
Torsten Hoefler
Indiana University

EuroPVM/MPI 2009
Helsinki, Finland

Towards Efficient MapReduce
Using MPI

Torsten Hoefler¹, Andrew Lumsdaine¹, Jack Dongarra²

1

¹Open Systems Lab
Indiana University Bloomington

²Dept. of Computer Science
University of Tennessee Knoxville

09/09/09
EuroPVM/MPI 2009

Helsinki, Finland

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Motivation
�† MapReduce as emerging programming framework

�„ Original implementation on COTS clusters
�„ Other architectures are explored (Cell, GPUs,…)
�„ Traditional HPC platforms?

�† Can MapReduce work over MPI?
�„ Yes, but … we want it fast!

�† What is MapReduce?
�„ Similar to functional programming

�† Map = map (std::transform())
�† Reduce = fold (std::accumulate())

2

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

MapReduce in Detail
�† The user defines two functions

�„ map:
�† input key-value pairs:
�† output key-value pairs:

�„ reduce:
�† input key and a list of values
�† output key and a single value

�† The framework
�„ accepts list
�„ outputs result pairs

3

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Parallelization
�† Map and Reduce are pure functions

�„ no internal state and no side effects
�¾ application in arbitrary order!

�† MapReduce done by the framework
�„ can schedule map and reduce tasks
�„ can restart map and reduce tasks (FT)

�† No synchronization
�„ implicit barrier between Map and Reduce

4

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

MapReduce Applications
�† Works well for several applications

�„ sorting, counting, grep, graph transposition
�„ Bellman Ford and Page Rank (iterative MR)

�† MapReduce has complex requirements
�„ express algorithms as Map and Reduce tasks
�„ similar to functional programming
�„ ignore:

�† scheduling and synchronization
�† data distribution
�† fault tolerance
�† monitoring

5

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Communication Requirements
�† two phases, three communication phases

a) Read input for
�† read N input pairs:

b) Build input lists for
�† order pairs by keys and transfer to tasks:

c) Output data of
�† usually negligible

�† two critical phases: a) and b)

6

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

All in one view

7

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Parallelism limits
�† map is massively parallel (only limited by N)

�„ often
�„ data usually divided in chunks (e.g., 64 MiB)
�„ either read from shared FS (e.g., GFS, S3, …)
�„ or available on master process

�† reduce needs input for a specific key
�„ tasks can be mapped close to the data
�„ worst-case is an irregular all-to-all

�† we assume worst case:
�„ input only on master and keys evenly distributed

8

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

An MPI implementation
�† Straight-forward with point-to-point

�„ not focus of this work

�† MPI offers mechanisms to optimize:

1) Collective operations
�„ optimized communication schemes

2) Overlapping communication and computation
�„ requires good MPI library and network

9

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

An HPC-centric approach
�† Example: word count

�„ Map accepts text and vector of strings
�„ Reduce accepts string and count

�† Rank 0 as master, P-1 workers
�† MPI_Scatter() to distribute input data

�„ Map like standard MapReduce
�† MPI_Reduce() to perform reduction

�„ Reduce as user-defined operation
�¾ HPC-centric, orthogonal to simple implementation

10

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Reduction in the MPI library
�† Built-in or user-defined ops as

�„ must be associative (MPI ops are)
�„ number of keys must be known by all procs

�† can be reduced locally (cf. combiner) MPI_Reduce_local

�„ keys must have fixed size
�„ identity element with respect to

�† if not all processes have values for all keys

�† Obviously limits the possible reductions
�„ No variable-size reductions!

11

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Optimizations
�† Optimized implementation

�„ hardware optimization, e.g., BG/P
�„ communication optimization, e.g., MPICH2, OMPI

�† Computation/communication overlap?
�„ pipelining with NonBlocking Collectives (NBC)
�„ accepted for next generation MPI (2.x or 3.0)
�„ offered in LibNBC (portable, OFED optimized)

12

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Synchronization in MapReduce

13

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Performance Results
�† MapReduce application simulator

�„ Map tasks receive specified data and simulate
computation

�„ Reduce performs reduction over all keys
�† System:

�„ Odin at Indiana University
�„ 128 4-core nodes with 4 GiB memory
�„ InfiniBand interconnect
�„ LibNBC (OFED optimized, threaded)

14

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Static Workload
�† Fixed workload: 1s per packet
�† Reduction of comm/synch overhead of 27%

15

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Dynamic Workload
�† Dynamic workload: 1ms-10s
�† Reduction of execution time of 25%

16

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

What does MPI need?
�† Fault Tolerance

�„ MPI offers basic inter-communicator FT
�„ no support for collective communications
�„ checking if a collective was successful is hard
�„ collectives might never return (dead-/lifelock)

�† Variable Reductions
�„ MPI reductions are fixed-size
�„ MR needs reductions of growing/shrinking data
�„ Also useful for higher languages like C++, C#,

or Python
17

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Conclusions
�† We proposed an unconventional way to

implement MapReduce
�„ efficiently uses collective communication
�„ limited by MPI interface
�„ allows efficient use of nonblocking collectives

�† Implementation can be chosen based on
properties of Map and Reduce
�„ MPI-optimized implementation if possible
�„ point-to-point based implementation otherwise

18

Torsten Hoefler, Indiana University EuroPVM/MPI 2009, Helsinki, Finland

Questions

19

Questions?

