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Cloud and HPC Networks Converge

Cloud Al as a gravity well — HPC will follow
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Hyperscale Data Cente
and High-Performance
Computing Networks

Torsten Hoefler, ETH Zurich

Ariel Hendel, Scala Computing

Duncan Roweth, Hewlett Packard Enterprise

We discuss the differences and commonalities between
network technologies used in supercomputers and data
centers and outline a path to convergence at multiple
layers. We predict that emerging smart networking
solutions will accelerate that convergence.

IEEE Computer, June 2022 (10.1109/MC.2022.3158437)

Design and Deployment
=  One-off vs. incremental
» Proprietary networks vs. Ethernet

v Al supercomputers in the cloud
Operations philosophy

= Run-to-completion jobs vs. high-reliability services
» Checkpoint/restart vs. replicated instances

v’ Large-scale training in the cloud

Service diversity

= Parallel jobs vs. opaque VM servers + microservices

Q
» Single context vs. QoS
v" Most will be Al-driven — serve LLMs )M)
Protocol stacks and layers
= Proprietary vs. task-adapted flow control
» Simple protocols vs. multi-traffic protocols
» Lossless vs. lossy

Utilization and applications

= High peak low noise vs. low peak high noise

» High bandwidth low latency vs. normal bandwidth high latency
v Al demands highest bandwidths and reasonable latency
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Some Cloud-HPC networks are well on their way to convergence
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ABSTRACT

Cloud computing represents an appealing opportunity for cost-
effective deployment of HPC workloads on the best-fitting hard-
ware. However, although cloud and on-premise HPC systems offer
similar computational resources, their network architecture and
performance may differ significantly. For example, these systems
use fundamentally different network transport and routing pro-
tocols, which may introduce network noise that can eventually
limit the application scaling. This work analyzes network perfor-
mance, scalability, and cost of running HPC workloads on cloud
systems. First, we consider latency, bandwidth, and collective com-
munication patterns in detailed small-scale measurements, and
then we simulate network performance at a larger scale. We vali-
date our approach on four popular cloud providers and three on-
premise HPC systems, showing that network (and also OS) noise
can significantly impact performance and cost both at small and
large scale. The full paper of this abstract can be found at
https://doi.org/10.1145/3570609.

ACM Reference Format:

Daniele De Sensi, Tiziano De Matteis, Konstantin Taranov, Salvatore Di
Girolamo, Tobias Rahn, and Torsten Hoefler. 2023. Noise in the Clouds:
Influence of Network Performance Variability on Application Scalability.
In Abstract Proceedings of the 2023 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS 23
Abstracts), June 19-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3578338.3593555

1 INTRODUCTION

factors can contribute to increase network latency, decrease net-
work bandwidth, and increase network noise [1] (i.e., performance
variability induced by the use of the network). This limits the scal-
ability and tampers cost-effectiveness. Although HPC applications
can scale up to 42 million cores [4] on on-premise HPC systems, it
is still unclear how far HPC applications could scale on the cloud.

In this work, we focused on network performance and noise,
assessing the impact on performance, scalability, and cost of tightly-
coupled HPC communication patterns at scale. In this extended
abstract we only summarize the main findings. Interested readers
can find the full paper at https://doi.org/10.1145/3570609.

2 NETWORK PERFORMANCE

We measured network latency and bandwidth by running a 1-byte
and a 16MiB ping-pong respectively. We performed our analysis
on the four main cloud providers (AWS, Azure, GCP, and Oracle),
and three on-premise HPC systems (Alps, Daint, DEEP-EST).

Observation 1: On AWS and GCP, the peak bandwidth on a
single connection is 50Gb/s and 30Gb/s respectively. A bandwidth
of 80Gb/s can only be reached by forcing messages to be con-
currently sent/received by/from multiple processes on different
connections.

Observation 2: Azure and Oracle achieve network latency
and bandwdith comparable to that of on-premise HPC systems.
On the other hand, GCP and AWS achieve 25% lower bandwidth
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DanieLe De Sensi*, Tiziano De MaTTels, KONSTANTIN TARANOV, SALVATORE Di GIROLAMO, ToBias RAHN, TORSTEN HOEFLER
Noise in the Clouds: Influence of Network
Performance Variability on Application Scalability
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YouTube

youtube.com/@spcl
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[1] De Sensi et al.: “Noise in the Clouds: Influence of Network Performance Variability on Application Scalability”, SIGMETRICS’23
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What about Cloud-Al networks? The 101 of Al communication patterns ...
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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(Network and memory) bandwidth is the new oil in Al supercomputing

= Memory bandwidth can be satisfied using HBM3 and friends SK hynix to Supply Industry’s First
. . . . HBM3 DRAM to NVIDIA
= Technologies are quickly becoming available
June 8, 2022 in( f (¥ %

