows the bandwidth bound for the worst-case map-
ping (2/3 −3

√
P · 374.5MiB/s) assuming ideal routing.

4 Performance Models for Collective Communication

Models for collective communication are of crucial importance for analyzing the
scalability of parallel applications. Collective models are often simpler to use
than accurate point-to-point models because the algorithms are fixed. Thus, pa-
rameters such as topology, synchronization, congestion, and the matching queue



can usually be hidden from the user. Asymptotic bounds can often be derived
easily from the implementation. A “high quality” MPI implementation should
make such statements.

More accurate parametrized models can be specified with a simple extension
of point-to-point models as proposed by Xu [22]. Here, one would simply model
all parameters, such as L and G in the simplified model, as dependent on the
number of processes in the collective and the operation type. An all-to-all com-
munication could be expressed as Ta2a = α(P )+S ·β(P ). In a network with full
effective bisection bandwidth, one could set β(P ) = G. Startup overheads in α
would likely scale linearly in P (α = Ω(P )) for larger messages. However, such
models that allow arbitrary functions as parameters in the general case (even
tables) are often hard to use to analyze scaling in practice.

Another good method for modeling collective algorithms that build upon
point-to-point methods is to construct the model from point-to-point models [9,
11,18]. Note that we do not prescribe a specific model rather than a methodology
to design such models. Some special networks or topologies might require the
addition of terms to describe certain effects (e.g., contention in a torus network).
If significant effects are too complex to describe in such a model (e.g., process-to-
node mappings) then the upper and lower bounds (best and worst case) should
be given.

Process-to-Node Mapping The process-to-node mapping often plays a role in
the performance of collective communication. For instance, the performance of
rooted collectives, such as broadcast, can depend on the position of the root
and the network topology. This is especially important for multi-core systems.
Also, on BG/P the performance varies by the type of allocation. For example,
for broadcast, performance was degraded to half for non-cubic allocations.

Datatypes A similar discussion as for point-to-point models applies.
Let us discuss three example models for MPI Bcast, MPI Allreduce, and MPI -

Alltoall on BG/P. We do this by comparing theoretical bounds based on first
principles gathered from the documentation [7] with benchmarked performance
on MPI COMM WORLD on full allocations. Models for collective communica-
tions on other communicators and non-cubic allocations could be derived with a
similar method. All benchmarks used the synchronous BG/P hardware barrier
to start the operation on all processes, measured the time for a single execution,
and report the average time.

Small Data First, we look at operations with a single integer (8 bytes), where
the specialized collective network is used. The bandwidth of the collective net-
work is 824 MiB/s [7]. IBM, however, did not release latency numbers for this
network; thus, we resort to numerical methods for deriving a model.

For the broadcast time, we assume TBC(P, 8) = αT + βBC
T log2(P ) for the

collective tree network. αT models the startup overhead and βT models the cost
(latency) per stage of the tree. With a small broadcast on two processes, we
determined αT = 13µs and βBC

T = 0.31µs from a large run with P = 32, 000.
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Fig. 3. Small data (8 Byte process) and large data (960 MiB) scaling for different
collective operations.

For allreduce, we used a similar model and determined βSUM
T = 0.37µs (the

difference of 60ns is most likely caused by the higher overhead of the Integer
sum): TARE(P, 8) = αSUM

T + βSUM
T log2(P ). We found that for P ≤ 4, 096,

the time is a constant 17.77µs, which seems to indicate some other constant
overhead in the implementation that probably overlaps with the communication
in the tree network.

For alltoall, the implementation simply sends to all peer processes [7]; thus,
we assume TA2A(P, 8) = α + g(P − 1). As noted in Section 3, α = L + 2o,
and we determined g = 0.84µs for P = 32, 000. The model functions and the
measurement results are shown in Figure 3(a) as points and lines, respectively.

Large Data For the large-data collectives, we communicated the maximum
possible buffer size of 960MiB on BG/P (for alltoall, 960MiB/P per process).

