
MPI-3 Coll Workgroup

Status Report to the MPI Forum

presented by: T. Hoefler

edited by: J. L. Traeff, C. Siebert and A. Lumsdaine

July 1st 2008
Menlo Park, CA

07/01/08 MPI-3 Collectives Working Group 2

Overview of our Efforts

0) clarify threading issues

1) sparse collective operations

2) non-blocking collectives

3) persistent collectives

4) communication plans

5) some smaller MPI-2.2 issues

07/01/08 MPI-3 Collectives Working Group 3

Can threads replace non-blocking colls?

"If you got plenty of threads, you don't need asynch. collectives"

✔ we don't talk about asynch collectives (there is not much

asynchronity in MPI)

✔ some systems don't support threads

✔ do we expect the user to implement a thread pool (high effort)?

Should he spawn a new thread for every collective (slow)?

✔ some languages don't support threads well

✔ polling vs. interrupts? All high-performance networks use

polling today – this would hopelessly overload any system.

✔ is threading still an option then?

07/01/08 MPI-3 Collectives Working Group 4

Threads vs. Colls - Experiments

used system: Coyote@LANL, Dual Socket, 1 Core

➢ EuroPVM'07: ”A case for standard non-blocking collective

operations”

➢ Cluster'08: ”Message progression in parallel computing – to thread

or not to thread?”

07/01/08 MPI-3 Collectives Working Group 5

High-level Interface Decisions

Option 1: ”One call fits all”
✗ 16 additional function calls

✗ all information (sparse, non-blocking, persistent) encoded

in parameters

Option 2: ”Calls for everything”
✗ 16 * 2 (non-blocking) * 2 (persistent) * 2 (sparse) = 128

additional function calls

✗ all information (sparse, non-blocking, persistent) encoded

in symbols

07/01/08 MPI-3 Collectives Working Group 6

Differences?

✗ implementation costs are similar

(branches vs. calls to backend functions)

✗Option 2 would enable better support for

subsetting

✗pro/con? – see next slides

07/01/08 MPI-3 Collectives Working Group 7

1) One call fits all

Pro:
✗ less function calls to standardize

✗ matching is clearly defined

Con:
✗ users expect the similar calls to match (prevents different

algorithms)

✗ against MPI philosophy (there are n different send calls)

✗ higher complexity for beginners

✗ many branches and parameter checks necessary

07/01/08 MPI-3 Collectives Working Group 8

2) Calls for everything

Pro:
✗ easier for beginners (just ignore parts if not needed)

✗ enables easy definition of matching rules (e.g., none)

✗ less branches and parameter checks in the functions

Con:
✗ many (128) function calls

07/01/08 MPI-3 Collectives Working Group 9

Example for Option 1

MPI_Bcast_init(buffer, count, datatype

root, group, info, comm, request)

New Arguments:

✗ group – the sparse group to broadcast to

✗ info – an Info object (see next slide)

✗ request – the request for the persistent communication

07/01/08 MPI-3 Collectives Working Group 10

The Info Object

hints/assertions to the implementation

(preliminary):
✗ enforce (init call is collective, enforce schedule optimization)

✗ nonblocking (optimize for overlap)

✗ blocking (collective is used in blocking mode)

✗ reuse (similar arguments will be reused later – cache hint)

✗ previous (look for similar arguments in the cache)

07/01/08 MPI-3 Collectives Working Group 11

Examples for Option 2

✗ MPI_Bcast(<bcast-args>)

✗ MPI_Bcast_init(<bcast-args>, request)

✗ MPI_Nbcast(<bcast-args>, request)

✗ MPI_Nbcast_init(<bcast-args>, request)

✗ MPI_Bcast_sparse(<bcast-args>, group-or-comm)

✗ MPI_Nbcast_sparse(<bcast-args>, group-or-comm)

✗ MPI_Bcast_sparse_init(<bcast-args>, group-or-comm, request)

✗ MPI_Nbcast_sparse_init(<bcast-args>, group-or-comm, request)

(<bcast-args> ::= buffer, count, datatype, root, comm)

07/01/08 MPI-3 Collectives Working Group 12

Isn't that all fun?

✗ obviously, this is all too much

✗ we need only things that are useful, why not:
✗ omit some combinations, e.g., Nbcast_sparse (user would *have*

to use persistent to get non-blocking sparse colls)?

