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HiPINEB Panel — MSN vs. ICN (DC vs. HPC networks)

Torsten Hoefler (on behalf of nobody, not even my institution or myself!) ‘ T '{,, 7
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ABSTRACT

Traditional database operators such as joins are relevant not
only in the context of database engines but also as a build-
ing b B v computational and machine learning algo-
Tith Ivent of big data, there is an increasing
der join algorithms that can scale with the

ing wvailable hardware resources.
1 the implementation of distributed

ith several thousand cores con-
k asused in high performance
ters. We compare radix hash
15 and discuss their imple-
er, we explain how to use
impact and advantages of
f network scheduling, and
sorting vs. hashing. The
the algorithms we present
ber of cores, reaching a throughput
ples per second on 4,096 cores.

large sets of data is cru-
including traditional data
machine learning applica-
1s involve complex large-

ring efficient distributed join

t massive scale.

sort-merge join algorithms for
3, 5, 9, 27] and rack-scale data

33] has shown that carefully tuned

*mentations exhibit good performance.

inter-node network bandwidth.

This paper addresses the challenges of running state-of-
the-art, distributed radix hash and sort-merge join algo-
rithms at scales usually reserved to massively parallel sci-
entific applications or large map-reduce batch jobs. In the
experimental evaluation, we provide a performance analy-
sis of the distributed joins running on 4,096 processor cores
with up to 4.8 terabytes of input data. We explore how
join algorithms behave when high-bandwidth, low-latency
networks are used and specialized communication libraries
replace hand-tuned code. These two points are crucial to un-
derstand the evolution of distributed joins and to facilitate
the portability of the implementation to future systems.

Operating at large e requires careful process orchestra-
tion and efficient comnmnication. This poses several chal
lenges when scaling out join algorithms. For example, a join
eds to keep track of data movement between the
compute nodes in order to ensure that every tuple is trans-
mitted to the correct destination node for processing. At
large scale, the performance of the algorithm is dependent
on having a good communication infrastructure that anto-
matically selects the most appropriate method of communi-
cation between two processes.

We implemented both algorithms on top of MPI [31], a
standard library interface used in high-performance com-
puting applications and evaluated the join implementations
on two large-scale systems with a high number of cores con-
nected through astate-of-the-art low-latency network fabric.
The algorithms are hardware-conscious, make use of vector
instructions to speed up the processing, access remote data
through fast one-sided memory operations, and use remote
direct memaory access (RDMA) to speed up the data trans-
fer. For both algorithms, we provide a performance model
and a detailed diseussion of the implementation.

Important insights from the paper inchude: (i) Achiev-
ing maximmm performance requires having the right bal
ance of computing and communication capacity. Adding
mare cores to a compute node does not always improve, but
can_also_worsen performance. (i) Although both join al
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Define how MSN and ICN are similar and different.

o“ O N 4 RN ) S A
b" = Parameters:

= Bandwidth, bandwidth, iatency

= Machine characteristic
» (Loose) collection of racks
» Incremental upgrade
= Highly available during upgrade
= Network characteristics
= Multi-vendor
» Heterogeneous (ToR vs. Spine vs. external)
= Ethernet
= Lossy!
= Protocols
= TCP/IP
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Parameters:

= Latency, bandwidth, message rate
Machine characteristics

= Single machine (supercomputer)

* Rolled in as an atomic unit, upgrades limited
= Shut down for extended periods
Network characteristics

= Single-vendor

= Homogeneous

= Ethernot

= Lossless!

Protocols

= Specialized, highly optimized, proprietary
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Should research funding agencies support research in MSN or ICN?

= Let me be overly controversial/extreme ©

= DCresearch: given a set of rather complex somewhat random constraints (Ethernet, ECMP, MPLS,
TRILL, OpenFlow, RoCE, RoCEv2, VXLAN, NVGRE, SPB, ...), figure out how to improve parallel and
distributed computing workloads

= HPC: clean-slate approach, design network and protocols from scratch to fit requirements of parallel

computing workloads (pioneers adaptive routing in hardware etc.)
= Which one would you rather fund? | PN
= Fundamental research or system cobbling? © jy
. . . . . 5 I X P | 20 W
= Where will your funding have highest societal impact: //o
= Facebook, Google, etc. (with their own xx billion budgets) vs. .‘_fpg Qpplied
= Basic sciences (climate (!), drugs, cancer, physics, astronomy etc.) ! - -) D
9 [ ..(.

= ...not immediately clear?

Application

Basic Science
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Bandwidth: Do we need more bandwidth for either MSN or ICN?

= Yes
= Why? - Latency hiding!

for (int i = 0; i < steps; ++i) {
for (int idx = from; idx < to; idx += jstride)
out[idx] = -4.0 * in[idx] +
in[idx + 1] + in[idx - 1] + * jterative stencil kernel

in[idx + jstride] + inlidx - jstride]; computation thread specific idx

if (1lsend)
dcuda_put_notify(ctx, wout, rank - 1,
len + jstride, jstride, &out[jstride], tag);

if (rsend)
dcuda_put_notify(ctx, wout, rank + 1,

@, jstride, &out[len], tag); communication [2]

dcuda_wait_notifications(ctx, wout,
DCUDA ANY_SOURCE, tag, lsend + rsend);

* map ranks to blocks
swap(in, out); » device-side put/get operations
swap(win, wout); * notifications for synchronization

} .
* shared and distributed memory
[1] T. Gysi, J. Baer, TH: dCUDA: Hardware Supported Overlap of Computation and Communication, SC16
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MSN are more cost-conscious, compared with ICN. Should MSN providers
invest in HPC ICN to help drive down cost?

= You mean they’re cheap? ©

= Cheap is not necessarily good!
= Let’s look at 100Gbit/s networking

FAST CHEAP

$675-$1,950 / NIC

= Side note: operators tell me that the network is not the major cost in last-generation
supercomputers (only 10-15%)
= Corollary: we should start talking about GPUs, deep learning, and pricing ©
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Will MSN and ICN converge in the future? If so, when and what
network look like?

= Yes..
= Economy of scale, no matter what it will be, it will be called Ethernet
= But what is Ethernet? CEE/PFC or not?
= The fundamental differences remain
Lossless vs. lossy transport
Adaptive vs. static routing
Bare-metal vs. virtualized/tunneled

= No..
= HPC’s clean-slate approach fosters innovation
Less cruft ... (this is why | love this field as a scientist)
= HPC may always leap ahead as it did in computer architecture
Vectorization, GPUs, FPGAs ...
= ... and network architecture
Packet-level adaptive routing, lossless transport, RDMA
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One last point ...

IS

= |t’s all about the endpoints anyway!
= Most performance is lost at the endpoint, not in the network
We have very good networks/topologies (Slim Fly [1] of course!)

= E.g., latency — 50-70ns/hop, 600ns at endpoints Communication conflicts
... who to blame? 0—7, 14, 67

i)

Crossing the Root Complex
conflict

Example:

Cray CS Storm — MeteoSwiss supercomputer

2 cabinets, 12 hybrid computing nodes per cabinet
2 Intel Haswell 12-core CPUs per node

8 NVIDIA Tesla K80 GPU accelerators per node [2]

Upstream port
conflict

A\

[1] M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology , SC14
[2] M. Martinasso, et al.: A PCle Congestion-Aware Performance Model for Densely Populated Accelerator Servers SC16



