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Abstract

Large–scale parallel applications performing global syn-
chronization may spend a significant amount of execution
time waiting for the completion of a barrier operation. Con-
sequently, numerous research works have focused on reduc-
ing the communication costs of synchronization primitives.
However, so far there has been no exhaustive comparison of
barrier algorithms. This paper will investigate significant
representatives of this family of algorithms and evaluate
their diverging characteristics, with the purpose of assess-
ing their properties within the context of a specific scenario.
The first part of this work will introduce four run time com-
plexity classes, to which all barrier algorithms are known
to belong. Then, the LogP model will be used to analyze the
behavior and predict the running time of a representative
algorithm of each class. As these performance predictions
will be scrutinized with the help of measurements conducted
on original implementations based on the Open MPI frame-
work, this work will show how to leverage the flexible com-
ponent architecture of this new MPI implementation, which
has proved to be an ideal research tool.

1 Introduction

In order to choose a barrier algorithm for implementing
or enhancing interprocessor communication in distributed
shared memory systems, different aspects have to be con-
sidered. All available algorithms vary in some regard, such
as network usage and congestion or memory access pat-
terns. The LogP model is often used to simplify the model-
ing of such algorithms, although its structural assumptions
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may decrease the accuracy of the prediction. In this paper, a
theoretical analysis for several barrier algorithms, each rep-
resenting a complexity class will be verified on the basis
of actual test results. A full textual, graphical and pseudo-
code description of all barrier algorithms mentioned in this
paper can be found in [10]. This may help to understand
the split-up into different complexity classes and the LogP
running time models for each of the algorithms. The main
goal of this paper is to analyze the performance of differ-
ent barrier algorithms on a central switch based architecture
theoretically with the LogP model and practically by bench-
marking. Basing on this work, one should be able to select
the best algorithm for implementing barrier functionality on
similar architectures.
The LogP model is briefly described in section 2. Imple-
mentation details for collective components in Open MPI
are described in section 3, followed by the benchmark re-
sults for a set of algorithms, each acting as a representative
of one complexity group, in section 4. Additionally, all re-
sults are compared to the predictions of the LogP model.
Section 5 weights all algorithms against the native Open
MPI Barrier and draws a conclusion towards choosing an
algorithm for concrete implementation.

2 The Model

The widely used LogP model proposed by Culler et al. in
1993 [2] is used as a base for modeling and evaluating the
different algorithms.

2.1 Model Description

The LogP model reflects different aspects of coarse grained
machines formed by a collection of complete computers,
each consisting of one or more processors, cache, main
memory and a network interconnect. A main assumption is
that the computing power (bandwidth) is much higher than



the network communication bandwidth. The following four
parameters compose the LogP model:

• L - communication delay (upper bound on the latency
for NIC-to-NIC messages from one processor to an-
other)

• o - communication overhead (time that a processor is
engaged in transmission or reception of a single mes-
sage)

• g - gap (indirect communication bandwidth, minimum
interval between consecutive messages, bandwidth ∼
1
g )

• P - number of processors

The parameters of the LogP model can be divided into two
tiers, the CPU layer and the network layer. The o-parameter
can be further split in one parameter on the receiver side
(or) and one on the sender side (os). A visualization of the
role of the different parameters for a given network (e.g.
Ethernet) is depicted in Figure 1.
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Figure 1. Visualization of the LogP parame-
ters

An additional study [3] describes options for assessing the
network parameters of actual supercomputers. By using
such approximations to parametrize the LogP model it is
possible to estimate the real running time of the mentioned
barrier algorithms on real systems.

2.2 Further Assumptions

All nodes are connected through an interconnect network
with the following simplifying characteristics:

• full bisectional bandwidth

• full duplex operation (parallel send/receive)

• the forwarding rate is unlimited

• the latency (L from LogP model) is constant above all
messages

• the overhead (o) for processing the TCP/IP protocol
is bigger than the gap (g) and the latency (L) of the
interconnect

• the overhead (o) is constant for all messages (and to
simplify o = or = os)

The communication characteristics are defined as follows.
The time to send and receive a single message1 can be ap-
proximated to os + L + or, and the time to send n mes-
sages2 can be estimated as os + (n − 1)max{os, g}3. The
time to receive n messages (relative to the first packet sent
on the sender side) can be modeled as os + L + or + (n −
1)max{os, g}.
Additionally, some constructs show up frequently and are
defined as follows:

fr = max{or, g} (1)

fs = max{os, g} (2)

tr = max{fr, os + L + or}
= max{max{g, or}, os + L + or}
= max{g, os + L + or} (3)

ts = max{g, os + L + or} (4)

With the aforementioned assumptions follows

fr = fs = o (5)

tr = ts = 2o + L (6)

Throughout this paper, we will distinguish between tr and
ts in order to emphasize the semantic properties of the al-
gorithms being analyzed.

