
LogfP - A Model for small Messages in InfiniBand

Torsten Hoefler, Torsten Mehlan, Frank Mietke, and Wolfgang Rehm

Chemnitz University of Technology
Dept. of Computer Science

Chemnitz, 09107 GERMANY
{htor, tome, mief, rehm}@cs.tu-chemnitz.de

Abstract

Accurate models of parallel computation are often
crucial to optimize parallel algorithms for their run-
ning time. In general the easier the model’s use and the
smaller the number of parameters and interdependen-
cies among them, the more inaccuarcies are introduced
by simplification. On the other hand a too complex
model is unusable. We show that it is possible to derive
a relatively accurate and easy model for small message
performance over the InfiniBand network. This model
allows the developer to gain knowledge about the inher-
ent parallelism of a specific InfiniBand hardware and
encourages him to use this parallelism efficiently. Sev-
eral well known models hide this feature and some of
them even penalize the use of parallelism because the
model designers were not aware of new emerging ar-
chitectures like InfiniBand.

1 Introduction

Communication models play an important role in
designing and optimizing parallel algorithms or appli-
cations. A model assists the programmer in under-
standing all important aspects of the underlying archi-
tecture without knowing unnecessary details. This ab-
straction is useful to simplify the algorithm design and
to enable the use of mathematical proves and runtime
assessments of algorithms. Most models enable non-
computer scientists to understand everything they need
for programming and computer architects to give run-
ning time estimations for different architectures. These
models have to be very accurate and should reflect all
important underlying hardware properties. But an ar-
chitectural or communication model must also be fea-
sible for programmers. This means that the number
of parameters and the model functions must not be

too complex. The programmer has to understand the
model and all its implications. It is easy to see that
the accuracy and the ease of use are conflicting and
the designer of a network model has to find the golden
mean.

1.1 Related Work

Many different models have been developed in the
past. There are models for specific network architec-
tures [17, 3] or for the shared memory paradigm such as
CICO [16, 7]. Other models like PRAM [6, 14], BSP
[21], C3 [9] or LogP [4] aim to be architecture inde-
pendent and to give a general estimation of program-
ming parallel systems. These are quite inaccurate due
to their high level of abstraction. Several comparative
studies [18, 8, 2, 11] are available for assessing the accu-
racy of subsets of these models. Our comparative study
[11] and the prediction of the MPI BARRIER latency
[10] with LogP shows that the LogP model is quite ac-
curate for small messages. Many efforts [1, 19, 13, 15]
have been made to enhance the model in its accuracy
for different network architectures and large messages.

2 The LogP Model

Several studies [2, 10, 11] have shown that the LogP
model is very accurate for small messages. This ac-
curacy, and the simplicity of this model drive to the
decision to base further developments on it. The LogP
model will be explained shortly in the following. It
reflects all important aspects of the communication
behavior of parallel systems which are seen as a col-
lection of loosely coupled computers. Each computer
has one or more processors with main memory, works
asynchronously and is equipped with a network inter-
connect to reach all other computers. Basically, the
model is based on four parameters:

• L - communication delay (upper bound to the la-
tency for NIC-to-NIC messages from one processor
to another)

• o - communication overhead (time that a processor
is engaged in transmission or reception of a single
message, split up into os for send overhead and or

for receive overhead)

• g - gap (indirect communication bandwidth,
minimum interval between consecutive messages,
bandwidth ∼ 1

g)

• P - number of processors

The parameters of the LogP model can be divided
into two layers, the CPU-Layer and the Network-Layer.
The o-parameter can also be subdivided into one pa-
rameter on the receiver side (or) and another one on
the sender side (os). The according visualization of
the different parameters for a LogP compliant network
(e.g. Ethernet) can be seen in figure 1.

CPU

Network

o s L or

level

time

g

Sender Receiver

g

Figure 1. Visualization of the LogP parame-
ters

The parameters have to adhere to several assump-
tions to make the model fully functional:

•
⌈

L
g

⌉
- count of messages that can be in transmis-

sion on the network from one to any other proces-
sor in parallel (network capacity)

• L, o and g are measured as multiples of the pro-
cessor cycle

An additional study [5] describes options of assessing
the network parameters for real-life supercomputers.
This can be very helpful to gain a deeper knowledge
about the model’s characteristics.

3 InfiniBand Benchmarks

This section compares different InfiniBand bench-
mark curves with the LogP prediction. The Bench-
mark determines 1 : P − P : 1 Round Trip Times
(RTT) and CPU send overheads (o) for posting the
send request. We examine only RMDA-Write because
it is the fastest way to transmit data over InfiniBand,
and it exhibits no receive overhead or. Thus the only
remaining overhead os is called o in the remainder of
this paper. All curves are normalized to the number of
addressed hosts. Thus, the RTT costs or o costs per
message, called RTT/P and o/P are displayed over the
number of addressed hosts. The LogP model predicts
a constant o and the following RTT needed for trans-
mitting a single packet to P hosts and back from all
receivers to the sender. The LogP communication di-

0

1

2

3

4

5

6

1

2

3

4

5

6

0

1

2

3

4

5

6

0

o g g g g g

g>o
L/g=4/3

RTT

t

L

o

o

o

o

o

o

ping pong

Figure 2. 1 : P − P : 1 Ping Pong Benchmark
Scheme and LogP Communication Structure

agram is shown in figure 2 and the derived LogP RTT
predictions are as follows:

RTT = o + (P − 1) · max{o, g} + L + o + L

= 2L + 2o + (P − 1) · max{o, g} (1)

The expected graph signature of the RTT/P (cp.
equation (1)) normalized by P is shown in figure 3.

The practical InfiniBand 1 : P − P : 1 o benchmark
result is shown in the lower left of figure 3 for 1 Byte
and 1024KB. It can be assumed that there is no dif-
ference, and the overhead does not depend on the size
of the posted message. The LogP prediction for o is
constant and cannot express the benchmarked function
signature properly. The RTT/P benchmark results for
1 byte messages are shown in the upper right of figure
3. The small message function has a totally different
signature than the LogP prediction and the time per
message has a global minimum at P ≈ 10. This special
behavior of InfiniBandTM has also been investigated in

s

1 P

RTT(P)
P

max{g,o }

P
o

P

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30

o/
P

processors (P)

Xeon PCI-X, 1 Byte
Xeon PCI-X, 1 kByte

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

R
T

T
/P

processors (P)

Xeon PCIe
Opteron PCI-X

Xeon PCI-X

Figure 3. o(P) and 1 : P − P : 1 RTT (P) LogP predictions (up) and Benchmark Results (down)

“A Communication Model for Small Messages with In-
finiBand” [12] and is briefly analyzed in the following
section.

4 The LoP Model

The original LoP model was presented in “A Com-
munication Model for Small Messages with InfiniBand”
[12]. The model investigates the phenomenon of the
local minimum of the cost per message measured in
section 3 and the varying overhead o. We derived very
accurate model functions which describe the exact be-
havior of the InfiniBand hardware. The performance
assessment function is represented by a parametrized
model function. The values of the real parameters
λ1 . . . λ6 are derived by fitting the unparametrized
model function to the benchmark results. Thus, not
all λn parameters have a meaning in the “real world”
and have to be seen as mathematical constructs to fit
the benchmark function efficiently. P equals to the
number of addressed hosts.

4.1 Overhead Model

The overhead can be modelled as a simple pipeline
start up function, due to several cache effects:

o(P) =
λ1

λ2 + P

The function signature is shown on the left side of figure
4.

4.2 RTT Model

The model for the RTT is depicted on the right side
of figure 4 and is divided into three sections: The first
section can be described with a typical pipeline start
up function due to several cache effects and the o(P)
function:

tpipeline =
λ1

λ2 + P

The second section is defined by the maximum CPU →
NIC → NIC → CPU throughput or packet process-
ing rate of the NIC, and is thus defined as constant:

tprocessing = λ3

t min

p

t

P
saturation

tsaturated

processingpipeline

processingt

RTT(P)
P

Figure 4. o (left) and RTT (right) Model

The third section reflects the network saturation which
typically behaves like an exponential function as:

tsaturation = λ4 · (1 − eλ5·(P−λ6))

λ4 and λ5 influence the shape of the function and λ6

introduces a P -offset. Altogether the RTT can be de-
scribed with the following abstract model, which is de-
picted on the right side of figure 4:

RTT (P)λ1...6 = tpipeline + tprocessing + tsaturation

=
λ1

λ2 + p
+ λ3 + λ4 · (1 − eλ5·(p−λ6))

It is nearly impossible to handle six parameters as
well as an exponential function to design optimal al-
gorithms and even the mathematical proves are very
hard to do. Another disadvantage is the complexity
of finding the optimal parameters for a given set of
benchmarks (we used a direct search in a six dimen-
sional space with the Nelder Mead simplex algorithm
[20]).

