
Performance Modeling for

Systematic Performance Tuning

Torsten Hoefler
with inputs from William Gropp, Marc Snir, Bill Kramer

Invited Talk RWTH Aachen University

March 30th, Aachen, Germany

All used images belong to the owner/creator!

2/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

The Perspective of a Computing Center

• Performance = “completed science per cost and

time”

• Optimizing this metric can be manifold:

• Application optimization (support application teams)

• Architecture optimization (select best hardware)

• Optimize Middleware (scheduler, libraries etc.)

• Optimize Policies (scheduling, charging etc.)

• … and many more

3/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Performance Modeling – State of the Practice

• Delivers the “science per cost/time” metric

• Can be used to drive optimizations!

• Who does performance modeling?

• Mostly computer scientists, in-house teams

• BUT: most development is done by application

developers and/or domain scientists

• They should develop performance models during

software development

• See performance modeling panel @3:30 in TCC 101

4/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

(Ideal) State of the Practice @NCSA

• Propose to use simple performance modeling to

characterize the behavior of applications

• Enables rough optimization (cf. “80/20 rule”)

• We provide a set of simple modeling guidelines

• Semi-analytic performance modeling

• Small number of parameters, use other techniques

where necessary

5/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Overview of Performance Modeling

• Analytic modeling:

• Determine application requirements and system

speeds to compute time (e.g., bandwidth)

• Empirical modeling (e.g. [1,2]):

• “Black-box” approach: machine learning, neural

networks, statistical learning …

• Semi-empirical modeling:

• “White box” approach: find asymptotically tight

analytic models, parameterize empirically (curve fitting)

[1]: Barnes, Rountree, Lowenthal, Reeves, Supinski, Schulz: A regression-based approach to scalability prediction

[2]: McKee, Singh, Supinski, Schulz: Constructing Application Performance Models Using Neural Networks

6/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

A Quick Example - MM

• Matrix multiplication (N3 algorithm)

• Trivial (non-blocked) algorithm

• Analytic Model:

• N3 FP add/mult, 4N3 FP load/store, +int ops

• How can we get to an execution time?  very hard!

for(int i=0; i<N; ++i)

 for(int j=0; j<N; ++j)

 for(int k=0; k<N; ++k)

 C[i+j*N] += A[i+k*N] * B[k+j*N];

1 1 3 1
1 4 1 7
9 4 1 2
1 5 1 3

1 3 0 1
3 7 4 1
3 0 9 8
1 2 5 6

5

…

7/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Semi-Empiric Model for MM

• T(N) = tN3

• POWER7

• t=2.2ns

• 0.8% err

• Is that all?

• Requirement

Model delivers

more insight!

8/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Requirements Model for MM

• Required floating point operations: 2N3 (verified)

• Cache misses?

• Semi-analytic!

• C(N) = aN3 – bN2

• POWER7

• a=3.8e-4

• a=2.7e-1

9/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Our Ubiquitous Modeling Philosophy

• Modeling during each phase of SW development:

• Analysis – pick right method (asymptotic models)

• Design – pick right algorithms (asymptotic models)

• Implementation – show good usage of machine,

e.g., blocking in MM (semi-empirical models)

• Testing – fulfilling model expectations as

correctness criterion (compare tests with models)

• Maintenance – monitor performance on different

architectures (compare times with models)

10/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

• Performance Optimization

• Identify bottlenecks and problems

during porting

• System Design

• Co-design based on application requirements

• System Deployment and Testing

• Know what to expect, find performance issues quickly

• During System Operation

• Detect silent (and slow) performance degradation

More uses of Models

11/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Six-Steps to a Model

• Our very high-level strategy consists of the

following six steps:

1) Identify input parameters that influence runtime

2) Identify application kernels

3) Determine communication pattern

4) Determine communication/computation overlap

5) Determine sequential baseline

6) Determine communication parameters

Empiric

Analytic

12/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

All Steps By Example – MILC

• MIMD Lattice Computation

• Gains deeper insights in

fundamental laws of physics

• Determine the predictions of

lattice field theories (QCD &

Beyond Standard Model)

• Major NSF application

• Challenge:

• High accuracy (computationally intensive) required for

comparison with results from experimental programs in

high energy & nuclear physics

Bernard, Gottlieb et al.: Studying Quarks and Gluons On Mimd Parallel Computers

13/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 1: Critical Parameters

• Best way: ask a domain expert!

• Or: look through the code/input file format

• For MILC (thanks to S. Gottlieb):

14/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 2: Find Kernels

• E.g., investigate call-tree or source-code

• Control logic

• update

• MILC’s kernels:

• LL (load_longlinks)

• FL (load_fatlinks)

• CG (ks_congrad)

• GF (imp_gauge_force)

• FF (eo_fermion_force_twoterms)

15/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 4: Sequential Performance

• MILC “only” loops over the lattice 

T(V) = tV

• Wait, it’s not that simple with caches 

• Small V fit in cache!

T(V) = t1 * min(s, V) + t2 * max(0, V-s)

• Cache holds s data elements

• Three parameters for each kernel

16/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

An Example Kernel: GF (Gauge Force)

• On POWER7:

• t1=62.4 μs

• t2=92 μs

• s=4.000

• Errors

• Max <10%

• Cum <3%

17/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Complete Serial Performance Model

18/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 3: Communication Pattern

• 4d domain is cut in all dimensions (cubic)

• 4d nearest-neighbor communication (8 neighbors)

• Allreduce to check CG convergence

• One per iteration on full process set

• We counted messages and sizes

• Separate for each kernel

• See paper for

sizes and full

model equation!

19/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 6: Communication Parameters

• Two options:

• Semi-empiric – fit measurements to get effective

latency and bandwidth

• Enables to check if they match expectations

• Analytic – derive parameters separately (e.g.,

documentation or separate benchmark)

• Often problematic if they do not match expectations

• Our model was analytic

• Uses LogGP parameters (measured by Netgauge [1])

[1] Hoefler et al.: Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks

20/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

The Fully-Parameterized Parallel Model

21/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Conclusions and Future Work

• Models in use for predictions and optimizations

• First successes: ~10-20% improved performance [1]

• Simple strategy enables application team models

• Better chance to be maintained than external models

• Critical for performance-centric software development

• We need (and work on):

• More examples for irregular/dynamic codes

• Better tool support for modeling

[1] Hoefler, Gottlieb.: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes

