
Message Progression in Parallel Computing - To

Thread or not to Thread?

Torsten Hoefler 1, Andrew Lumsdaine 2

Open Systems Laboratory, Indiana University

150 S Woodlawn Ave, Bloomington, IN 47405, USA
1
htor@cs.indiana.edu

2
lums@cs.indiana.edu

Abstract—Message progression schemes that enable communi-
cation and computation to be overlapped have the potential to
improve the performance of parallel applications. With currently
available high-performance networks there are several options
for making progress: manual progression, use of a progress
thread, and communication offload. In this paper we analyze
threaded progression approaches, comparing the effects of using
shared or dedicated CPU cores for progression. To perform these
comparisons, we propose time-based and work-based benchmark
schemes. As expected, threaded progression performs well when
a spare core is available to be dedicated to communication
progression, but a number of operating system effects prevent the
same benefits from being obtained when communication progress
must share a core with computation. We show that some limited
performance improvement can be obtained in the shared-core
case by real-time scheduling of the progress thread.

I. INTRODUCTION

Asynchronous progression of communications is an impor-

tant and controversial topic in high-performance computing.

It is relatively clear that one can leverage the hardware paral-

lelism of the network and the CPU by using both entities at the

same time. However, achieving this task is usually tedious and

often involves restructuring of the parallel algorithm or at least

manual transformations of the parallel code. Researchers have

often been disappointed after they invested a huge effort to

achieve overlapping of communication and computation, be-

cause the underlying middleware did not support asynchronous

progress efficiently. The most widely used communication

library standard, the message passing interface (MPI) stan-

dard, offers non-blocking routines that enable overlapping of

communication and computation. However, the standard does

not define a clear progression rule and leaves it up to a “high

quality” implementation to offer true asynchronous progress.

Thus, many early MPI libraries did not offer progression and

just performed all communication in the respective test or wait

calls.

However, some researchers have been able to provide

significant speedups using overlap of communication and

computation (up to 1.9 in [1]). Brightwell et al. [2] classifies

the source of performance advantage for overlap and Dimitrov

[3] uses overlapping as fundamental approach to optimize

parallel applications for cluster systems. Thus, we conclude

that overlapping of communication and computation is an

important optimization technique. Figure 1 shows the effects
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Fig. 1. Fully asynchronous versus wait-based message transmission for
overlapped communication

of asynchronous or wait-based communication to parallel

codes performing overlapping communications.

Several analyses, such as [4] or [5] measured the overlap of

different MPI implementations and lead to unsatisfying results.

Especially the analysis of applying overlapping techniques to

parallel Fast Fourier Transformations led to controversial re-

sults [6], [7], [8], [9], which is most likely due to the different

abilities of the underlying communication system to perform

asynchronous message progression. We showed in [10] that

high-level communication operations, non-blocking collective

operations, can improve application performance if the com-

munication progresses in the background. However, those

operations add another layer of complexity to the progression

discussion.

A common assumption is that the progress just happens in

the background without user intervention. While this might

be true for some communication libraries or systems, there

are cases where the user needs to progress the messaging

subsystem manually. An easy way to do this for MPI is to

call MPI Test on the outstanding communication requests

periodically because the MPI standard guarantees that this

will eventually finish the transmission (assuming a correct



MPI program). But this technique might not be practicable

in all cases, for example when the programmer overlaps a

single library call to some serial computation library (e.g.,

BLAS [11]). Also, managing the requests and the test calls

can be a huge burden for the user. Thus, a high quality

implementation should ensure fully asynchronous progress

whenever possible. In this paper, we analyze and evaluate

different options for message progression at the point-to-

point and collective level with InfiniBand as an example

network. The next section discusses well-known strategies to

implement point-to-point messages and to interact with the

communication hardware.

II. MESSAGING STRATEGIES IN COMMUNICATION

MIDDLEWARE

To discuss message progression schemes efficiently, we

introduce common messaging protocols and implementation

options. Most MPI libraries implement two different protocols

to transmit messages. Dependent on the message-size, either

an eager or a rendezvous protocol is selected to implement the

message transmission. Eager transmissions send the message

without synchronization to the receiver where it is buffered

until the application process receives it. The rendezvous pro-

tocol delays the message transmission until the receive process

has posted the receive operation to the library. Another option

is to use pipelined message transmission in the rendezvous

protocol [12].

Those protocols build on single message sends. The eager

protocol sends the message directly from the sender to the

receiver. However, the rendezvous protocol requires at least

two synchronization messages and the actual data transmis-

sion, which might be pipelined and thus consist of many

send operations. Different strategies to send those messages

are based on the two simple operating system (OS) con-

cepts, polling and interrupt. Most middleware systems only

implement polling mode (i.e., the program spins on the main

CPU while querying the hardware) for user-level messaging

to enable OS bypass. The other option, interrupts, requires

interaction with the OS which might suspend the process while

waiting. It is assumed that the necessary syscall (privilege

change) to enter the operating system code is rather expensive

and thus, many modern messaging systems focus on OS-

bypass schemes where all communication is performed in

userspace. Thus, the polling based approach delivers, due

to OS bypass, a slightly lower point-to-point latency and is

therefore used in common high-performance MPI libraries for

InfiniBand such as Open MPI and MVAPICH.

A more complex issue is the development of non-blocking

high-level communication routines that involve interactions

between multiple processes. Similar overlapping principles

than in the point-to-point case can be used with those op-

erations. However, the optimization for overlap is much more

complicated because the communication protocols and algo-

rithms are becoming significantly more complex as in the

point-to-point case. Thus, we focus on the more complicated

case to analyze the overlap of non-blocking collective opera-

tions in our work which of course also covers point-to-point

progression.

III. MESSAGE PROGRESSION STRATEGIES

Three fundamentally different messaging strategies can be

found in parallel systems. A common strategy is to enforce

manual progression by the user. This is frequently perceived as

no progression because the programmers often do not progress

or can not progress the library manually. A second strategy is

the hardware-based approach where the message handling is

done in the network interface card. The third approach, using

threads for progression, is often discussed as the “silver bullet”

but it has not found widespread adoption yet.

A. Manual progression

This scheme is the simplest to implement from the MPI

implementer’s perspective because there is no asynchronous

progress. Every time, the user calls MPI Test with a request,

the library checks if it can make any progress on this request.

Thus, the complete control and responsibility is given to

the user in this case. There are several problems with this

approach. The biggest problem is the opaqueness of the MPI

library, i.e., the user does not know about the protocol and the

status of a specific operation. Thus, for portable programs, he

has to assume the worst case for asynchronous progress, the

pipeline protocol, where he has to call MPI Test to progress

every fragment in order to achieve good overlap. However,

the missing status information forces the user to adopt a black

box strategy.

We proposed a black box testing scheme in [13] that issues

N tests during a message transmission. N is defined as a

function of the message size in order to reflect the needs of

the pipelined protocol:

N =

⌊

size

interval

⌋

+ 1

For example, if the datasize is 4096 bytes and the interval is

2048 bytes, the benchmark issues one test at the beginning,

one after 50% of the computation and one at the end. The

test-interval is chosen by the user. The scheme is shown in

Figure 2.

B. Hardware-based progression

A possible solution to ensure full asynchronous progress is

to do the protocol processing in the communication hardware.

The Myrinet interconnection network offers a programmable

network interface card (NIC) and several schemes have been

proposed to offload protocol processing and message matching

on this external CPU [14]. A similar offload scheme was

proposed for Ethernet in [15]. Some proposals, such as [16],

also implement NIC-based message broadcast schemes. The

relatively simple barrier operation has also been implemented

with hardware support [17]. Other schemes [18], [19] support

collective operation offload for some operations but impose

some limitations. However, none of those implementations

allow overlap they only offer a blocking interface.
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Fig. 2. Black-box test based manual progression strategy

C. Threads for Message Progression

Asynchronous progression threads have often been stated as

a silver bullet in future work, but they are not widely used.