Thus, this model is practically unusable. Basing on
the relatively simple LogP model and the fact that
it covers most of our architectural needs, we decided
to enhance it but keep its simple linear nature. The
derivation of the new simplified LoP model is called
LogfP because the additional parameter f defines the
maximal number of send operations where no g is
needed.

5 LogfP - A simplified LoP Model

The simplified LoP model, named LogfP, is derived
from the original LogP model. The main characteris-
tics and the ease of use are retained in the new design.
Figure 5 shows the benchmarked o/P and RTT/P val-
ues, our proposed model function and the LogP pre-

dicted function. The f parameter indicates the num-
ber of messages where no g has to be accounted, which
are essentially for free.

5.1 Overhead Model

The overhead model is simply the pipeline function
stated in 4.1. The parameters are more mnemonic:

o(P) = omin +
omax

P
(2)

Where omin is the lowest achievable o(P) for P → ∞
which is 0.18µs in our benchmark in figure 3. The
maximal value for o(P), omax is exactly o(1) and 1.6µs
in our example. It defines the shape of the predic-
tion function. Both parameters are very easy to de-
rive if you have just two measurement results, o(1) and
o(inf) ≈ o(x) for a sufficiently huge x (e.g. x = 1000).
This model is still extremely accurate and easy to use.
The model’s prediction and the measured values are
shown in the left of figure 5. The o(P) parameter is
very important to assess the CPU load for each send
operation. It does not play a big role for the send
process itself because the L parameter is usually 10
to 100 times bigger for InfiniBand. Thus, the compli-
cated o(P) could be replaced with the scalar o from
the LogP model for network transmissions (this intro-
duces a slight inaccuracy but reduces the number of
parameters by one!).

5.2 RTT Model

Our model is nearly the same as the LogP model.
The difference is that the g parameter is not paid for
every message after the first one. We assume that mul-
tiple small messages can be processed simultaneously
in the network hardware (cmp. [12]) and sent simul-
taneously across the network. Thus, g is only paid for

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5 10 15 20 25 30

o/
P

processors (P)

Xeon PCI-X, 1 Byte
LogfP Prediction
LogP Prediction

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

R
T

T
/P

processors (P)

Xeon PCI-X
LogfP Prediction
LogP Prediction

Figure 5. 1 : P − P : 1 o and RTT Benchmark Results with Predictions

every message after f messages have been sent, which
means that the first f small messages are essentially
for free in our model. It is obvious that this cannot
hold for large messages, due to the limited bandwidth.
Thus, the Round Trip Time can be modelled as:

∀(P ≤ f) RTT (P) = 2L + P · os(P) + os(1)
∀(P > f) RTT (P) = 2L + o(P) + os(1) +

max{(P − 1) · o(P), (P − f) · g}

It is easy to see that our simple modification of intro-
ducing the f parameter enhances the accuracy of the
model significantly. The LogfP model is quite accurate
for the prediction of small messages while the LogP
model overestimates all RTTs. The introduction of the
omin,max parameters enhances the o modelling of the
LogP model. LogP underestimates the needed CPU
time to send a message due to its constant nature.

5.3 LogfP Parameter Assessment

All LogfP parameters can be gathered from the
1 : P − P : 1 benchmark described above. They are
explained in the following:

• omin - equals to o(∞)/P of the o(P) benchmark

• omax - equals to o(1)/P of the o(P) benchmark

• L - equals RTT (1)−2omin−2omax

2P of the RTT (P)
benchmark

• g - equals RTT (∞)/P of the RTT (P) benchmark

• f - is the global minimum of the RTT (P)/P curve

• P - number of processors

These parameters can easily be measured and used
for modelling the running time of parallel algorithms
which use small messages (e.g. the MPI BARRIER al-
gorithm).

6 Conclusions and Future Work

We have shown that simple modifications can en-
hance the accuracy of the LogP model significantly.
These modifications are also applicable to a developer’s
daily task to optimize algorithms. The predictions of
the LoP model are much more accurate but due to
their complexity not usable. Our model encourages
the programmer to use the inherent hardware paral-
lelism in the transmission of small messages, because
sending the first f messages is for free (despite o).
Our model should be more accurate than the LogP
model for other hardware offloading based networks
where most packet processing is done in hardware (e.g.
Quadrics, Myrinet). Future work includes enhancing
the model also for large messages (cmp. LogGP [1])
and to provide several use-cases of the model to the
community.