(-> reduction by a constant)

✗ abandon a parameter completely, e.g., don't do persistent colls

(-> reduction by a factor of two)

✗ abandon a parameter and replace it with a more generic

technique? (see MPI plans on next slides)

(-> reduction by factor of two)

07/01/08 MPI-3 Collectives Working Group 13

MPI Plans

✗ represent arbitrary communication schedules

✗ a similar technique is used in LibNBC and has been

proven to work (fast and easy to use)

✗ MPI_Plan_{send,recv,init,reduce,serialize,free} to build

process-local communication schedules

✗ MPI_Start() to start them (similar to persistent requests)

✗ -> could replace all (non-blocking) collectives, but ...

07/01/08 MPI-3 Collectives Working Group 14

MPI Plans - Pro/Con

Pro:
✗ less function calls to standardize

✗ highest flexibility

✗ easy to implement

Con:
✗ no (easy) collective hardware optimization possible

✗ less knowledge/abstraction for MPI implementors

✗ complicated for users (need to build own algorithms)

07/01/08 MPI-3 Collectives Working Group 15

But Plans have Potential

✗ could be used to implement libraries (LibNBC is the best

example)

✗ can replace part of the collective (and reduce the

implementation space), e.g.:

✗ sparse collectives could be expressed as plans

✗ persistent collectives (?)

✗ homework needs to be done ...

07/01/08 MPI-3 Collectives Working Group 16

Sparse/Topological Collectives

✗ Option 1: use information attached to topological

communicator
✗ MPI_Neighbor_xchg(<buffer-args>, topocomm)

✗ Option 2: use process groups for sparse collectives
✗ MPI_Bcast_sparse(<bcast-args>, group)

✗ MPI_Exchange(<buffer-args>, sendgroup, recvgroup)
 (each process sends to sendgroup and receives from recvgroup)

07/01/08 MPI-3 Collectives Working Group 17

Option 1: Topological Collectives

Pro:
✗ works with arbitrary neighbor relations and has optimization

potential (cf. ”Sparse Non-Blocking Collectives in Quantum Mechanical Calculations” to appear in EuroPVM/MPI'08)

✗ enables schedule optimization during comm creation

✗ encourages process remapping

Con:
✗ more complicated to use (need to create graph communicator)

✗ dense graphs would be not scalable (are they needed?)

07/01/08 MPI-3 Collectives Working Group 18

Option 2: Sparse Collectives

Pro:
✗ simple to use

✗ groups can be derived from topocomms (via helper functions)

Con:
✗ need to create/store/evaluate groups for/in every call

✗ not scalable for dense (large) communications

07/01/08 MPI-3 Collectives Working Group 19

Some MPI-2.2 Issues

1) Local reduction operations:
✗ MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op)

✗ reduces inbuf and inoutbuf locally into inoutbuf as if both buffers

were contributions to MPI_Reduce() from two different processes in

a communicator

✗ useful for library implementation (libraries can not access user-

defined operations registered with MPI_Op_create())

✗ LibNBC needs it right now

✗ implementation/testing effort is low

07/01/08 MPI-3 Collectives Working Group 20

Some MPI-2.2 Issues

2) Local progression function:
✗ MPI_Progress()

✗ gives control to the MPI library to make progress

✗ is commonly emulated ”dirty” with MPI_Iprobe() (e.g., in LibNBC)

✗ makes (pseudo) asynchronous progress possible

✗ implementation/testing effort is low

07/01/08 MPI-3 Collectives Working Group 21

Some MPI-2.2 Issues

3) Request completion callback
●MPI_register_cb(req, event, fn, userdata)

●event = {START, QUERY, COMPLETE, FREE}

●used for all MPI_Requests

●easy to implement (at least in OMPI ;))

●gives more progression options to the user

●would enable efficient LibNBC progression

07/01/08 MPI-3 Collectives Working Group 22

Some MPI-2.2 Issues

4) Partial pack/unpack:
✗ modify MPI_{Pack,Unpack} to allow (un)packing parts of buffers

✗ simplifies library implementations (e.g., LibNBC can run out of

resources if large 1-element data is sent because it packs it)

✗ necessary to deal with very large datatypes

07/01/08 MPI-3 Collectives Working Group 23

More Comments/Input?

Any items from the floor?

General comments to the WG?

Directional decisions?

How's the MPI-3 process? Should we go off

and write formal proposals?

