
Torsten Hoefler
Indiana University

EuroPVM/MPI 2009
Helsinki, Finland

Towards Efficient MapReduce
Using MPI

Torsten Hoefler¹, Andrew Lumsdaine¹, Jack Dongarra²

1

¹Open Systems Lab
Indiana University Bloomington

²Dept. of Computer Science
University of Tennessee Knoxville

09/09/09
EuroPVM/MPI 2009

Helsinki, Finland

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Motivation
 MapReduce as emerging programming framework

 Original implementation on COTS clusters
 Other architectures are explored (Cell, GPUs,…)
 Traditional HPC platforms?

 Can MapReduce work over MPI?
 Yes, but … we want it fast!

 What is MapReduce?
 Similar to functional programming

 Map = map (std::transform())
 Reduce = fold (std::accumulate())

2

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

MapReduce in Detail
 The user defines two functions
 map:

 input key-value pairs:
 output key-value pairs:

 reduce:
 input key and a list of values
 output key and a single value

 The framework
 accepts list
 outputs result pairs

3

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Parallelization
 Map and Reduce are pure functions
 no internal state and no side effects
 application in arbitrary order!

 MapReduce done by the framework
 can schedule map and reduce tasks
 can restart map and reduce tasks (FT)

 No synchronization
 implicit barrier between Map and Reduce

4

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

MapReduce Applications
 Works well for several applications
 sorting, counting, grep, graph transposition
 Bellman Ford and Page Rank (iterative MR)

 MapReduce has complex requirements
 express algorithms as Map and Reduce tasks
 similar to functional programming
 ignore:

 scheduling and synchronization
 data distribution
 fault tolerance
 monitoring

5

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Communication Requirements
 two phases, three communication phases

a) Read input for
 read N input pairs:

b) Build input lists for
 order pairs by keys and transfer to tasks:

c) Output data of
 usually negligible

 two critical phases: a) and b)

6

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

All in one view

7

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Parallelism limits
 map is massively parallel (only limited by N)

 often
 data usually divided in chunks (e.g., 64 MiB)
 either read from shared FS (e.g., GFS, S3, …)
 or available on master process

 reduce needs input for a specific key
 tasks can be mapped close to the data
 worst-case is an irregular all-to-all

 we assume worst case:
 input only on master and keys evenly distributed

8

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

An MPI implementation
 Straight-forward with point-to-point
 not focus of this work

 MPI offers mechanisms to optimize:

1) Collective operations
 optimized communication schemes

2) Overlapping communication and computation
 requires good MPI library and network

9

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

An HPC-centric approach
 Example: word count
 Map accepts text and vector of strings
 Reduce accepts string and count

 Rank 0 as master, P-1 workers
 MPI_Scatter() to distribute input data
 Map like standard MapReduce

 MPI_Reduce() to perform reduction
 Reduce as user-defined operation
 HPC-centric, orthogonal to simple implementation

10

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Reduction in the MPI library
 Built-in or user-defined ops as
 must be associative (MPI ops are)
 number of keys must be known by all procs

 can be reduced locally (cf. combiner) MPI_Reduce_local

 keys must have fixed size
 identity element with respect to

 if not all processes have values for all keys

 Obviously limits the possible reductions
 No variable-size reductions!

11

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Optimizations
 Optimized implementation

 hardware optimization, e.g., BG/P
 communication optimization, e.g., MPICH2, OMPI

 Computation/communication overlap?
 pipelining with NonBlocking Collectives (NBC)
 accepted for next generation MPI (2.x or 3.0)
 offered in LibNBC (portable, OFED optimized)

12

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Synchronization in MapReduce

13

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Performance Results
 MapReduce application simulator
 Map tasks receive specified data and simulate

computation
 Reduce performs reduction over all keys

 System:
 Odin at Indiana University
 128 4-core nodes with 4 GiB memory
 InfiniBand interconnect
 LibNBC (OFED optimized, threaded)

14

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Static Workload
 Fixed workload: 1s per packet
 Reduction of comm/synch overhead of 27%

15

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Dynamic Workload
 Dynamic workload: 1ms-10s
 Reduction of execution time of 25%

16

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

What does MPI need?
 Fault Tolerance
 MPI offers basic inter-communicator FT
 no support for collective communications
 checking if a collective was successful is hard
 collectives might never return (dead-/lifelock)

 Variable Reductions
 MPI reductions are fixed-size
 MR needs reductions of growing/shrinking data
 Also useful for higher languages like C++, C#,

or Python
17

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Conclusions
 We proposed an unconventional way to

implement MapReduce
 efficiently uses collective communication
 limited by MPI interface
 allows efficient use of nonblocking collectives

 Implementation can be chosen based on
properties of Map and Reduce
 MPI-optimized implementation if possible
 point-to-point based implementation otherwise

18

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Questions

19

Questions?

