
Energy-aware Software Development

for Massive-Scale Systems

Torsten Hoefler

With input from Marc Snir, Bill Gropp and Wen-mei Hwu

Colloquium talk at the University of Utah

2/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Outline

• The HPC Energy Crisis

• Computer Architecture Speculations

• Algorithmic Power Estimates

• Network Power Consumption

• Power-aware Programming

• Quick Primer on Power Modeling

• This is not an Exascale talk! But it’s fun to look at!

• All images used in this talk belong to the owner!

3/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Some Ammunition for Politics

• US EPA Report to Congress on Server and Data Center

Energy Efficiency, Public Law 109-431

• Data centers consumed 61 billion kilowatt-hours (kWh) in

2006 (1.5% of total U.S. electricity consumption)

• Electricity cost of $4.5 billion (~15 power plants)

• Doubled from 2000-2006

• Koomey’s report (Jul. 2011)

• Only 56% increase through 2006-2011 though

• Attributed to virtualization and economic crisis in 2008

• Well, we’re still on an exponential curve!

4/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Development and Projection of Energy Costs

• Exponential requirements times linear cost growth: 

Source: T. Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking

5/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

What is this “Energy Crisis”? (Short Version)

• Expectation: double performance every 18 months

at roughly equal costs (including energy)

• Realization: Explicit parallelism at all levels
• Instruction (massive out-of-order may end, ILP still important)

• Memory (implicit caching and HW prefetch?)

• Thread (simple tasking may not be efficient)

• Process (separated address space overheads unaffordable?)

• Not only parallelism!  more parallelism!

MPP SMP Many Core Many Thread

6/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Memory
9%

CPU
56%

Network
33%

Source: Kogge et al. Exascale Computing Study

inefficient!

System Power Breakdown Today (Longer Story)

7/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

CPU Power Consumption Prediction (56%)

• Overhead: Branch prediction, reg. renaming, spec.

execution, OOO, decoding (x86), caches …

0

500

1000

1500

2000

2500

Now Scaled Ideal Localized

Local

Off-Chip

On-Chip

Op

Overhead

Source: Bill Dally, 2011

Huge Overheads!

8/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Current Commodity Architectural Solutions

Commodity

Server
“Cell phone”

GPGPU

Vector

Superscalar

OOO issue

High power

Low perf.

Very cheap

Superscalar

OOO issue

VLIW/EPIC?

Med. power

High perf.

Expensive

Vector pipe

Many registers

Pipelined mem.

Low power

High perf.

Expensive

Multi-threaded

Shared units

Parallel memory

Low power

Cheap

Many core

Specialized

Very Low power

Very Cheap

9/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Future Power-aware Architectures?

• Overheads are too large!

• Especially complex logic inside the CPU

• Too complex instruction decode (esp. x86)

• Excessive copying in OOO

• Architectures are simplified

• E.g., Cell, SCC

• Small or no OOO fetch and instruction window

• Emphasize vector operations

• Fix as much as possible during compile time

• VLIW/EPIC comeback?

10/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

(V)LIW/EPIC to the Rescue?

• (Very) Large Instruction Word ((V)LIW)

• No dynamic operation scheduling (i.e., Superscalar)

• Static scheduling, simple decode logic

• Explicit Parallel Instruction Computing (EPIC)

• Groups of operations (bundles)

• Stop bit indicates if bundle depends on previous bundles

• Complexity moved to compiler

• Very popular in low-power devices (AMD/ATI GPUs)

• But non-deterministic memory/cache times make static

scheduling hard!

11/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Trends in Algorithms (Towards Co-Design)

• Most early HPC applications used regular grids

• Simple implementation and execution, structured

• However, often not efficient

• Needs to compute all grid points at full precision

• Adaptive Methods

• Less FLOPs, more science!

