. . P R B : spcl.inf.ethz.ch
ETH:zurich 'i- N s W @spcl_eth

Systems e ETH zino

HiPINEB Panel — MSN vs. ICN (DC vs. HPC networks)

Torsten Hoefler (on behalf of nobody, not even my institution or myself!) ‘ T '{,, 7

spcl.inf.ethz.ch
3y @spcl_eth

ETH:zurich

Systemse ETH.

VLDB’17

ANLY

Distributed Join Algorithms on Thousands of Cores

ENGINEERINCG
COMPUTATION
SERIES Claude Barthels, Ingo Mdillert, Timo Schneider, Gustavo Alonso, Torsten Hoefler

Systems Group, Dept. of Computer Science, ETH Ziirich
{firstname.lastname}@inf.ethz.ch

Using Advanced MPI

Modern Features of the

William G"O,/, p
Torsten Hoefler
Rajeev Thakur

Ewing Lusk

ABSTRACT

Traditional database operators such as joins are relevant not
only in the context of database engines but also as a build-
ing b B v computational and machine learning algo-
Tith Ivent of big data, there is an increasing
der join algorithms that can scale with the

ing wvailable hardware resources.
1 the implementation of distributed

ith several thousand cores con-
k asused in high performance
ters. We compare radix hash
15 and discuss their imple-
er, we explain how to use
impact and advantages of
f network scheduling, and
sorting vs. hashing. The
the algorithms we present
ber of cores, reaching a throughput
ples per second on 4,096 cores.

large sets of data is cru-
including traditional data
machine learning applica-
1s involve complex large-

ring efficient distributed join

t massive scale.

sort-merge join algorithms for
3, 5, 9, 27] and rack-scale data

33] has shown that carefully tuned

*mentations exhibit good performance.

inter-node network bandwidth.

This paper addresses the challenges of running state-of-
the-art, distributed radix hash and sort-merge join algo-
rithms at scales usually reserved to massively parallel sci-
entific applications or large map-reduce batch jobs. In the
experimental evaluation, we provide a performance analy-
sis of the distributed joins running on 4,096 processor cores
with up to 4.8 terabytes of input data. We explore how
join algorithms behave when high-bandwidth, low-latency
networks are used and specialized communication libraries
replace hand-tuned code. These two points are crucial to un-
derstand the evolution of distributed joins and to facilitate
the portability of the implementation to future systems.

Operating at large e requires careful process orchestra-
tion and efficient comnmnication. This poses several chal
lenges when scaling out join algorithms. For example, a join
eds to keep track of data movement between the
compute nodes in order to ensure that every tuple is trans-
mitted to the correct destination node for processing. At
large scale, the performance of the algorithm is dependent
on having a good communication infrastructure that anto-
matically selects the most appropriate method of communi-
cation between two processes.

We implemented both algorithms on top of MPI [31], a
standard library interface used in high-performance com-
puting applications and evaluated the join implementations
on two large-scale systems with a high number of cores con-
nected through astate-of-the-art low-latency network fabric.
The algorithms are hardware-conscious, make use of vector
instructions to speed up the processing, access remote data
through fast one-sided memory operations, and use remote
direct memaory access (RDMA) to speed up the data trans-
fer. For both algorithms, we provide a performance model
and a detailed diseussion of the implementation.

Important insights from the paper inchude: (i) Achiev-
ing maximmm performance requires having the right bal
ance of computing and communication capacity. Adding
mare cores to a compute node does not always improve, but
can_also_worsen performance. (i) Although both join al

ETH:zurich 'i-

spcl.inf.ethz.ch
Z 3y @spcl_eth

Systems e ETH zino

Define how MSN and ICN are similar and different.

o“ O N 4 RN) S A
b" = Parameters:

= Bandwidth, bandwidth, iatency

= Machine characteristic
» (Loose) collection of racks
» Incremental upgrade
= Highly available during upgrade
= Network characteristics
= Multi-vendor
» Heterogeneous (ToR vs. Spine vs. external)
= Ethernet
= Lossy!
= Protocols
= TCP/IP

777 /X

a,

S T T

%‘

Parameters:

= Latency, bandwidth, message rate
Machine characteristics

= Single machine (supercomputer)

* Rolled in as an atomic unit, upgrades limited
= Shut down for extended periods
Network characteristics

= Single-vendor

= Homogeneous

= Ethernot

= Lossless!

Protocols

= Specialized, highly optimized, proprietary

Systems e ETH zino

o .y S f Sh spcl.inf.ethz.ch
ETHzurich -i- WV g e /@2' 3 @spcl_eth

Should research funding agencies support research in MSN or ICN?