This might be because the threaded programming model puts

a huge burden on the system software implementer because

the whole driver infrastructure and all libraries must be im-

plemented reentrant (thread safe). However, some libraries,

for example Open MPI, begin to explore the possibility of

threaded progress. Other libraries like MPI/pro or HP MPI

offer asynchronous progression threads but have not been

analyzed in detail.

Threads have usually been used in high performance com-

puting to implement thread-level parallelism (OpenMP, also in

combination with MPI as a hybrid programming model [20])

or for other tasks that are not critical for communication, such

as checkpoint/restart functionality.

Threads are a very promising model for asynchronous pro-

gression. One of the biggest problems with manual progression

strategies is that it is very unlikely that MPI Test hits the

ideal time. It comes either too early and there is nothing

to progress or too late and overlap potential is wasted. A

threaded implementation would be either polling and thus get

all messages immediately or the thread could be woken up

and also progresses the communication layer at exactly the

right times. A progress thread also enables fully asynchronous

progression, i.e., without any user interaction. We will focus on

a threaded progression of non-blocking collective operations

in the following sections. However, before introducing our

implementation, we discuss several operating system effects

that influence the execution of messagingmessaging threads.

1) Operating System Effects: There was great effort to

circumvent the operating system in the past with so called

OS-bypass methods. User-level networking without operating

system support was implemented for most modern network

interconnects to enable lower latencies and avoid system calls.

However, the operating system plays an important role in

the administration of user and progress threads. We have

to distinguish the different methods to access the network
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Fig. 3. Different subscription schemes for a dual-CPU dual-core configuration

hardware (polling, interrupt) and the subscription factor of

the cores (all cores run user threads vs. spare cores can

run progression threads). The subscription scheme is shows

for a rather common dual-CPU dual-core combination in

Figure 3. Combining both schemes leads us to the following

4 combinations:

access method core subscription

polling fully subscribed

polling spare cores available

interrupt fully subscribed

interrupt spare cores available

a) Operating System Scheduling: The operating system

scheduler usually arranges the threads (or processes) in two

or more more queues, a runnable queue and a waiting queue.

Threads (or processes) in the runnable queue are waiting for

the CPU and share this resource among each other, threads on

the waiting queue wait for some other hardware event (i.e., a

packet from the wire). To ensure fairness of the CPU sharing,

each process has a time-slice to run on the CPU. If this time-

slice is over, the scheduler schedules other runnable threads.

The scheduler bases its decision on the thread priorities (which

depends on the particular operating system). Typical length of

time-slices are between 4 and 10 milliseconds. The Linux 2.6

default scheduler (called O(1) scheduler) implements such a

time-slice based mechanism.

The analysis is easy if a spare core is available to each MPI

process to run the progression thread. The difference between

the polling (common implementation) and the interrupt based

approach is that the polling might reduce transmission laten-

cies slightly (due to OS bypass). The interrupt based approach

might be more power efficient (since the hardware is idle dur-

ing the message transmission) but might also have some effect

to the performance of the operating system (and thus to other

threads). However, this highly depends on the implementation

of the OS (i.e., how is the locking implemented? does the

scheduling overhead depend on the number of threads? ...).

The analysis is much more complicated if there are no

idle cores available. We would argue that this is the common

case in today’s systems, i.e., if a user has 4 cores per

machine, he usually launches 4 (MPI) processes on each



machine to achieve highest performance. In this scenario, the

progression thread has to share the CPU with the computation

thread. In the polling approach, the computation thread and

the progression thread are both runnable all the time which

leads to heavy contention in the fully subscribed case. This

effectively halves the CPU availability for the computation

thread and thus also halves the overall performance. Those

effects can be limited by calling sched_yield() in the

progression thread after some poll operations which leads to a

re-scheduling. However, the progression thread is still runnable

and will be re-scheduled depending on priority. The interrupt

approach seems much more useful in this scenario because the

progression thread goes to sleep (enters the wait queue) when

no work is to be done and is woken up (enters the run queue)

when specific network events (e.g., a packet is received) occur.

This schedules the thread at exactly the right time (work is to

be done) and is thus significantly different from the manual

progression and the polling approach.

