
Scalable Communication Protocols

for Dynamic Sparse Data Exchange

Torsten Hoefler, Christian Siebert, Andrew Lumsdaine

PPoPP 2010, Bangalore, India

Torsten Hoefler, PPoPP 2010, Bangalore, India

The Sparse Data Exchange Problem

 Defines a generic communication problem

 Assume a set of P processes

 Each process communicates with a small set of other

processes (called neighbors)

 How do we define “sparse”?

 The maximum number of neighbors (k) is

 Dynamic vs. Static SDE

 Static: neighbors can be determined off-line

 e.g., sparse matrix vector product

 Dynamic: neighbors change during computation

 e.g., parallel BFS

2

Torsten Hoefler, PPoPP 2010, Bangalore, India

Dynamic Sparse Data Exchange (DSDE)

3

Torsten Hoefler, PPoPP 2010, Bangalore, India

Our Contribution

 Analyze well-known algorithms for DSDE:

 Personalized Exchange (MPI_Alltoall)

 Personalized Census (MPI_Reduce_scatter)

 Remote Summation (MPI_Accumulate)

 Focus on large-scale systems (large P)

 Metadata exchange easily dominates runtime!

 Propose a new, asymptotically optimal algorithm

 Uses nonblocking collective semantics (MPI_Ibarrier)

 Can take advantage of hardware support

 Introduces a new way of thinking about synchronization

4

Torsten Hoefler, PPoPP 2010, Bangalore, India

Preliminaries

 Distributed Consensus

 All processes agree on a single value

 Lower bound: broadcast

 Personalized Census

 All processes agree on a different value for each process

 Each process sends a contribution for each other proc.

 Personalized Exchange

 All processes send different values to all other processes

5

Torsten Hoefler, PPoPP 2010, Bangalore, India

Dynamic Sparse Data Exchange (DSDE)

 Main Problem: metadata

 Determine who wants to send how much data to me

(I must post receive and reserve memory)

OR:

 Use MPI semantics:

 Unknown sender

 MPI_ANY_SOURCE

 Unknown message size

 MPI_PROBE

 Reduces problem to counting

the number of neighbors

 Allow faster implementation!

6

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PEX (Personalized Exchange)

7

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PEX (Personalized Exchange)

 Bases on Personalized Exchange ()

 Processes exchange

metadata (sizes) about

neighborhoods with

all-to-all

 Processes post

receives afterwards

 Most intuitive but least

performance and

scalability!

8

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PCX (Personalized Census)

9

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol PCX (Personalized Census)

 Bases on Personalized Census ()

 Processes exchange

metadata (counts) about

neighborhoods with

reduce_scatter

 Receivers checks with

wildcard MPI_IPROBE

and receives messages

 Better than PEX but

non-deterministic!

10

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol RSX (Remote Summation)

11

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol RSX (Remote Summation)

 Bases on Personalized Census (MPI_Win_fence):

 Processes accumulate

number of neighbors

in receiver’s memory

 Receivers check with

wildcard MPI_IPROBE

and receives messages

 Faster than PEX/PCX,

non-deterministic and

requires (good) RMA!

12

Torsten Hoefler, PPoPP 2010, Bangalore, India

Nonblocking Collective Operations (NBC)

 It is as easy as it sounds: MPI_Ibarrier()

 Decouple initiation and synchronization

 Initiation does not synchronize

 Completion must synchronize (in case of barrier)

 Interesting semantic opportunities

 Start synchronization epoch and continue

 Possible to combine with other synchronization methods (p2p)

 NBC accepted for MPI-3

 Available as reference implementation (LibNBC)

 LibNBC optimized for InfiniBand

 Optimized on some architectures (BG/P, IB)

13

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol NBX (Nonblocking Consensus)

14

Torsten Hoefler, PPoPP 2010, Bangalore, India

Protocol NBX (Nonblocking Consensus)

 Complexity - census (barrier):

 Combines metadata with actual transmission

 Point-to-point

synchronization

 Continue receiving

until barrier completes

 Processes start coll.

synch. (barrier) when

p2p phase ended

 barrier = distributed

marker!

 Better than PEX,

PCX, RSX!

15

Torsten Hoefler, PPoPP 2010, Bangalore, India

Performance of Synchronous Send

 Worst-case: 2*L

 Bad for small messages

 Vanishes for large messages

 Benchmark

 Slowdown for 1-byte messages

 Threshold = size when overhead is <1%

 Very good results for BG/P and Myrinet!

16

System L (synch) Slowdown Threshold

Intrepid (BG/P) 5.04 us 1.17 12 kiB

Jaguar (XT-4) 25.40 us 2.57 132 kiB

Big Red (Myrinet) 8.02 us 1.13 1.5 kiB

Myrinet 2000/MX

Torsten Hoefler, PPoPP 2010, Bangalore, India

LogP Comparison – PCX vs. NBX

 k=number of neighbors, assuming L(synch) = 2*L

 NBX faster for few neighbors and large scale!

17

BlueGene/P Cray XT-4

Torsten Hoefler, PPoPP 2010, Bangalore, India

Microbenchmark

 Each process sends to 6 random neighbors

 Significant improvements at large scale!

18

BlueGene/P Cray XT-4

Torsten Hoefler, PPoPP 2010, Bangalore, India

Parallel Breadth First Search

 On a clustered Erdős-Rényi graph, weak scaling

 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!

19

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

Torsten Hoefler, PPoPP 2010, Bangalore, India

Are our assumptions for k realistic?

 Check with two applications:

 Parallel N-body (Barnes&Hut) (512 processes)

 Number of neighbors in rebalancing ORB step:

20

Torsten Hoefler, PPoPP 2010, Bangalore, India

Are our assumptions for k realistic?

 Sparse linear algebra (CFD, FEM, …)

 Used simple block-distribution of UFL matrices

 Graph partitioning techniques would reduce k further!

21

Torsten Hoefler, PPoPP 2010, Bangalore, India

Conclusions and Future Work

 SDSE problem is important

 Metadata exchange dominates at large scale!

 We discussed four algorithms and their complexity

 NBX is fastest for large machines and small k

 RCX is probably most “convenient”

 Hardware support for NBC crucial at large scale!

 Synchronous sends can be performance critical!

 We plan to work on an self-tuning adaptive library

 Automatic algorithm selection

 Look into large-scale applications

22

Torsten Hoefler, PPoPP 2010, Bangalore, India

Thank you for your attention!

23

Questions?

Torsten Hoefler, PPoPP 2010, Bangalore, India

Orthogonal Recursive Bisection

24

Torsten Hoefler, PPoPP 2010, Bangalore, India

Influence of the Number of Neighbors

 “sparsity”-factor is important for algorithm choice!

25

Torsten Hoefler, PPoPP 2010, Bangalore, India

Quick Terms and Conventions

 We use standard LogGP terms

 L – maximum latency between any two processes

 o – CPU send/recv overhead

 g – time to wait between network injections

 G – time to transmit a single byte

 P – number of processes in the parallel job

 One single byte messages from A to B:

 costs o on A and arrives after 2o+L on B

 We assume that o>g for simplicity

 All parallel processes start at t=0

26

