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The Sparse Data Exchange Problem

 Defines a generic communication problem

 Assume a set of P processes

 Each process communicates with a small set of other 

processes (called neighbors)

 How do we define “sparse”?

 The maximum number of neighbors (k) is

 Dynamic vs. Static SDE 

 Static: neighbors can be determined off-line

 e.g., sparse matrix vector product

 Dynamic: neighbors change during computation

 e.g., parallel BFS 
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Dynamic Sparse Data Exchange (DSDE)
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Our Contribution

 Analyze well-known algorithms for DSDE:

 Personalized Exchange (MPI_Alltoall)

 Personalized Census (MPI_Reduce_scatter)

 Remote Summation (MPI_Accumulate)

 Focus on large-scale systems (large P)

 Metadata exchange easily dominates runtime!

 Propose a new, asymptotically optimal algorithm

 Uses nonblocking collective semantics (MPI_Ibarrier)

 Can take advantage of hardware support

 Introduces a new way of thinking about synchronization
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Preliminaries

 Distributed Consensus

 All processes agree on a single value

 Lower bound: broadcast 

 Personalized Census

 All processes agree on a different value for each process

 Each process sends a contribution for each other  proc.

 Personalized Exchange

 All processes send different values to all other processes
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Dynamic Sparse Data Exchange (DSDE)

 Main Problem: metadata

 Determine who wants to send how much data to me 

(I must post receive and reserve memory)

OR:

 Use MPI semantics:

 Unknown sender 

 MPI_ANY_SOURCE

 Unknown message size

 MPI_PROBE

 Reduces problem to counting

the number of neighbors 

 Allow faster implementation!

6



Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PEX (Personalized Exchange)
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Protocol PEX (Personalized Exchange)

 Bases on Personalized Exchange (        )

 Processes exchange

metadata (sizes) about 

neighborhoods with

all-to-all

 Processes post 

receives afterwards

 Most intuitive but least

performance and

scalability!
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Protocol PCX (Personalized Census)
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Protocol PCX (Personalized Census)

 Bases on Personalized Census (        )

 Processes exchange

metadata (counts) about 

neighborhoods with

reduce_scatter

 Receivers checks with

wildcard MPI_IPROBE

and receives messages

 Better than PEX but

non-deterministic!
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Protocol RSX (Remote Summation)
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Protocol RSX (Remote Summation)

 Bases on Personalized Census (MPI_Win_fence): 

 Processes accumulate

number of neighbors

in receiver’s memory

 Receivers check with

wildcard MPI_IPROBE

and receives messages

 Faster than PEX/PCX,

non-deterministic and 

requires (good) RMA!
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Nonblocking Collective Operations (NBC)

 It is as easy as it sounds: MPI_Ibarrier()

 Decouple initiation and synchronization

 Initiation does not synchronize

 Completion must synchronize (in case of barrier)

 Interesting semantic opportunities

 Start synchronization epoch and continue

 Possible to combine with other synchronization methods (p2p)

 NBC accepted for MPI-3

 Available as reference implementation (LibNBC)

 LibNBC optimized for InfiniBand

 Optimized on some architectures (BG/P, IB)
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Protocol NBX (Nonblocking Consensus)
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Protocol NBX (Nonblocking Consensus)

 Complexity - census (barrier):

 Combines metadata with actual transmission

 Point-to-point

synchronization

 Continue receiving

until barrier completes

 Processes start coll.

synch. (barrier) when

p2p phase ended

 barrier = distributed 

marker!

 Better than PEX,

PCX, RSX!
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Performance of Synchronous Send

 Worst-case: 2*L 

 Bad for small messages

 Vanishes for large messages

 Benchmark

 Slowdown for 1-byte messages

 Threshold = size when overhead is <1%

 Very good results for BG/P and Myrinet!
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System L (synch) Slowdown Threshold

Intrepid (BG/P) 5.04 us 1.17 12 kiB

Jaguar (XT-4) 25.40 us 2.57 132 kiB

Big Red (Myrinet) 8.02 us 1.13 1.5 kiB

Myrinet 2000/MX
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LogP Comparison – PCX vs. NBX

 k=number of neighbors, assuming L(synch) = 2*L

 NBX faster for few neighbors and large scale!
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Microbenchmark

 Each process sends to 6 random neighbors

 Significant improvements at large scale!
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BlueGene/P Cray XT-4
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Parallel Breadth First Search

 On a clustered Erdős-Rényi graph, weak scaling

 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!
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BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC
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Are our assumptions for k realistic?

 Check with two applications: 

 Parallel N-body (Barnes&Hut)  (512 processes)

 Number of neighbors in rebalancing ORB step:
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Are our assumptions for k realistic?

 Sparse linear algebra (CFD, FEM, …)

 Used simple block-distribution of UFL matrices

 Graph partitioning techniques would reduce k further!
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Conclusions and Future Work

 SDSE problem is important

 Metadata exchange dominates at large scale!

 We discussed four algorithms and their complexity

 NBX is fastest for large machines and small k

 RCX is probably most “convenient”

 Hardware support for NBC crucial at large scale!

 Synchronous sends can be performance critical!

 We plan to work on an self-tuning adaptive library

 Automatic algorithm selection

 Look into large-scale applications
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Thank you for your attention!
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Orthogonal Recursive Bisection
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Influence of the Number of Neighbors

 “sparsity”-factor is important for algorithm choice!

25



Torsten Hoefler, PPoPP 2010, Bangalore, India

Quick Terms and Conventions

 We use standard LogGP terms

 L – maximum latency between any two processes

 o – CPU send/recv overhead

 g – time to wait between network injections

 G – time to transmit a single byte

 P – number of processes in the parallel job

 One single byte messages from A to B:

 costs o on A and arrives after 2o+L on B

 We assume that o>g for simplicity 

 All parallel processes start at t=0

26