• Semi-structured

• Data-driven Methods

• “Informatics” applications

• Completely unstructured

T
R
E
N
D

12/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

MT

MT

The Full Spectrum of Algorithms

for (int i=0; i<N, i++)

 C[i] = A[i] + B[i]

for (int i=0; i<N, i+=s)

 vec_add(A[i], B[i], C[i])

VEC

VLIW

INT FP FP FP FP FP FP FP BR

for (int i=0; i<N, i++)

 spawn(A[i] = B[i]+C[i])

Structured Unstructured

while(v = Q.pop()) {

 for(int i=0, i<v.enum(), i++) {

 u = v.edges[i]; // mark u

 Q.push(u);

 }

VEC

while(v = Q.pop()) {

 for(int i=0, i<v.enum(), i+=s) {

 vec_load(u, v.edges[i];

 vec_store(Q.end(), u);

 }

while(spawn(Q.pop())) {

 for(int i=0, i<v.enum(), i+=s) {

 spawn(update(v.edges[i], Q)

}

Less

Regular

Algorithmic Trends

13/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

General Architectural Observations

• Superscalar, RISC, wide OOO outside of power budget

• Maybe “small/simple” versions

• VLIW/EPIC and Vector: very power-efficient

• Performs best for static applications (e.g., graphics)

• Problems with scheduling memory accesses

• Limited performance for irregular applications with

complex dependencies

• Multithreaded: versatile and efficient

• Simple logic, low overhead for thread state

• Good for irregular applications/complex dependencies

• Fast synchronization (full/empty bits etc.)

14/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Memory
18%

CPU
11%

Network
66%

Very inefficient!

Optimized CPU System Power Consumption

15/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Memory Power Consumption Prediction

• DRAM Architecture (today ~2 nJ / 64 bit)

• Cache/prefect can be very wasteful  scratchpad memory!

R
A

S
C

A
S

PAGE PAGE PAGE …

Current RAS/CAS-based Desired Address-based

A
D

D
R

A

D
D

R

PAGE PAGE PAGE …

All pages active

Many refresh cycles

Small part of read data is used

Small number of pins

Few pages active

Read (refresh) only needed data

All read data is used

Large number of pins

16/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Memory
2%

CPU
11%

Network
79%

CPU
13%

Optimized DRAM System Power Consumption

17/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

“The Network is the Computer”

• We must obey the network

• Everything is a (hierarchical) network!

L
-L

in
k
 C

a
b

le
s

Super Node
(32 Nodes / 4 CEC)

P7 Chip

(8 cores)

SMP node

(32 cores)

Drawer

(256 cores)

SuperNode

(1024 cores)

Building Block

18/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Network Power Consumption

0

100

200

300

400

500

600

700

0.1 1 10 100 1000

En
e

rg
y/

6
4

 b
it

 (
p

J)

Interconnect Distance (cm)

On Die

Chip to chip

Board to Board

Between

cabinets

Source: S. Borkar, Hot Interconnects 2011

19/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

A Quick Glance at Exascale

• 20 MW  20 pJ/Flop

• 20% leakage  16 pJ/Flop left

• 7nm prediction: FPU needs 10 pJ/Flop

• 6 pJ/Flop left for data movement 

• Expected to be 10x-100x more!

Power Scale

Exaflop 20 MW Data Center

Petaflop 20 kW Rack/Cabinet

Teraflop 20 W Chip

20/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

0

200

400

600

800

0.1 10 1000

En
e

rg
y/

6
4

 b
it

 (
p

J)

Interconnect Distance (cm)

On Die

Chip to chip

Board to Board

Between

cabinets

Programming a “Network Computer”

• Surprise: Locality is important!

• Energy consumption grows

with distance

• “Hidden” distribution: OpenMP

• Problem: locality not exposed

• “Explicit” distribution: PGAS,MPI

• User handles locality

• MPI supports process mapping

• Probably MPI+X in the future

But what is

?

21/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

So, is it really about Flops? Of course not!

• But: Flops is the default algorithm measure

• Often set equal to algorithmic (time) complexity

• Numerous papers to reduce number of Flops

• Merriam Webster: “flop: to fail completely”

• HPC is power-limited!

• Flops are cheap, data movement is expensive, right?