Large-data broadcasts use all six links of the Torus network and the deposit-
bit feature for communication. The maximum effective bandwidth would be 6 ·
374.5MiB/s = 2247MiB/s and is shown as a line in Figure 3(b). The broadcast
would need at least TBC(P, 8) to reach all endpoints. We thus extend our broad-
cast model with a bandwidth term: TBC(P, S) = αT +βBC

T log2(P )+ 2.67
6

ns/B ·S.
Large allreduces use the same message pattern as broadcast, but each stage

is slower because of the reduction operation. An experiment showed that the
allreduces takes TARE(P, 9.6 · 108) = 2.68 · TBC(P, 9.6 · 108).

Let us now recapitulate an argument for the best-case alltoall bandwidth
assuming ideal adaptive routing. As stated before, alltoall is implemented by
simply sending from all processes to all other processes (in some order). We thus
assume that all messages hit the network at the same time and are either limited
by the injection at the endpoints or by the congestion in the network. Lam et al.
showed bounds for one- and two-dimensional tori in [14]. We model the time with
LogGP: TA2A = (P − 1)g+SG ·max{P−1

6 , C(P )} and a congestion factor C(P )
(we assume g > o WLOG). For alltoall, we assume that all messages contribute
to the worst-case congestion in the network. On a k3 grid (for odd k, WLOG),
those messages occupy different numbers of links, depending on their Euclidean

distance, with a maximum of d3 = 3(k−1)
2 . Let d = d1 = k−1

2 , then the total



number of occupied links is

N(k) ≤ k3 · 2
d

∑

x=0

2

d
∑

y=0

2

d
∑

z=0

(x+ y + z) = k312d (d+ 1)
3
= O(k7).

With a total of 6k3 links in the torus, the congestion per link (assuming ideal
routing) C(k) ≤ N(k)/6k3 = 2d(d + 1)3 = O(k4) and with k3 = P , C(P ) ≤
3
√
P (

3
√

P/2 + 1)3 = O(P 3
√
P ). Thus the lower bound for a bandwidth-bound

alltoall on a torus would be:

TA2A ≥ g(P − 1) + SG
3
√
P (

3
√

P/2 + 1)3.

Figure 3(b) shows the bound and benchmark results for alltoall. This analysis
indicates that potential for further optimization exists in BG/P’s alltoall im-
plementation. Faraj et al. suggest that increasing the number of FIFOs would
mitigate the problem [7].

5 Summary and Conclusions

In this work, we describe the importance of analytic performance models for
MPI implementations. Such models and their accuracy become more important
in the context of algorithm and application design and validation on very large
(petascale or exascale) systems. We argue that MPI implementers should supply
analytic models with an MPI library in order to allow users to make algorithmic
decisions and analyze scalability.

We described a hierarchy of modeling approaches that allow the designer
to trade accuracy against effort, and we argue that asymptotic models would
already provide important hints to application developers. We demonstrate how
simple performance models can be developed, discuss common pitfalls, and show
how to address those issues with examples on the BG/P architecture.

Performance is the main motivator for parallelization, and thus, performance
modeling is most important in the context of MPI. Our work motivates a dis-
cussion of performance models in the MPI community and provides some initial
guidance towards more useful modeling for MPI.

Acknowledgments This work was supported in part by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under contract DE-AC02-
06CH11357 and DE-FG02-08ER25835, and by the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award number OCI 07-25070)
and the state of Illinois.

References

1. Al-Tawil, K., Moritz, C.A.: Performance modeling and evaluation of MPI. Journal of
Parallel and Distributed Computing 61(2), 202–223 (2001)

2. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.J.: LogGP: Incorporating long
messages into the LogP model for parallel computation. Journal of Parallel and Distributed
Computing 44(1), 71–79 (1997)



3. Barker, K.J., Davis, K., Kerbyson, D.J.: Performance modeling in action: Performance
prediction of a Cray XT4 system during upgrade. In: Proceedings of the 2009 IEEE Intl.
Symp. on Parallel&Distributed Processing. pp. 1–8 (2009)
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