= Network bandwidth is more complex and requires full-system

Conventional HPC topologies are unaffordable for Al bandwidths!

accelerators and 1.6T
= Al
640x would cost S680M!
= Google TPUV2 (21): 1T AO®

= AWS Trainium (‘21): 1.6T
= DGX-2 (A100, ‘21): 4.8TAfislands of NVLINK)
= Tesla Dojo (‘22): 128T -> Broadcom TH5 / NVIDIA Spectrum 4: 51.2T

= Performance models indicate even higher demands
= Massive transformer EDAGs have really bad cuts

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346) 7
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Co-designing an Al supercomputer with unprecedented and cheap bandwidth
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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A bandwidth-cost-flexibility tradeoffs

Global Topology HammingMesh
(e.g., Fat Tree) (many configurations)
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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HammingMesh cost vs. bandwidth — simulated using SST (0.6M core hours)

Large Cluster (16,000 accelerators)
Topology

nonbl. FT
50% tap. FT
75% tap. FT
Dragonfly
2D HyperX®
Hx2Mesh
Hx4Mesh
21, torus

Single switch per

row/column

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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Practical usage — topology mapping and fault tolerance

0 1 2 3 16171819

= Mapping logical job topologies
= 1D, 2D - obvious
= 34 dimension map onto switches

4 5 6 7 20212223

8 9 1011 2425 {26 =27

12131415 28293031

physical Hx2Mesh

" Fault-tolerance e () 1-3:3x3; 4-5:2x3, 6-7:1x3,

= Nodes may fail x: 8-9:1x2, 10-19:1x1

=  We fail the whole board

Remaining nodes run single-node jobs im:mé i immmé L1112 a2 2 4]
\/ [ 3 3 3 5 4 5 6 4]
= Simple greedy allocation scheme | " "3x3job { i § i 2 Z 2 2 ;}
= Some added tricks (details in paper) } x [ 9 10 11 7 12 13 8]
e aalla s [ 9 14 15 16 17 18 19]

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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Alibaba’s ML-as-a-service (MLaaS) cluster

Experimental workloads with 6,742 GPUs workload trace
2 100 1
= Efficiency of the greedy allocation scheme S g0- Original Alibaba
= And all tricks E \ \
S 60
- e.g., 39% of the boards are allocated
c o jobs of less than oards
S 40+ to jobs of less than 100 board Sampled
5
S 20 A
10 10?2 103
Job size — Cumulative Distribution Function (CDF)
B greedy Bl greedy + transpose + aspect B greedy + transpose + aspect + sort

I greedy + transpose EEm greedy + transpose + aspect + locality Bl greedy + transpose + aspect + sort + locality

N\, N\, N\, N\,
© O O 0 0 O
S - 8 Q
c . B
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o A A
h A A A A
E 80 - A 99%i|e\\ 4
g A z$ A A
w
@ 70 -
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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Alibaba’s ML-as-a-service (MLaaS) cluster

Experimental workloads with 6,742 GPUs workload trace
§ 100

= Efficiency of the greedy allocation scheme S g0- Original Alibaba

* Now with random failures! ?g 50 \
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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Alltoall results

AllToAll - Small Topologies (~ 1 000 nodes)

15001 nonblocking 2D HyperX
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1250 -
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— 1000+ fat tree 50% (1004 Gbls at

4MiB)
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o ®
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@ L ]
e Hx2Mesh
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32B 128B 512B 2KB 8KB 32KB 128KB 512KB
Message Size

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346) 15
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Allreduce results

= Allreduce algorithms: (1) ring — optimal bandwidth, high latency, (2) torus — half bandwidth, lower latency

AllReduce - Large Topologies (~ 16k nodes)
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TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346) 16
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. . https://github.com/spcl/DNN-cpp-proxies
Full deep neural network communication |- v o o
e Shigangli update 1d3zdce onJun 18 %) 62 commits deep neu:,al networks. ’
° ° ° ° ° ° I proxies new folders 5 months ago [ Readme
= First large-scale mini-app suite for communication 3 v s | ¥ SR
. 0 . [® README.md update 5 months ago & 1watching
in Deep Learning jobs N
= Many relevant and scalable networks _ releases
DNN-cpp-prOXIes No releases published
ReSNetS, BER]; CosmOFIOM/, DLRM, GPT-ZI GPT-3, MOE, Iy C++/MPI proxies for distributed training uldeepneura?l networks, including Res?\let—Ee, ResNet-152 , BE-RT—large‘
™ Portable IVI PI C Code _ easy to adapt pipeline parallelism,and hybrid parallelism. R
Demo
= Reproducible (also for other works) Langueges
= Full network simulations (using SST with MPI driver)
Relative Cost Savings (Communication Overhead of DNN Workloads)
Hx2Mesh Hx4Mesh
o m= nonblocking fat tree === Dragonfly o s
£ 8- m= fat tree 50% tapered === 2D HyperX | . o m
% fat tree 75% tapered = 2D Torus % =
v v ©
+~ 6 ~ 4 = e
n " v 0 ©
o} o~ o < ) <t
Q ™~ < 3 @) ;! o g < <
o 41 :: :2'1 ] ~ o <
> o N 1 - .2 rr: o 2 m.—| — —
© 5 ol <oem®l =~ .0 < | ® nenlSS W% o BNofS or
Q n S mqmgm - = o Q c mEw = = i
o+ SR - - R e L - - - o = - - - B - 5 -t .
0 .
ResNet GPT-3 GPT-3 CosmoFlow DLRM ResNet GPT-3 GPT-3 CosmoFlow DLRM
MoE MoE