 Just like using the DRAM architecture from the 80’s, we

use algorithmic techniques from the 70’s!

• Need to consider I/O complexity instead of FLOPS

• Good place to start reading: Hong&Kung: Red-Blue Pebble Game

22/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

How much Data Movement is Needed? MatMul?

• Matrix Multiplication: A=BC

• NxN matrix, ≥2N2 reads, ≥ N2 writes

• Textbook algorithm has no reuse

• Example memory hierarchy model:

1 1 3 1
1 4 1 7
9 4 1 2
1 5 1 3

1 3 0 1
3 7 4 1
3 0 9 8
1 2 5 6

5

…

Core/FP Unit

Register Bank

Cache/SRAM

Memory/DRAM

50 pJ

10 pJ

100 pJ

1000 pJ

125 ps

250 ps

2 ns

100 ns

Functionality Energy Performance

-

100

100.000

100.000.000

Capacity (FP)

Source: Dally, 2011

23/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

I/O Complexity and Power Complexity
• Trivial algorithm (no reuse):

• E(N) = (2N3 + N2) * 1 nJ

• E(55k) = 332.75 kJ

• FP(55k) = 55.0003 * 50 pJ = 8.32 kJ

• Block algorithm (CxC blocks fit in cache)

• E(N,C) = [DRAM ops]*1nJ+[Cache ops]*0.1nJ

• E(55k,35) = 10.78 kJ + 21.48 kJ = 32.26 kJ

• Can be improved with space-filling curves

• Memory locality makes algorithm feasible!

• However, MM is extremely structured!

• See Kogge’s HPL study for another example!

1 1 3 1
1 2 1 7
9 4 1 2
1 5 1 3

1 3 0 1
2 3 4 1
3 0 9 8
1 2 5 6

4

…

7
5 8

1 1 3 1
1 4 1 7
9 4 1 2
1 5 1 3

1 3 0 1
3 7 4 1
3 0 9 8
1 2 5 6

5

…

1 1 3 1
1 2 1 7
9 4 1 2
1 5 1 3

24/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Fast Fourier Transform

• N point transform (lower bounds!!)

• 5N log N FP operations

• Cache of size C + R registers

• I/O lower bound (Hong&Kung):

• E(N) = (N log N/log C)+(N log N/log R)*0.1+(N log N)*0.01 [nJ]

• FP(N) = 5N log N * 50 pJ

• E(100M) = 0.22 J (2.65 J w/o cache) | FP(100M) = 0.66 J

• E(100G) = 300 J (3.65 kJ w/o cache) | FP(100G) = 913 J

• Caches are well-dimensioned

• Hiding access costs, FP costs dominate (depending on constants)

• Model can easily be extended to remote communication

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

25/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Power Consumption of Traditional Networks

• Most networks draw constant power

• Full speed link protocol

• Some networks (will) have innovative features

• E.g., InfiniBand’s dynamic throttling

• Potential problems: “network noise”? [Hoefler et al.’09]

• Other power-saving options

• Network power states (explicit throttling)

• Power-aware routing (source vs. distributed routing)

• Application-specific routing (“compiled”)

 Hoefler, Schneider, Lumsdaine: The Effect of Network Noise on Large-Scale Collective Communications

26/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

What about Large-Scale Topologies?

• Fiber optics are most efficient for off-node comm.

• ≈distance-invariant, number of transceivers count

• Power consumption

• Number of links/lanes

• Maximum/average hops

• vs. performance?

• Bisection bandwidth (increases number of links)

• Link bandwidth (increases number of lanes)

• Node count (increased numer of hops)

27/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Today’s Large-Scale Topologies

P7-IH/PERCS Fat-Trees

n-dimensional Tori

Arimilli et al.: The PERCS High-Performance Interconnect

28/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Large-Scale Example Configurations

• 1.3 million PEs, 64 cores each, 80 PEs per node

~214 = 16.384 network endpoints!