The interrupt-based mechanism raises two concerns. First,

It seems unclear how big the interrupt latency and overheads

are on modern systems. Second, the scheduler has to schedule

the progression thread immediately after the interrupt arrives

to achieve asynchronous progress. It is not sufficient if the

thread is just put on the run queue and the computation

thread is re-scheduled to finish its time-slice. Waiting until

the time-slice of the active thread is finished increases the

interrupt-to-run latencies by a time-slice/2 on average which

effectively disables asynchronous progress because the time

slices are one to two order of magnitudes higher than the

transmission latency of modern networks. Unfortunately, this

mechanism is common practice to ensure fairness, i.e., avoid

processes that get many interrupts to preempt other compute-

bound processes all the time. The Linux scheduler favors I/O

bound processes but it might still not be sufficient to achieve

highest overlap. To overcome this problem, one can increase

the relative priority of the progression thread. We experiment

with the highest possible priority, real time threads in Linux.

If a real time (RT) thread is runnable, then it preempts every

other thread by default. This might decrease the interrupt-to-

run latency significantly. However, this might also increase the

interrupt and context switching overhead significantly because

the thread is scheduled every time an interrupt occurs and

goes to sleep shortly after. All options are illustrated in

Figure 4. The next section discusses our implementation of

non-blocking high-level communication operations and our

extensions for threaded asynchronous progression.

IV. IMPLEMENTATION

We chose InfiniBand as an example network because it does

not offer fully offloaded progression and is widely used in

today’s cluster systems. However, our results are generally

applicable to all networks that base their progress on the CPU

and consider threaded progression. Since there is no fully

thread-safe MPI for InfiniBand available publicly, that allows

to choose between polling and interrupts, we implemented our

own Mini-MPI library that supports the subset of operations
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Fig. 4. CPU Scheduling Strategies for the fully subscribed case, comparing a
polling progress thread with an interrupt based normal and real time progress
thread.

needed by our non-blocking collectives library LibNBC [10].

Our Mini-MPI, called LibOF [13], implements the standard

non-blocking transmission functions (send/recv) in a way that

enables highest asynchronous progress without user interven-

tion. In this work, we extend and analyze LibOF to use a

progression thread to ensure fully asynchronous progression.

A. Partially Asynchronous Collective Communication

The structure of LibNBC reflects the two levels of com-

munication (point-to-point and collective). The user issues

a non-blocking collective operation which returns a handle.

This handle has a (potentially multi-round) schedule of the

execution (cf. [10]) and a list of point-to-point operations of

the current round attached. Progress is thus defined on the two

levels, point-to-point progress and collective progress.

The two levels of progression for a binomial tree broadcast

on four processes are displayed in Figure 5. Even though

process 1 received the RTR message from process 3 early,

it can only send the data after it received it from process 0.

Those data-dependencies incurred by the collective algorithms

add a new complexity to the progression.

The InfiniBand optimized LibOF supported nearly asyn-

chronous point-to-point progress at the messaging level for the

rendezvous protocol. The implemented wait-on-send strategy

(the sender polls for a while to receive the ready-to-receive

(RTR) message from the receiver) progresses if the nodes post

the send and receive operations at similar times. However,

if the RTR message arrives late, there will be no progress

(unless the user progresses manually). The eager point-to-point

protocol is fully asynchronous if free slots are available at the

receiver-side. The implementation uses unsignaled RDMA-

Write and polls the memory to detect memory completion.

Consult [13] for a detailed analysis of the different progression

schemes in comparison to manual progression. However, this

protocol does not support progress on the collective messaging
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layer. If the collective algorithm consists of multiple commu-

nication rounds (e.g., broadcast is implemented as a tree or

Allreduce in a pipeline way), only the first round is progressed

automatically and the user has to progress the following rounds

manually. This is a big limitation in the current implementation

that our new threaded implementation seeks to overcome.

