
Optimized Routing for Large-
Scale InfiniBand Networks

Torsten Hoefler, Timo Schneider,
and Andrew Lumsdaine

Open Systems Lab
Indiana University

1

Effect of Network Congestion

2

Microbenchmarks
(NetPIPE, IMB ping pong

Netgauge one_one) Lower Bound!

Reality? 3 2 1 0
Congestion Factor

CHiC Supercomputer:
• 566 nodes, full bisection IB fat-tree
• effective Bisection Bandwidth: 0.699

Full Bisection Bandwidth != Full Bandwidth
 expensive topologies do not guarantee high bandwidth
 deterministic oblivious routing cannot reach full bandwidth!

 see Valiant’s lower bound
 random routing is asymptotically optimal but looses locality

 but deterministic routing has many advantages
 completely distributed
 very simple implementation

 InfiniBand routing:
 deterministic oblivious, destination-based
 linear forwarding table (LFT) at each switch
 lid mask control (LMC) enables multiple addresses per port

3

InfiniBand Routing Continued
 offline route computation (OpenSM)
 different routing algorithms:
 MINHOP (finds minimal paths, balances number of

routes local at each switch)
 UPDN (uses Up*/Down* turn-control, limits choice but

routes contain no credit loops)
 FTREE (fat-tree optimized routing, no credit loops)
 DOR (dimension order routing for k-ary n-cubes, might

generate credit loops)
 LASH (uses DOR and breaks credit-loops with virtual

lanes)
4

Why do Credits Loop?
 IB uses credit-based p2p flow-control

 egress messages sent only if receive-buffer available

 very similar to deadlocks in wormhole-routed systems

5

How to deal with Credit Loops?
 prevent (UP*/Down*, turn-based routing)

 resolve (LASH, use VLs to break cycles)

 ignore (MINHOP, DOR, not as bad as it
sounds, might deadlock but can be
“resolved” with packet timeouts)
 discouraged by IB spec

6

Some Theoretical Background
 model network as G=(VP[VC, E)
 path r(u,v) is a path between u,v 2 VP

 routing R consists of P(P-1) paths
 edge load l(e) = number of paths on e 2 E

 edge forwarding index ¼(G,R)=maxe2E l(e)
 ¼(G,R) is a trivial upper bound to congestion!

 goal is to find R that minimizes ¼(G,R)
 shown to be NP-hard in the general case

7

Two heuristics based on SSSP
 we propose two heuristics:
 P-SSSP
 P2-SSSP

 P-SSSP starts a SSSP run at each node
 finds paths with minimal edge-load l(e)
 updates routing tables in reverse

 essentially SDSP
 updates l(e) between runs

 let’s discuss an example …

8

P-SSSP Routing (1/3)

9

Step 1:
Source-node 0:

P-SSSP Routing (2/3)

10

Step 2:
Source-node 1:

P-SSSP Routing (3/3)

11

Step 3:
Source-node 2:

¼(G,R)=2

P2-SSSP
 simply run a single SSSP for each route
 better (expensive) heuristic, lower ¼(G,R)

12

¼(G,R)=1

How to Assess a Routing?
 edge forwarding index is a trivial upper bound
 ability to route permutations is more important

 bisect P into two equally-sized partitions
 choose exactly one random partner for each node
 £(P!/(P/2)!) combinations!

 our simulation approach:
 pick N (=5000) random bisections/matchings
 compute average bandwidth
 shown to be rather precise (Cluster’08)

13

Comparison to Real Systems
 ibdiagnet , ibnetdiscover, and ibsim
 we extracted topology and routing from:
 Thunderbird (SNL) – 4390 LIDs

 thanks to: Adam Moody & Ira Weiny

 Ranger (TACC) – 4080 LIDs
 thanks to: Christopher Maestas

 Atlas (LLNL) – 1142 LIDs
 thanks to: Len Wisniewsky

 Deimos (TUD) – 724 LIDs
 thanks to: Guido Juckeland and Michael Kluge

 Odin (IU) – 128 LIDs

14

Real-world Results

15

Real-World Bandwidth

Real-World Runtime

Some more Topologies

16

Fat-tree topologies

k-ary 2,3-cube topologies (torus)
(filled switches with endpoints)

Even more Topologies

17

2-ary n-cube topologies (hypercube)
(filled switches with endpoints)

random topologies
(12 nodes per switch)

Simulations are good, but still Simulations
 we implemented our routing with OpenSM’s file method

 tested it on the Deimos and Odin clusters (needs exclusive
admin access to whole machine – many thanks to Guido Juckeland)

 Odin is standard fat-tree, Deimos’ topology:

18

Benchmark Results Odin

19

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 5% improvement

Benchmark shows 18% improvement!

Benchmark Results Deimos

20

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 23% improvement

Benchmark shows 40% improvement!

Summing up and Future Work!
 we proposed two new routing heuristics for

deterministic oblivious routing (IB)

 simulation shows increase in effective bisection
bandwidth over standard OpenSM routing
 e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%

 benchmarks show even higher improvements
 Odin 18%, Deimos 40%

 Credit-loops remain, but solution is obvious
(LASH-like VL principle)

21

Reproduce our Results!
 talk to us!

 play with our ORCS simulator
 http://www.unixer.de/ORCS

 benchmark your cluster (and talk to us)
 Netgauge pattern “ebb”
 http://www.unixer.de/research/netgauge

 ask questions – now!

22

Backup Slides

23

Backup Slides

Credit Loops Continued …

24

Source Network and Routes

Buffer
Dependency

Graph

Lower ¼(G,R) and lower bandwidth!?

 Yes!
 ¼(G,R) is just an upper bound
 example:

 no worries, I will not explain it here (refer to article for details)

25