= Let me be overly controversial/extreme ©

= DCresearch: given a set of rather complex somewhat random constraints (Ethernet, ECMP, MPLS,
TRILL, OpenFlow, RoCE, RoCEv2, VXLAN, NVGRE, SPB, ...), figure out how to improve parallel and
distributed computing workloads

= HPC: clean-slate approach, design network and protocols from scratch to fit requirements of parallel

computing workloads (pioneers adaptive routing in hardware etc.)
= Which one would you rather fund? | PN
= Fundamental research or system cobbling? © jy
. 5 I X P | 20 W
= Where will your funding have highest societal impact: //o
= Facebook, Google, etc. (with their own xx billion budgets) vs. .‘_fpg Qpplied
= Basic sciences (climate (!), drugs, cancer, physics, astronomy etc.) ! - -) D
9 [..(.

= ...not immediately clear?

Application

Basic Science

. . ; SRR spcl.inf.ethz.ch
ETH:zurich -i- p /@2' 3 @spcl_eth

Systems e ETH zino

Bandwidth: Do we need more bandwidth for either MSN or ICN?

= Yes
= Why? - Latency hiding!

for (int i = 0; i < steps; ++i) {
for (int idx = from; idx < to; idx += jstride)
out[idx] = -4.0 * in[idx] +
in[idx + 1] + in[idx - 1] + * jterative stencil kernel

in[idx + jstride] + inlidx - jstride]; computation thread specific idx

if (1lsend)
dcuda_put_notify(ctx, wout, rank - 1,
len + jstride, jstride, &out[jstride], tag);

if (rsend)
dcuda_put_notify(ctx, wout, rank + 1,

@, jstride, &out[len], tag); communication [2]

dcuda_wait_notifications(ctx, wout,
DCUDA ANY_SOURCE, tag, lsend + rsend);

* map ranks to blocks
swap(in, out); » device-side put/get operations
swap(win, wout); * notifications for synchronization

} .
* shared and distributed memory
[1] T. Gysi, J. Baer, TH: dCUDA: Hardware Supported Overlap of Computation and Communication, SC16

ETH ziirich -EH' s i 4 /\/i’}iﬁz @ @spcl_ o
MSN are more cost-conscious, compared with ICN. Should MSN providers
invest in HPC ICN to help drive down cost?

= You mean they’re cheap? ©

= Cheap is not necessarily good!
= Let’s look at 100Gbit/s networking

FAST CHEAP

$675-$1,950 / NIC

= Side note: operators tell me that the network is not the major cost in last-generation
supercomputers (only 10-15%)
= Corollary: we should start talking about GPUs, deep learning, and pricing ©

ETH:zurich 'i'

Systems e ETH zino

Will MSN and ICN converge in the future? If so, when and what
network look like?

= Yes..
= Economy of scale, no matter what it will be, it will be called Ethernet
= But what is Ethernet? CEE/PFC or not?
= The fundamental differences remain
Lossless vs. lossy transport
Adaptive vs. static routing
Bare-metal vs. virtualized/tunneled

= No..
= HPC’s clean-slate approach fosters innovation
Less cruft ... (this is why | love this field as a scientist)
= HPC may always leap ahead as it did in computer architecture
Vectorization, GPUs, FPGAs ...
= ... and network architecture
Packet-level adaptive routing, lossless transport, RDMA

spcl.inf.ethz.ch

/\i - "y @spcl_eth

ill that

. : spcl.inf.ethz.ch
ETHziirich 'i' 2 2 2 A

3y @spcl_eth

Systems e ETH zino

One last point ...

IS

= |t’s all about the endpoints anyway!
= Most performance is lost at the endpoint, not in the network
We have very good networks/topologies (Slim Fly [1] of course!)

= E.g., latency — 50-70ns/hop, 600ns at endpoints Communication conflicts
... who to blame? 0—7, 14, 67

i)

Crossing the Root Complex
conflict

Example:

Cray CS Storm — MeteoSwiss supercomputer

2 cabinets, 12 hybrid computing nodes per cabinet
2 Intel Haswell 12-core CPUs per node

8 NVIDIA Tesla K80 GPU accelerators per node [2]

Upstream port
conflict

A\

[1] M. Besta, T. Hoefler: Slim Fly: A Cost Effective Low-Diameter Network Topology , SC14
[2] M. Martinasso, et al.: A PCle Congestion-Aware Performance Model for Densely Populated Accelerator Servers SC16