B. Fully Asynchronous Collective Communication

This section describes the design of the fully threaded ver-

sion to deal with multiple communication contexts (MPI com-

municators) and multiple point-to-point InfiniBand connec-

tions (queue pairs (QP)). Our design focuses on an interrupt-

based implementation because polling has been well analyzed

in previous work (e.g., [21]). Each queue pair represents a

channel between two hosts and is associated with a completion

queue where events are posted. Those events could be the

receipt of a new message or the notification of a message

transmission. Each completion queue is associated with a so

called completion channel to use interrupt driven message

progression. Each completion channel offers a file descriptor

that can be used in system calls (e.g., select() or poll())

to wait for events.

To get a notification for every packet, the implementation

is changed to use RDMA-Write with immediate (signaled

RDMA-Write) for every message transmission. This makes

sure that the receiver receives an interrupt for incoming

messages.

In our design, the progress thread handles all collective and

point-to-point progressions. After the user thread posted a new

collective operation, the new handle is added to the thread’s

worklist. This is one of two synchronization/locking points

between the two threads. The second synchronization is when

the user wants to wait on the communication where it waits

SQ
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Fig. 6. Completion events generated by the hardware for both point-to-point
protocols.

until a (shared memory) semaphore attached to the handle

becomes available (is activated by the progress thread). The

test call just checks if the semaphore would block and returns

true if not.

The progress thread itself generates a list of point-to-point

requests from its collective worklist (every collective handle

in the list has a list of point-to-point requests attached) and

calls OF Waitany() with the full list. When OF Waitany()

returns, a point-to-point request finished and the progress

thread calls LibNBC’s internal scheduler with the associated

collective handle to see if any progress can be made on the

collective layer. Then it compiles a new list of point-to-point

requests (since a handle might have been changed) and enters

OF Waitany() again.

The implementation of OF Waitany() uses the list of point-

to-point requests to assemble a list of file pointers (by checking

the associated completion channels). The function then blocks

(with the poll() system call) until one of the file pointers

gets available (i.e., a completion channel event occurred).

Then it polls the associated completion queue, progresses the

message for which the event occurred and returns if a message

transmission finished. If no transmission finished, the function

just enters the poll() call again. The number of completion

events depends on the point-to-point protocol used. Figure 6

illustrates the protocol-dependent completions.

The program must also ensure that if the user issues a new

collective operation, this is picked up by the thread (to avoid

deadlocks and achieve best progress). In order to do so, a

pipe read file descriptor is added to the list of file pointers

to poll(). Whenever a new request is added to the threads

worklist, it is woken up from the wait queue by writing to this

pipe.

This scheme enables fully asynchronous progress and the

collective operations are finished in the background without



any user interaction. The following sections discuss bench-

marks and performance results for several different configura-

tions.

V. EXPERIMENTAL ANALYSIS

We benchmark our implementation on the Odin cluster at

Indiana University. Odin consists of 128 AMD 270 HE dual-

core dual-socket nodes. It runs Red Hat Enterprise Linux

with a 2.6.9 kernel. The network interface cards are Mellanox

MT23108 InfiniBand HCAs and the Open Fabrics Enterprise

Edition version 1.2 is used as a communication library.

A. Point-to-point Overhead

We implemented a new communication pattern benchmark

for Netgauge [22] that measures the overlap potential and com-

munication overhead for point-to-point messages and different

progression strategies. The benchmark works as follows:

1) benchmark the time tb for a blocking communication

(a) start timer tb
(b) start communication

(c) wait for communication

(d) stop timer tb
2) start communication

3) compute for time tb
(a) endtime = current time + tb
(b) while(current time < endtime) do computation

4) wait for communication to finish

The measurement is done as ping pong with pre-posted

receives on the client side, i.e., “start communication” posts

a non-blocking receive and a non-blocking send and “wait

for communication” waits until both operations finished. The

server side simply returns the packets to the sender. The

overhead to is the sum of the times spent to start the commu-

nication, progress the communication (test) and wait for the

communication to complete.

We compare the Open MPI implementation which needs

manual message progression (cf. Section III) with our Mini-

MPI implementation. The first experiment is a parameter

study which aims to find the best parameters for the manual

progression of Open MPI. We conducted benchmarks for tests

every 2n bytes ∀n = 10..18. The test every 65536 bytes

performed best for most message-sizes.