 Topology Number of links Diameter Bisection width

Fat-Tree (64 ports, 3
levels)

81.920 6 8.192 (full)

3d-Torus (25x26x26) 50.700 39 1.300 (15.9%)

5d-Torus (84x4) 81.920 18 4.096 (50%)

PERCS 385.024 3 8.192 (full)

Constant cost

(can be reduced with throttling etc.)
Dynamic Cost

(per message costs)

29/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Power-efficient Programming Techniques

1. Locality, locality, locality!

• Trade-off flops for load/store accesses!

2. Network-Centric Programming

• Static Optimizations, Overlap

3. Functional specialization

• Serial accelerators (GPU, FPGA)

• Network specialization & acceleration

4. Minimize overheads

• Zero-copy whenever possible!

• Power-aware middleware

30/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

1) Locality

 The Algorithm
Designer will
figure it out!

A magic
compiler will

find all locality!

The runtime
will do it all!

Locali-what?

My code has
all the locality

it needs!

A magic
programming

language will allow
to express it all

Why should I care? It’s hard
enough to get parallelism

and correctness!

Inspired by A. Snavely

31/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Spatial and Temporal Access Locality

• Cache-aware (or -oblivious) algorithms

• Well known, sometimes hard to implement

• Well-understood models and metrics

• Reuse distance

• Well-developed set of techniques

• Morton ordering, Z curves

• Automation possible

• Compiler loop-tiling

• MTL for matrix ordering

32/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Network Locality

• Mapping relative to network topology, multi-

dimensional, hard, NP-complete 

• Very little research, many relevant cases may be

polynomial time

• Support in MPI (process topologies)

• We tackled general case [Hoefler’11]

• Different optimization goals:

• Energy consumption (minimize dilation)

• Runtime (minimize maximum congestion)

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures

33/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Topology Mapping Example

 Physical

Topology:
 Application

 Topology:

Mapping 1: Mapping 2:

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures

34/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Topology Mapping Example: 3d Torus

• nlpkkt240, dilation for P=1728: 9.0, 9.03, 7.02, 4.5

>30%

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures

35/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

2) Network-Centric Programming

• Make the network programmable like a CPU!

• Application-specific routing

• Compiler optimizations

• Static link power management

• What is a good abstraction? Open Research!

• Need to find a Network ISA

• Our proposal: Group Operation Assembly Language

• Supports arbitrary communication relations

• Define GOAL communication graph statically

• Optimize scheduling and program network

36/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

A GOAL Example Program

1 2 3 4 5 6 7 8

1 2

3 4

5 6

7 8

1 2 3 4 5 6 7 8

Stencil Computation
Nearest neighbor communication

Static GOAL Graph:

Fat-Tree Topology Static Routes and Disabled Links

Hoefler, Siebert, Lumsdaine: Group Operation Assembly Language - A Flexible Way to Express Collective Communication

37/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Dualism of Network and CPU Architecture

• Similar behavior as CPU architecture

• Cf. VLSI/EPIC/Vector vs. Multithreaded

• Static programs:

• Compile routing statically

• GOAL or sparse collectives in MPI-3.0

• Dynamic programs:

• Active messages (cf. threads)

• Cf. Active Pebbles/AM++ [Willcock et al.’11]

• Likely to be a mixture in reality

• Similar to CPUs with vector and MT instructions!

Willcock, Hoefler, Edmonds: Active Pebbles: Parallel Programming for Data-Driven Applications

38/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Keep the Network Busy with Overlap

 Blocking Communication

• Nonblocking communication

• Runtime smaller, better energy utilization!

Network
Throttling

Source: T. Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking

Stencil computation

39/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Minimize Communication Overheads

• Persistent communication

• Eliminates tag matching

• Hardware can setup channels

• MPI_Send_init etc. (needs to be supported!)

• MPI One Sided / PGAS / RDMA

• Eliminates high-level messaging protocols

• Direct hardware specialization

• Sparse collectives

• Specify communication topology statically!