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 and arXiv (2209.01346)
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COVER FEATURE TECHNOLOGY PREDICTIONS
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§Data Center Ethernet 2 ) ulk
and Remote Direct &
Memory Access: Issues

at Hyperscale l44ESEaS
Ultrazithernel

Torsten Hoefler'™, ETH Zirich L s Canentin

Duncan Roweth, Keith Underwood, and Robert Alverson, Hewlett Packard Enterprise

white Paper on ultraethernet.org

Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, and Surendra Anubolu, Broadcom

Siyuan Shen, ETH Zirich

Overview of and Motivation for the Forthcoming Ultra Ethernet

Moray McLaren, Google

Abdul Kabbani and Steve Scott, Microsoft Consortium Speciﬁ cation

Remote direct memory access (RDMA) over converged Ethernet

(RoCE) was an attempt to adopt modern RDMA features Networking Demands of Modern Al Jobs

into existing Ethernet installations. We revisit RoCE’s design Networking is increasingly important for efficient and cost-effective training of Al models. Large
points and conclude that several of its shortcomings must be Language Models (LLMs) such as GPT-3, Chinchilla, and PALM, as well as recommendation
addressed to fulfill the demands of hyperscale data centers, systems like DLRM and DHEN, are trained on clusters of thousands of GPUs.

IEEE Computer, June 2023
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Getting there — Some RDMA Issues at Hyperscale

= 1) PFC requires excessive buffering for lossless transport — requires full BDP=BW*RTT+MTU buffer!
= Assuming 600ns traversal latency (FEC, arbitration, forwarding, wire delay), 9 kiB packets, 8 priorities

Switch bandwidth doubles Tomahawk 5
250 1 every two years! (2022)
Tomahawk 4
— 200 - (2020)
Tomahawk 3
150 (2018)

Buffer Size [MB]

o
o
1

Tomahawk 2
100 - (2016)
Tomahawk
(2014)
\

0 .
3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6

Cumulative Switch Throughput [Tbit/s]

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Getting there — Some RDMA Issues at Hyperscale

= 1) PFC requires excessive buffering for lossless transport — requires full BW*RTT+MTU buffer!
= Per 800G port for longer distance links, BDP grows

1 Cluster Datacenter Site Region | Global
— 10% 4 <150m <1000 m <400 km < 6000 km
2 ) ] <0.75us <5us <2ms <30 ms
=
E' 1O3§1GB
N
5 i
£ 10!
2 ol (A AROARRRRARAD
m :
100?1MB
] 0 A A A A A AT A AR AN
9&‘592& ‘33\{0"’?) 5’/{”)5/'\% ’.’?«{0"’9 %Q’QQQ’Q%Q’QQQQ%Q’QQQQ%QQQQQQQQQQ’QQQ’QQQ’QQQ’Q
Q" Q ~ " ™ ’V‘O’\,\'QQ,\"'),\"\,\/Q,\Q,\,)/Q,\,,\Qr\,)/Q’\,/\Q

Wire Delay [us] (assuming 5 ns/m)

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Getting there — Some RDMA Issues at Hyperscale

= 2) Victim flows, congestion trees, PFC storms, and deadlocks

1/4
— ‘iﬂ
= 1/4
=78 ™

= 3) Go-back-N retransmission
= Simple recovery of lost packets (seq. number missing)
= Yet, no real support for multi-pathing
= Also retransmits full BDP on single loss (not a significant bandwidth loss though, <0.001% in practice)

= 4) Congestion control and collocated traffic
= |nterference with other traffic types, simple CC is not necessarily compatible!
= Led to invention of DCQCN, TIMELY, HPCC, and likely many more — somewhat hacky?