The results between two Odin nodes are shown in Figure 7.

It compares Open MPI (using the best test configuration for

every 65536 bytes) with our threaded and non-threaded Mini-

MPI implementation (LibOF). The results show that the over-

lap optimized Mini-MPI has a generally lower CPU overhead

than the Open MPI implementation. Adding a progression

thread to this implementation decreases the overhead due to

offloading the communication processing to a spare core.

We conclude from those experiments that the threaded

progression strategy can be very beneficial for point-to-point

messaging if the progression thread runs on a separate CPU

core. The next section analyzes the collective progression

behavior where all cores might be busy with computation.
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B. Collective Overhead

In order to analyze CPU overhead for non-blocking collec-

tive operations, we implemented NBCBench [10], a bench-

mark following the same concept as our point-to-point mea-

surements. The main difference is that there is no client/server

concept since all processes are part of the collective call.

This also requires a new synchronization scheme to ensure

that all processes start at the same global time. We use the

scheme outlined in our previous work on measuring collective

operations [23] where every rank measures the difference

between its local time and the time on rank 0. After that, rank 0

broadcasts a global starting time for the collective operation to

all nodes. We apply a similar concept to generate computation

time as in the point-to-point benchmark.

We benchmarked all collective operations and present Allre-

duce, the most important multi-round operation (cf. [24]).

Other important single-round operations, like Alltoall have

been evaluated in [13] and showed a high potential for overlap.

The reduction operations are at the same time the most com-

plicated operations to optimize for overhead. Those operations

include, additionally to the communication, a computation step

that uses a significant amount of CPU cycles in the reduction

operation.

In our analysis we focus on the Allreduce operation which

has been found to be he hardest to optimize for overlap [10].

All other operations perform (significantly) better (with lower

overhead) in all benchmarked cases. The Allreduce imple-

mentation in LibNBC uses two different algorithms for small

and large messages (cf. [25]). A simple binomial tree with

a reduction to rank 0 followed by a broadcast on the same

tree is used for messages smaller then 65kiB. This algorithm

has 2 · log2P communication rounds on P processes. The

large message algorithm chops the message into P chunks and

performs 2 · P communication rounds in a pipelined manner

to reduce the data.

Figure 8 shows the overhead of a non-blocking Allreduce

operation on 32 nodes with 1 process per node. The best test
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strategy was to test every 1024 bytes, but this is significantly

outperformed by the threaded implementation due to com-

munication offload to spare cores. Real time threads do not

improve performance in this scenario.

These results show that the threaded implementation is able

to lower the CPU overhead by one order of magnitude if

a spare CPU core is available to offload the computation.

However, we showed in [21] that some applications can benefit

from using all cores. That means that there might be no “free”

cores on today’s dual-, quad- or oct-core systems. Thus, we

also have to evaluate our progression strategies in the case

where all CPU cores are busy with user computation. However,

in general, we assume that especially memory-bound and

irregular algorithms like sparse solvers or graph problems can

not use the growing number of available cores so that spare

communication cores will be available for communication

offload in the near future.

1) The Oversubscribed Case: Using MPI exclusively

means running n MPI processes on each n-core node. This

leads to a 2:1 oversubscription of threads vs. available cores.

Other models, like hybrid MPI + OpenMP [20] might lead to

only one progression thread per node but are more complicated

to program and optimize.

To reflect the oversubscription case, we run 4 threads on

each of the 32 test nodes of Odin. This leads to 128 processes

performing the collective operations. Our results in Figure 9

show that our test strategy did not perform well when all

cores are busy. The threaded implementation is also not able

to decrease the communication overhead significantly due to

scheduling problems in the operating system described in

Section III-C1. However, those OS effects can be overcome

with a real-time thread that preempts the user computation as

soon as an InfiniBand completion event occurs.