3 Implementation with Open MPI

Open MPI, presented in [5], has been chosen as the hosting
framework for the barrier algorithms due to its open and
extensible nature, and in view of the easiness with which
new collective algorithms can be integrated and tested. The
general architecture of Open MPI will be briefly described
in the following. However, Open MPI is presently under-
going a heavy development phase, and some of its layers
have been recently redesigned. As it is still unclear whether
new structural changes are about to happen, this section will
refer to the current Open MPI pre-release state.

11 : 1 communication
21 : n communication with enqueuing
3the time os and g can run in parallel



3.1 Component Framework

The architecture of Open MPI described in [5] and [13] has
changed slightly and can be currently described as consist-
ing of three distinct software tiers:

1. MPI - MPI Layer

2. RTE - Run Time Environment

3. MCA - Modular Component Architecture

The MPI Layer is the adaption layer integrating the MPI
standard into the underlying functionality (mainly the RTE
and the MCA). The RTE layer provides services at run time
(e.g. process start up or output forwarding). As these lay-
ers do not have to be modified in order to incorporate new
collective algorithms, they will not be investigated further.
The MCA layer is a component framework called Modular
Component Architecture (formerly MPI Component Archi-
tecture). It manages the layers below by providing several
services (e.g. finding components and processing user pa-
rameters). Each major functional area has an associated
component framework which manages multiple modules
performing related or identical tasks. Each component is
clearly defined by an interface and offers functional services
to the upper tier.
The framework with all its layers, example component
frameworks (components A and Z) and managed modules
are shown in figure 2.
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Figure 2. Open MPI Architecture

The next listing shows a number of frameworks already im-
plemented in Open MPI. However, the architecture is open
enough to add arbitrary functionality with new frameworks.

• PTL - the Point-to-point Transport Layer consists of
network specific modules responsible for low-level
data transfer. It can be seen as a kind of device driver.

• PML - the Point-to-point Management Layer provides
several transport services for the MPI Layer (e.g. seg-
mentation and reassembly, striping or reliability).

• COLL - the Collective framework provides modules
for collective operations.

• TOPO - the Topology framework offers processes run-
ning within an MPI job a facility which allows the
MPI library components to perform locality-based op-
timizations (e.g. in grid environments).

As this paper will focus on the concerns of the COLL frame-
work, the remaining layers will not be considered further.
In order to understand the structure of a single COLL com-
ponent, the general lifetime of a component has to be de-
scribed.

3.2 A Components Life-cycle

As described in [13], a component runs through five stages
during its existence within the MCA: selection, initializa-
tion, checkpoint/restart, normal operation and finalization.
Figure 3 shows the order in which these stages are tra-
versed. Each communication is directly associated with a
single COLL module, although several of them are allowed
to share their source code. In other words, only one instance
of a COLL component delivering a specific functionality
can be active at any time for a specific communicator, and
the state of each COLL module is relative to the hosting
communicator.
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Figure 3. A Components Lifecycle

The ”selection” is done during the creation of a new
communicator (including MPI_COMM_WORLD and



MPI_COMM_SELF), typically triggered inside the MPI
API functions MPI_INIT, MPI_COMM_CREATE,
MPI_COMM_DUP or MPI_COMM_SPLIT. Due to the fact
that no special hardware support is needed, the component
does not need to check for it and returns the configured
priority (swbarr_priority), or 20 by default.
The winning component enters the ”initializa-
tion” phase and the COLL framework calls the
mca_coll_<name>_module_init function. The
component initializes all data structures and calculates the
communication partners for each algorithm and round in ad-
vance to speed the critical path up. The used algorithm can
be selected as mca-parameter (swbarr_selection). If
no algorithm is selected, the default will be 0, which means
that each algorithm is benchmarked for this communicator
and the fastest one is chosen automatically. Several
additional mca-parameters are read during this phase and
saved for the communicator (e.g. the n-parameter for the
Combining Tree).
The ”checkpoint/restart” stage has to take care of messages
which are currently on the fly and has to drain all queues.
The COLL module used in this paper does not implement
directly this functionality, but rather delegates it to the un-
derlying PTL components.
”Normal usage” is the state in which the requested col-
lective operations (e.g. MPI_Barrier()) are actually
performed. Previously stored data may be extracted from
the communicator on as-needed basis, and the selected
functionalities are activated by way of the corresponding
function pointer provided to the COLL in the initialization
phase.
The finalization step requests the module to clean
up all used data structures and drain the net-
work in order to unload cleanly. The function
mca_coll_<name>_module_finalize is called to
trigger the cleanup.