6.1 Acknowledgments

We would like to thank Tobias Klug and Carsten
Trinitis from the Technical University of Munich for
providing access to their InfiniBand Cluster and helpful
comments. Additionally we want to thank Jens Simon
from the University of Paderborn and the University
of Stuttgart for providing access to their InfiniBand
Cluster systems.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating Long Messages
into the LogP Model. Journal of Parallel and Dis-
tributed Computing, 44(1):71–79, 1995.

[2] G. Bilardi, K. T. Herley, and A. Pietracaprina. BSP vs
LogP. In SPAA ’96: Proceedings of the eighth annual
ACM symposium on Parallel algorithms and architec-
tures, pages 25–32. ACM Press, 1996.

[3] G. Blelloch. Scans as Primitive Operations. In Proc.
of the International Conference on Parallel Processing,
pages 355–362, August 1987.

[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: towards a realistic model of parallel
computation. In Principles Practice of Parallel Pro-
gramming, pages 1–12, 1993.

[5] D. Culler, L. T. Liu, R. P. Martin, and C. Yoshikawa.
LogP Performance Assessment of Fast Network Inter-
faces. IEEE Micro, February 1996.

[6] S. Fortune and J. Wyllie. Parallelism in random access
machines. In STOC ’78: Proceedings of the tenth an-
nual ACM symposium on Theory of computing, pages
114–118. ACM Press, 1978.

[7] P. G. Gibbons, Y. Matias, and V. Ramachandran. Can
a shared memory model serve as a bridging model for
parallel computation? In ACM Symposium on Paral-
lel Algorithms and Architectures, pages 72–83, 1997.

[8] S. E. Hambrusch. Models for parallel computation. In
ICPP Workshop, pages 92–95, 1996.

[9] S. E. Hambrusch and A. A. Khokhar. An architecture-
independent model for coarse grained parallel ma-
chines. In Proceedings of the 6-th IEEE Symposium
on Parallel and Distributed Processing, 1994.

[10] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, and
W. Rehm. A practical Approach to the Rating of Bar-
rier Algorithms using the LogP Model and Open MPI.
In Proceedings of the 2005 International Conference on
Parallel Processing Workshops, pages 562–569, June
2005.

[11] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm.
A Survey of Barrier Algorithms for Coarse
Grained Supercomputers. Chemnitzer Informatik
Berichte - CSR-04-03, 2004. url: http://archiv.tu-
chemnitz.de/pub/2005/0074/data/CSR-04-03.pdf.

[12] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. A
Communication Model for Small Messages with Infini-
Band. PARS Proceedings, 2005.

[13] F. Ino, N. Fujimoto, and K. Hagihara. Loggps: a par-
allel computational model for synchronization analy-
sis. In PPoPP ’01: Proceedings of the eighth ACM
SIGPLAN symposium on Principles and practices of
parallel programming, pages 133–142, New York, NY,
USA, 2001. ACM Press.

[14] R. M. Karp and V. Ramachandran. Parallel algo-
rithms for shared-memory machines. In J. Leeuwen,
editor, Handbook of Theoretical Computer Science:

Volume A: Algorithms and Complexity, pages 869–941.
Elsevier, Amsterdam, 1990.

[15] T. Kielmann, H. E. Bal, and K. Verstoep. Fast mea-
surement of logp parameters for message passing plat-
forms. In IPDPS ’00: Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Process-
ing, pages 1176–1183, London, UK, 2000. Springer-
Verlag.

[16] J. R. Larus, S. Chandra, and D. A. Wood. CICO: A
Practical Shared-Memory Programming Performance
Model. In Ferrante and Hey, editors, Workshop on
Portability and Performance for Parallel Processing,
Southampton University, England, July 13 – 15, 1993.
John Wiley & Sons.

[17] F. T. Leighton. Introduction to parallel algorithms and
architectures: array, trees, hypercubes. Morgan Kauf-
mann Publishers Inc., 1992.

[18] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Mod-
els of Parallel Computation: A Survey and Synthesis.
In Proceedings of the 28th Hawaii International Con-
ference on System Sciences (HICSS), volume 2, pages
61–70, 1995.

[19] C. A. Moritz and M. I. Frank. LoGPC: Modelling
Network Contention in Message-Passing Programs.
IEEE Transactions on Parallel and Distributed Sys-
tems, 12(4):404, 2001.

[20] J. A. Nelder and R. Mead. A simplex method for
function minimization. Comput. J. 7, pages 308–313,
1965.

[21] L. G. Valiant. A bridging model for parallel computa-
tion. Commun. ACM, 33(8):103–111, 1990.