The timing-based measurements only accounts for the CPU

overhead of the actual communication calls (NBC Iallreduce

and NBC Wait) but other overheads such as interrupt pro-
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cessing, time spent in the InfiniBand kernel driver and context

switching overhead as well as cache pollution are not taken

into account and could have a detrimental effect on real

application performance. Thus, we analyze the number of con-

text switches and the context switch and interrupt processing

overhead in the following.

a) The number of context switches: The implementation

allows for more then one event to be processed by the progress

thread in a single interrupt. However, the real time scheduling

might cause many context switches. The maximum number

of context switches equals to the number of completion

notifications which depends on the transport protocol and the

collective algorithm. The eager protocol causes 1 completion

on the sender and the receiver and the rendezvous protocol

causes 2 completions on the sender the receiver as explained

in Section IV-B. Thus, the tree-based small message algorithm

causes up to 1 · 2 · log2P completion events in the eager case

and 2 · 2 · log2P completion events in the rendezvous case

(each intermediate node sends and receives log2P messages).

The number of interrupts is thus 14 or 28 in our example with

128 processes. The pipelined large message algorithm causes

up to 1 · 2 · (2 · P − 2) completions for eager messages and

2 ·2 ·(2 ·P −2) for rendezvous messages (each node sends and

receives a single packet in 2 · P − 2 rounds. In our example

with P = 128, this equals to 508 or 1016 interrupts.

2) Interrupt and Context Switch Overhead: It is not clear

how much a threaded implementation suffers from context

switch and system interrupt overhead. In our model, the

latency incurred by those operations is less important because

we assume that this will be overlapped with computation. The

most important measure in our model is the CPU overhead,

i.e., how many CPU cycles the interrupt processing and context

switch “steals” from the user application. We describe a simple

microbenchmark to assess the context switching and interrupt

overhead in the following.

The benchmark measures the time to process a fixed work-



load on every of the c CPU cores. In order to do this, it spawns

one computation thread on each core i that records the time ti
1

to compute the fixed problem in a loop. The benchmark has

two stages, stage one measures the normal case where no extra

interrupts are generated/received1. Then, the main thread that

has been sleeping so far programs the real time clock interrupt

timer to the highest possible frequency f = 8192 Hz for stage

2. In this stage, the main thread receives those interrupts and

thus steals computation cycles from the worker threads that

benchmark ti
2

on each core. The results from all cores for the

two stages are averaged into t1 =
∑

i
ti
1
/c and t2 =

∑

i
ti
2
/c.

The difference t = t2 − t1 is the time that is added by the

interrupts and subsequent context switches. The number of

interrupts in stage 2 can be estimated with i = t2 · 8192 Hz.

We ran this benchmark on the Odin cluster with 4 com-

putation threads. The average fixed computation of 7 mea-

surements in stage 1 was t1 = 19.14626 s and in stage 2

t2 = 19.27969 s. The number of interrupts in stage 2 was

thus j = t2 · f ≈ 157939. The j interrupts delayed the work

by t = 133430 µs, thus yielding a CPU overhead per interrupt

per core of 133430/1579394 · 4 = 3.38 µs.

We show that interrupts and context switching between

threads causes about 3.4µs overhead on our test system and

is thus relatively expensive. Based on that, we conclude that

frequent context switches increase the overhead significantly.

Especially for the large-message Allreduce algorithm that

might receive up to 1016 interrupts which would mean a

constant overhead of 3.4ms per core. However, this overhead

is not reflected in our current time-based computation anal-

ysis. Additional other overheads like the time spent in the

InfiniBand driver stack and side effects like cache pollution

are not modeled so far. To overcome this limitation, we

propose a workload-based benchmark that simulates a real-

world application with the computation of a constant workload

in the different scenarios.

3) Workload-based overhead benchmark: We extend

NBCBench with a workload-based computation scheme. The

first step to obtain the blocking time tb remains the same.

1) benchmark the time tb for a blocking communication

2) find workload λ that needs tb to be computed

(a) λ = 0
(b) while(tλ < tb) { increase workload λ by δ;

tλ = time to compute workload λ }
3) start timer tov

4) start communication

5) compute fixed workload λ
6) wait for communication

7) stop timer tov

The overhead to in this case is the difference between the time

for the overlapped case (computation and communication) and

the computation time, thus to = tov − tc.