40/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

3) Functional Specialization

• We all know about Accelerators

• I have nothing to add 

• Don’t forget about FPGAs though

• Several impressive results for simple problems,

e.g., password cracking

• Specialized architectures

• Anton, MDGrape

Sp
ecializatio

n
 / P

rice

41/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

4) Minimize Overheads

• Minimize data movements

• Avoid copies, send/recv from/into user buffers

• MPI datatypes – [Hoefler’10]

• Improved performance, reduce energy consumption!

• Energy-optimizing middleware

• Utilize persistence, program network

• Energy-aware collective operations

• Runtime takes the role of the OS [Brightwell’11]

Sources: Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes

 Brightwell: Why Nobody Should Care About Operating Systems for Exascale

42/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Energy-aware Collective Communication

• Common optimization idiom:

• Trade excess bandwidth for latency/performance

• Add additional copies, increases power

• Old assumption:

• Bandwidth is available

• T=max(latency, bandwidth)

• Performance-optimal:

• Bruck’s algorithm for small data

• Each item is sent/copied multiple times

43/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Energy-aware Collective Communication

• Assume two components for Energy consumption:

• The “static” energy: a [J/s]

• The “dynamic” energy: b [J/B]

• E = a * T (time) + b * D (transferred data)

• For example Bruck’s alltoall:

• Choose optimal k for k-d torus (1≤k ≤ log2P)

44/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Energy- or Runtime-optimal k for P=10M ?

• (S = total data size per process)

•

Optimal Energy
16mJ

(Runtime=0.8s)

Optimal Runtime
0.003s

(Energy=25mJ)

45/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Summary: Energy-aware Programming

• Optimize for power-consumption, not speed

• Often close but not always! Stop counting Flops!

• Needs a good model of power consumption for

algorithm designers (data movement?)

• Needs measurement tools/hooks for

software designers (“energy counters”)

• Power analysis and monitoring tools

•  extend performance tools with power metrics!

• Important ongoing work!

46/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

We need more Data! Especially on Networks!

• Studied application power consumption with

different networks (A- IB/C, B – MX/C, C – MX/F)

Parallel Ocean Program RAxML

Source: Hoefler, Schneider et al.: A Power-Aware, Application-Based, Performance Study Of Modern Commodity Cluster Interconnection Networks

0.458 kWh

0.432 kWh

0.406 kWh

8.315 kWh

8.164 kWh

8.015 kWh

47/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

A Quick Glance at Analytic Power Modeling

• Similar to performance modeling, observe power

instead of time though!

• Analytic ab-initio modeling is hard (needs very

detailed power models)

• Empirical modeling seems feasible (needs

measurement support for power consumption)

• Analyze tradeoffs between architectures

• Simple vs. complex cores, co-design, detailed

feasibility studies with key applications, complex

minimization problem

48/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

• Main routes to follow in the near future:

• Improve locality/reduce communication (at all levels!)

• Regulate power consumptions of subcomponents

• Explicit design (scratchpad, network-centric progr.)

• Overlap and balance (parallelism ↑)

• Techniques/Research Directions:

• Network topologies (low distance)

• Power-aware algorithms (I/O cmplx)

• Power analysis and modeling

Thanks and Summarizing!

49/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Collaborators, Acknowledgments & Support

• Thanks to:

• Marc Snir, William Gropp, Wen-mei Hwu

• Vladimir Voevodin, Anton Korzh for comments

• Sponsored by

50/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Google, the datacenter energy pioneers?

• Operate at highest efficiency!

• Google’s Top 5 techniques:

1. Monitor Power Usage Efficiency (PUE)

2. Manage air flow (~50% of energy goes

 into cooling)

3. Run at higher temperatures (~27 C)

4. Use “free” cooling (water/air)

5. Optimize power distribution

• Huh? No fancy CS techniques?

• Not in the Top 5 … but needed!