4 Benchmark Results

This section will present benchmark results for the repre-
sentative algorithms of each complexity class. Four com-
plexity domains for barrier algorithms can be identified on
the basis of the LogP model:

1. O(P ) ⇒ Central Counter [4, 6]

2. O(n · lognP ) ⇒ Combining Tree [15], f-way Tourna-
ment [7] and MCS [11]

3. O(log2P ) with broadcast ⇒ Tournament [9] and BST
[14]

4. O(log2P ) without broadcast ⇒ Butterfly [1], Pairwise
Exchange [8] and Dissemination [9]

All algorithms have been implemented in a new COLL
component within the Open MPI framework, as described
in section 3. The dynamic algorithm selection and the in-
put of configuration values (mainly the group size n of
the Combining Tree Barrier) have been realized by utiliz-
ing the mca_parameter functions, which can be used to
parametrize the module during runtime.
The resulting code was executed on our local cluster, con-
sisting of 528 Pentium III 800 MHz nodes interconnected
with an Extreme Black Diamond 6x96-Port Fast Ethernet
switch. This switch satisfies nearly all the requirements
stated in section 2.2.
The results achieved using the Pallas Micro-Benchmark
[12] and their analysis according to the LogP model will
be shown in the following sections of this paper.

4.1 Central Counter

The central counter is already implemented in the Open
MPI framework, as the runtime for small sets of processors
is extremely low, even though the scaling with processor
count is still suboptimal. Currently, the Open MPI frame-
work defines a threshold processor number (as an MCA pa-
rameter) used to switch the barrier logic between the cen-
tral counter and another logarithmic implementation. This
feature was disabled during the tests in order to ensure the
utilization of the former algorithm. The results are shown
in figure 4. The algorithm runtime prediction in the LogP
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Figure 4. Central Counter

model is shown in figure 5. The left part denotes phase 1,
where each processor P > 0 sends a packet to processor
P = 0, that it reached the barrier. The abscissa presents
the time (t) and this illustration assumes that all proces-
sors reach their barrier at t = 0. Even if all processors
send simultaneously and the latency is equal for all of them,



the packets are serialized at the receiver, because a received
packet ”blocks” the network interface for the time fr. Phase
2 starts immediately after all packets have been received.
The same blocking appears during the send operation, be-
cause every sent packet ”blocks” the sender for the time fs.
All following LogP figures can be read in the same way.
Phase 1 is finished after
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Figure 5. LogP for Central Counter

rtphase1 = os + L + (P − 2)fr + or

Phase 2 starts at T = rtPhase1 and the runtime until the last
node is notified can be predicted as

rtphase2 = os + (P − 2)fs + L + or

whereby Node 0 finished the barrier after

rtnode0 = rtphase1 + os + (P − 2)fs

= 2os + or + L + (P − 2)fr + (P − 2)fs

Node i ∈ {1, · · · , P} finishes after

rtnodei = rtphase1 + os + L + (i − 1)fs + or

= 2(os + L + or) + (P − 2)fr + (i − 1)fs

The last Node (P ) and the whole barrier finishes after

rt = 2(os + L + or) + (P − 2)fr + (P − 2)fs

Impact of the Pallas Benchmark Loop
The Pallas Benchmark makes use of a loop, which by de-
fault is executed 1000 times (b = 0; b < 1000; b + +),

to measure the running time of the barrier operation. This
loop could have an impact on our results, due to the fact that
some nodes may enter a new barrier (b+1) before all nodes
have completed the previous one (b). This is namely the
case in the central counter, as P1 finishes the barrier after

rt = 2(os + L + or) + (P − 2)fr

and sends its packet for the new barrier b + 1 to P0, which
is still sending packets related to the previous barrier b. The
first packet arrives and is enqueued by the MPI library, as
no matching receive was posted yet. P0 posts the first re-
ceive after it completes barrier b. The operating system has
already processed the message and the MPI layer has stored
it in a buffer, so fr has been paid already (by delaying bar-
rier b) for the first messages, when P0 enters barrier b + 1.
This adds a constant overhead to barrier b in each round
(processing or for messages of barrier b + 1), and it is easy
to see that the asymptotic behavior is not changed.
rt can be simplified under the assumptions taken in 2.2 and
a large processor count P :

rt = 2(os + L + or) + (P − 2)fr + (P − 2)fs

o = or = os

fr = fs = o (o > g)
rt ≈ 2(2o + L) + 2o(P − 2)

≈ 2(L + Po)

Thus, we expect the runtime (rt) to behave like a linear
function.