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Getting there — Some RDMA Issues at Hyperscale

= 5) Header sizes
= RoCEv2 is basically an InfiniBand BTH strapped onto a UDP/IP packet
= QOverhead: 22B L2, 20B IP, 8B UDP, 12B BTH, 4B ICRC = min packet size 66B
= Limits message rate and processing efficiency SHARP PERFORMANCE ADVANTAGE OVER ROCE

4X Higher Performance

= 6) N O s m a rt Sta c ks MPI AllReduce Latency Performance (128 Nodes) MPI AllReduce Latency Performance (64 Nodes)

16 450.00
1 0000
350,00
n
30000
10 -
£ 25000
* 3
£ 20000
s 5
150.00
L 100.00
i . I I I
o oo W . . - | l
4 f 1 2 o 8 65536 =
M
WinfiniBand SHARP W InfiniBand  ® RoCE uin

= 7)Securityissues R ER AT N D T R e WORORD

= ReDMArk issues — whole different talk on RDMA security N
https://www.youtube.com/watch?v=VGQe-OplCq8

= Even NVMe-of is broken (see NeVerMore paper at CCS’22)
= Fixes available with SRDMA ideas (Usenix Security’21)

= Should have support for Smart NICs, e.g., sPIN NICs
= INC and INT are somewhat tagged on

Latency fusec)

524
Mes: (Bytes)
finiBand SHARP Band ® RoCE

SANVIDIA.

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Getting there — Some RDMA Issues at Hyperscale

= 8) Link Level Reliability
= FECis becoming an issue — new concatenated, segmented, and direct FEC increase latency!
= RS272 (LL-FEC) can help but only to a limited degree

250 -
FEC decoding time (30 ns)

FEC Latency [ns]
a o 0 o
o o o o

o
l

25 50 100 200 400 800
Link Bandwidth [Gbit/s]

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Getting there — Some RDMA Issues at Hyperscale

= Looking forward: CC/LB is becoming harder!
= Larger messages will be sent within a single BDP! - higher fraction of traffic
= CC/LB management will not get a good signal ®

Typical frontend network

o

Amazon Web Services

N

Google GCP

N

Azure
| HPC

o
l

Bandwidth-Delay-Product [MB]

© ©

VOO TN A RS AR ) AP gV

%Q

Round Trip Time [us]

[1] Hoefler et al.: “Datacenter Ethernet and RDMA: Issues at Hyperscale”, IEEE Computer June 2023, arXiv 2302.03337
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Conclusions More of SPCLs research:

175+ Talks

2 youtube.com/@spcl

-~ ETHzirich

Design and Deployment

= One-off vs. incremental

Co-designing an Al supercomputer with unprecedented and cheap bandwidth

u twitter.com/spcl_eth €A Ca 20118

» Proprietary networks vs. Ethernet
¥ Al supercomputers in the cloud e
= Operations philosophy -
® Run-to-completion jobs vs. high-reliability services .
» Checkpoint/restart vs. replicated instances
: i ¥ Large-scale training in the cloud
Hyperscale Data Center |||« senicediversity

= Parallel jobs vs. opaque VM servers + microservices

* and High-Performance 3 Silecontnt v 5 ”/g‘é’a
] Computlng Ne‘l’WO]’kS . ¥ Mast will be Al-driven — serve LLMs

accelerator N1 N2 M3 ME packel

four dirsctions
swilch

per olane IN.5.EW) b accelerators

per hoard

four planes nespersive sherl

A C) github.com/spcl 2K+ Stars

Protocol stacks and layers
P—
= Proprietary vs. task-adapted flow control

... or spcl.ethz.ch

* Simple protocols vs. multi-traffic protocols E=—==5

# Lossless vs. lossy

= Utilization and applications
= High peak low noise vs. low peak high noise
# High bandwidth low latency vs. normal bandwidth high latency
¥ Al demands highest bandwidths and reasonable latency

IEEE Computer, June 302 (10.L200/h TH et. al: Haromingfd esh: 4 Network Topolor: : sczz v 2209 013961

Getting there — Some RDMA Issues at Hyperscale

= 1) PFC requires excessive buffering for lossless transport — requires full BOP=BW*RTT+MTU buffer!
= Assuming 600ns traversal latency (FEC, arbitration, farwarding, wire delay), 9 kif packets, 8 priorities

-« ETHzurich

1E7 “FATURE TECHNOLOGY PREDICTIONS
A bandwidth-cost-flexibility tradeoffs Converging HPC technology into Ethernet e L
Global Topology HammingMesh Local Topology 5 l ,Itra I.’ ,7 - -
(e.g., Fat Tree] (many confifurations) (eg, 2D Torus) [ — t i l Getting there - Some RDMA Issues at Hyperscale
ir - . —=Consortium
5 g I Data Center Ethernet utaldh )k Lol iy ——
';r:—’q-l ‘_‘I" - e Founding Members = FEC s becoming an issue — new cancatenated, segmented, and direct FEC increase latency! N
r - e o -7 e e e o o o and Remote Dll’eCT ; 2 [l » RS272 (LL-FEC) can help but only to a limited degree bit/s]
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