
Torsten Hoefler
Indiana University

ICPP 2009
Vienna, Austria

Group Operation Assembly Language
- A Flexible Way to Express Collective Communication -

Torsten Hoefler¹, Christian Siebert²,
Andrew Lumsdaine¹

1

¹Open Systems Lab
Indiana University, Bloomington

²NEC Laboratories Europe
Sankt Augustin, Germany

09/25/09
ICPP 2009

Vienna, Austria

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Introduction

 MPI as de-facto standard in parallel processing
 Collective operations are integral part of MPI
 Large body of research on advanced algorithms
 Multiple implementations in MPI libraries:

 e.g., MPICH2, MVAPICH, Open MPI
 “Group Operations” are also used in other

environments (e.g., MRNet, Multicast)

2

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Motivation
 Group Operations are a general concept
 e.g., used in MPI, UPC, MRNet

 Nonblocking Collective operations arrived
 NBC will be in MPI 3.0 (or 2.3?)

 Most implementations are hard-coded
 Control-flow as static branches in source-code
 Requires considerable hand-tuning
 User-defined (sparse) collective operations (?)

 Hardware offload and NBC

3

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Broadcast Tree Examples
 Binomial trees used in many small-message

collectives (e.g., Bcast, Reduce)

4

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Our Goals
 Define a minimal language to express

collective communication to enable:

 efficient representation for offload
 fast and simple execution on slow PEs
 good specification of advanced algorithms
 execution on resource-constrained

environments (NIC)
 (automatic) transformational optimizations

5

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Abstracting
 What is the minimal set of operations

needed to perform any collective algorithm?
 Theorem 1 states that send, receive and

(local) dependencies are sufficient to model
any collective algorithm
 allows concise definition!

 Theorem 2 states that the order requirement
is relative to each single operation
 allows optimized/adaptive execution!

6

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Group Operation Assembly Language
 Very low-level specification (compilation target)

 cf. RISC assembler code

 Translated into a machine-dependent form
 cf. RISC bytecode

7

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

A Binomial Tree Example

8

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

GOAL Language Interface
 GOAL Language interface (Bcast example):

9

rank #1 {

r: recv <msg>,<len> from 0;

s1: send <msg>,<len> to 3;

s2: send <msg>,<len> to 5;

requ s1 -> r;

requ s2 -> r;

}

rank #0 {

send <msg>,<len> to 1;

send <msg>,<len> to 2;

send <msg>,<len> to 4;

}

rank #5 {

recv <msg>,<len> from 1;

} …

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Group Operation Assembly Language
 Alternative schedule creation at runtime:
 Library interface:

 gop=GOAL_Create()
 id=GOAL_Send(sched, buf, size, dest)
 id=GOAL_Recv(sched, buf, size, dest)
 GOAL_Exec(sched, func, buf, size)
 GOAL_Requ(sched, src_id, tgt_id)
 sched=GOAL_Compile(gop)

 Internal representation reflects a
dependency DAG
 enables transformational optimizations

10

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Optimization possibilities
 Adaptive execution
 Possible to consider process arrival pattern
 independent ops: sent to ready hosts first

11

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Optimization Possibilities (cont.)
 Parallel execution
 Schedule (DAG) allows for parallel execution

 Multiple parallel NICs
 Same scheduling issues as for multicore task

libraries (TBB, Cilk, OpenMP 3.0)
 Static schedule (compiler) optimization
 e.g., architecture-dependent pipelining

 Scheduler runs in thread or hardware
 Offload to spare CPU core
 Offload to NIC (same GOAL specification)

12

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Advanced Example - Dissemination

13

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Schedule Details
 Result of GOAL assembly
 Optimized for each architecture

 Should not lose flexibility
 Represents dependency/execution graph

 Our machine-dependent representation:
 We propose binary schedule
 Linear memory layout (cache/pre-fetch friendly)
 Executor only 98 SLOC C code in LibNBC
 Compression possible (not in this work)

14

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Execution Constraints
 How much memory do we need to execute a

schedule?
 We can use a sliding window (hold only parts of

the schedule in a scratchpad memory (NIC))
 Theorem 3: A schedule of length N can be

executed with additional memory using a
constant-size window.

 it’s actually also see:

15

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Execution Constraints (contd.)

16

 memory consumption is infeasible
 SRAM on a NIC is expensive!

 Solution: introduce additional dependencies
 BUT: additional dependencies serialization

 Theorem 4: Each schedule can be executed
in memory, if dummy actions are added.

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Implementation
 Ernest Rutherford: “We don’t have the

money, so we have to think.”
 no easy access to programmable NIC
 working with Myricom on Myrinet
 Mellanox seems to have a similar interface in

it’s next generation API
 We offloaded to a spare CPU core
 threading model
 replacing current implementation in LibNBC
 less synchronicity than round-based scheme!

17

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Test System
 Odin Cluster at Indiana University
 4x InfiniBand SDR
 Single 288 port Mellanox switch
 128 nodes
 4 cores per node -> 512 cores

 Open MPI coll component “tuned”
 version 1.3

 LibNBC 1.0 (with NBCBench 1.0)
 OFED-optimized version (uses RDMA-W)

18

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Blocking Collectives

19

No performance penalty!

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Nonblocking Collectives

20

Even less overhead!

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Conclusions
 Abstract definition of group communication
 easy definition of (non-)blocking for offload
 universal (implements all collectives)
 small overhead, maximum asynchrony

 Enables compiler-based optimizations and
dynamic scheduling
 e.g., pipelining, coalescing, memory registration

 First step towards high-level communication
expression

21

Torsten Hoefler, Indiana University ICPP 2009, Vienna Austria

Future Work
 Investigate compiler optimizations
 Compress schedules (reduce resource needs)
 Implement scheduler on NICs

Questions?

22