4.2 Combining Tree

The Combining Tree algorithm is used to represent a O(n ·
lognP ) algorithm. According to the LogP model, the run-
time of phase 1 can be assessed as shown in figure 6. The
runtime can be predicted with

rtphase1 = (os + L + fr(n − 2) + or) · �lognP �

as an upper bound. ∀P 	= nx (x ∈ N) the running time for
phase 1 is slightly smaller.
Phase 2, denoted as tbc(P − 1), leverages the binomial tree
algorithm in Open MPI and is analyzed in figure 7. The
runtime can be predicted as

tbc(P − 1) = os + (�log2P � − 1)
·max{fs, os + L + or} + L + or

= os + (�log2P � − 1)ts + L + or
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Thus, the whole runtime rt can be seen as

rt = (os + L + fr(n − 2) + or) · �lognP � + os

+(�log2P � − 1)ts + L + or

rt can be simplified under the assumptions taken in 2.2 and
a large processor count P :

rt ≈ (L + no) · �lognP � + �log2P � · (2o + L)
≈ log2P · (2o + L)

The optimization of rt with the fitted values for the param-
eters os, or and L states the existence of a global minimum
for n = 4. This result is endorsed by the benchmarks shown
in figure 8 and confirms the predictive power of the LogP
model, as well as the correctness of the parameter assess-
ment and the validity of our algorithmic analysis.

4.3 Tournament Barrier

The Tournament Barrier is chosen to represent the class of
O(log2P ) algorithms which perform the last step of noti-
fying all other nodes, typically by broadcasting to them.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  10  20  30  40  50  60

ru
nt

im
e 

in
 m

ic
ro

se
co

nd
s 

(r
t)

# processors (P)

rt2(P)
Combining Tree (n=2)

rt3(P)
Combining Tree (n=3)

rt4(P)
Combining Tree (n=4)

rt5(P)
Combining Tree (n=5)

Figure 8. Measured rt Values

P0

P1

P2

P3

P4

P5

P6

P7

os

os

os

os

or

or

or

or os

os

or

or

os

or

Figure 9. LogP for the Tournament Barrier

The LogP prediction which is depicted in figure 9 can be
described as (for ∀P = 2j (j ∈ N), for all other P , the
running time is slightly lower):

rt = tr · �log2P � + tbc(P − 1)

The Binomial Tree is used again for broadcasting at the end:

tbc(P − 1) = os + (�log2P � − 1)tr + L + or

Assuming the usual simplifications

rt = tr · �log2P � + os + (�log2P � − 1)ts
+L + or

≈ (tr + ts) · �log2P � + os + L + or

≈ 2(2o + L)�log2P �

The matched functions and measured values are shown in
figure 10.
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4.4 Dissemination Barrier

The Dissemination Barrier, belonging to the complexity
class O(log2P ) of algorithms which do not need to go
through a final broadcast phase, was previously proven to
deliver an optimal solution to the barrier problem [10].
Thus, we reasonably expect this algorithm to provide the
best results. The LogP modeling is shown in figure 11 and
the runtime can be predicted with
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rt = max{tr, ts} · �log2P �

With the usual simplifications, the runtime behaves asymp-
totically as follows

rt = (2o + L) · �log2P �

The benchmark results and a fitted function for the upper
bound are shown in figure 12. The running time increases
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Table 1. Big Numbers of Processors
Algorithm 128 nodes 256 nodes
Central Counter 4594.50µs 4909.67µs
Combining Tree 4009.79µs 4343.63µs
Tournament 3642.54µs 4378.77µs
Dissemination 1904.57µs 1977.12µs
Open MPI 3559.88µs 4226.88µs

in steps, with each step bound to a successive power of two
in the process count.

4.5 Comparison of the Different Algorithms

We have shown in sections 4.1 to 4.4 that the LogP model
is able to provide very accurate prediction on asymptotic
behavior of barrier algorithms for systems complying with
the model assumptions 4. As expected, the Dissemination
Algorithm delivers the best results and confirms itself as
the optimal solution to the barrier problem on LogP com-
pliant systems. All measured data up to 64 nodes is shown
in figure 13. Some results of the benchmarks conducted
on 128 and 256 nodes are shown in table 1. Open MPI
means the native implementation which switches between a
Central Counter and the Binomial Tree, but due to the big
number of processors, the latter is used.

5 Conclusion

This work has shown that on distributed memory systems
which comply with the assumptions of the LogP model the
Dissemination Algorithm represents an optimal solution to

4the asymptotic standard error has been less than 5% for every fitting
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the barrier problem. However, this result can not be gen-
eralized to all system classes and configurations, e.g. over-
subscribed switch-based systems with no guaranteed full bi-
section bandwidth. In such scenarios, an adaptive behavior
of the communication layer could be beneficial. According
to the focus of the present paper, we implemented an Open
MPI component which dynamically conducts a benchmark
of barrier algorithms in the initialization phase and select
the most effective one for each communicator. Moreover,
the basic barrier algorithm of Open MPI could be replaced
with the Dissemination Algorithm, as the compliance with
the LogP model can be reasonably assumed for modern su-
percomputers. Generally speaking, all barrier primitives
should make use of the fastest algorithm available under the
specific architecture. The work shown in this paper and the
pseudocode from [10] can be used to determine an optimal
barrier algorithm for central switch based interconnect.
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