We repeated the benchmarks with the new fixed workload

scheme. The results for a single MPI process per node are as

1“no extra” means only the normal background “noise” in this case
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Fig. 10. NBC Iallreduce overhead on 32 nodes, 4 processes per node with
different progression strategies for the work-based benchmark

expected very similar to the results with the time-based bench-

mark and thus omitted due to space restrictions. However,

the results in the overloaded case with 4 processes per node

are rather different and shown in Figure 10. This benchmark

reveals that even the real time thread is not able to decrease the

communication overhead by an order of magnitude as shown

with the time-based benchmark. However, the performance

improvement is still significant with about a factor of two

improvement (note the logarithmic scale of the graph) but

mitigated by different sources of overhead, such as context

switching, cache pollution and interrupt or driver processing.

It is also interesting, that the right test strategy (in this case

every 1024 bytes) is able to deliver higher performance for

some message sizes due to the relatively low overhead of the

test calls.

Large Allreduce messages and other collectives have also

been studied but are not shown here due to space restrictions.

It has been shown that large messages are easy to overlap

with a test-based strategy [10]. Our results with the threaded

approach support the previous results and the real-time thread

performs an order magnitude better the normal threading in

the time-based benchmark. This is reduced to a factor of two

in the work-based benchmark that takes the different sources

of overhead into account. Other collective operations, such

as Reduce, Bcast, Alltoall, Allgather show significantly better

results than the complex Allreduce operation because they do

either not involve computation or deliver the result to a single

host only. Due to space restrictions, we focused our analysis

on the complex Allreduce operation which is also the most

important collective operation.

C. Overcoming the Threading Issues

There are different ways to mitigate or even overcome the

problems with threaded progression. The most obvious way

would be to limit the number of interrupts by intelligent coa-

lescing. This means that only the events that are important for

progression (e.g., no local completions) generate an interrupt



and wake the progress thread up. This technique is already

used in Myrinet/MX to progress point-to-point communication

and is able to at least halve the number of interrupts and thus

reduce the overhead significantly.

Onother easy change would be to replace the thread-based

mechanism with a signal based concept, where the progression

code is executed by a signal handler in the same thread. This

would save the context switching and scheduler overhead time.

However, the current implementation of signals is unreliable

and needs to be made reliable to avoid deadlocks.

Another way would be to implement the whole progression

engine inside the OS kernel. This would also eliminate context

switches, scheduler overhead and also the expensive privilege

changes between user- and kernel-space. Since the scheduler

design is rather simple, this could be a viable solution to the

progression problem. With this, we argue that operating system

bypass might not be beneficial in all scenarios. Magoutis et al.

also mention several other benefit of kernel-level I/O in [26].

The third and theoretically best but also most expensive way

is to implement the whole high-level operation in the network

hardware. Approaches to do full point-to-point message pro-

gression in the network interface card have been described in

Section III-B. This would need to be extended with function-

ality to handle higher level communication patterns.

VI. CONCLUSIONS AND FUTURE WORK

We analyzed different strategies for asynchronous progres-

sion for non-blocking collective communication operations in

message passing libraries. We analyzed polling and interrupt

based threaded implementations and can conclude that polling

based implementations are only beneficial if separate com-

putation cores are available for the progression threads. The

interrupt-based implementation might also be helpful in the

oversubscribed case (i.e., the progress and user thread share a

computation core) but this depends on the collective operation

as well as on operating system parameters. We found that the

progression thread needs to be scheduled immediately after a

network event to ensure asynchronous progress. A good way

to implement this is the usage of real-time functionality in the

current Linux kernel. Our analyses for the most complicated

operation, Allreduce, show that it is hard to achieve high

overlap. However, further analyses show that other simpler

operations, like Reductions or Bcast perform very well in our

model. All programs used in this article are available on the

LibNBC webpage.

We also proposed several mechanisms to mitigate the differ-

ent sources of overhead that we identified in this article. We

will also investigate different collective algorithms that can

further improve the CPU availability to the user thread.
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