Source: Google

51/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

HPC Centers Operate Large Datacenters too

 NPCF parameters

• Full water cooling (+40% efficiency)

• Using “natural” cooling 70%/year

(three cooling towers attached)

• 98.4% energy efficient transformers

• 480V AC power directly to rack

• LEED gold certification

• 18.3 C inlet water, 25.5 C inlet air

52/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Today’s Power Breakdown (w/o overheads)

Operation (64 bit ops) Energy (pJ) FP ADD: a=b+c DP FLOP ratio

FP FMA (2 FLOPs) 100 50 1

INT Add 1 - -

Register (64x32 bank) 3.5 10.5 0.2

SRAM (64x2k) 25 75 0.67

Move 1mm 6 18 2.78

Move 20mm 120 360 7.2

Move off-chip 256 768 15.36

DRAM 2000 6000 120

• Operation cost will shrink with feature size

• DRAM cost will shrink with architectural changes

• Movement costs are hard to reduce!

Source: Dally, 2011

53/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Predictions for Scaling the Silicon

• Assuming no architectural changes (DRAM will likely be

even lower)

0

2000

4000

6000

8000

10000

12000

45nm 32nm 22nm 14nm 10nm 7nm

En
e

rg
y

(p
J)

pJ/64 bit Com

pJ/64 bit DRAM

DP RF Op

pJ/DP FP

FP Op

DRAM

Communication

Operands

Source: S. Borkar, Hot Interconnects 2011

54/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

All those are lower bounds!

• Ideal cache, ideal CPU …

• Need to avoid any additional overheads

• Need simpler CPU architectures

• Caches have a huge energy-saving potential!

• The network may be much more important!?

• Not discussed so far at all!

• I/O complexity works well with networks too

• Local memory modeled as “cache”

55/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

The Quest for Low-Diameter Networks

• Low diameter  low power

• High-radix routers  high power and cost

• Fundamental limit for radix-r routers and n nodes

• diameter ≥ ≈logr(nr)

Minimize energy by trading off:

• Router radix (r) with diameter

• Faces degree-diameter problem

for optimal solution

56/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Power-aware Programming

• Now we have (lower-bound) hardware and

algorithmic solutions

• We can still loose infinite power in the

implementation 

• Power-aware programming is most important!

• Simple observation: using the machine more

efficiently decreases power consumption and

increases performance! (non-conflicting

optimization goals!)

• Why? Idle resources consume power too (~10%)

57/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

2) Network-centric Programming

• Overlap, overlap, overlap

• Keep memory, CPU, and network busy

• More parallelism needed 

• Prefetch memory

• Hardware prefetcher in modern architectures

• May waste power!

Explicit prefetching! Compiled in or as SMT thread

58/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

MPI Topology Mapping

58 Presentation Title

• Application topologies are often only known

during runtime

• Prohibits mapping before allocation

• Batch-systems also have other constraints!

• MPI-2.2 defines interface for re-mapping

• Scalable process topology graph

• Permutes ranks in communicator

• Returns “better” permutation π to the user

• User can re-distribute data and use π

Hoefler, Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures

59/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

A Reward for the Careful Analysis

• Cluster Challenge 2008 winners: Dresden/Indiana

60/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Why do we HPC folks care about energy?

• Our requirements are on exponential scaling too

• “Expect” to double “performance” every 18 months at

roughly equal costs (including power)

• As we all know, this is more complex and we’re facing

the “Multicore Crisis” or in HPC “Scalability Crisis”

• Managing billion-way parallelism (?)

• Not only frequency scaling stopped!

• Voltage scaling stopped

• Traditional architectural advances kill power budget

• Large-scale computing will hit the “Energy Crisis” soon

61/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

Network Acceleration

• Message handling in hardware

• Pipelining (done by most networks)

• Message Matching (CAMs vs. list traversal)

• Collective operation offload

• saves bus transactions (improves “locality”)

• specialized execution, avoid copies

• Examples: GOAL, Portals, ConnectX2

• Programmable networks

• To be developed!

62/49 T. Hoefler: Energy-aware Software Development for Massive-Scale Systems

• Assuming single-level hierarchy (ignoring register)

• Non-obvious optimization, derive & repeat

Energy- or Time-Optimal Blocking?

DRAM dominated

(2N2/C3 + N2)*1 nJ SRAM dominated

(2N2C + N2)*0.1 nJ

Optimal Energy

Optimal Runtime

