
Introduction
Framework Architecture

Conclusions

A new Approach to MPI Collective
Communication Implementations

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2,
A. Lumsdaine1

1Open Systems Lab 2Computer Architecture Group
Indiana University Technical University of Chemnitz

3Cisco Systems 4University of Tennessee
San Jose Dept. of Computer Science

2nd Austrian Grid Symposium - DAPSYS’06
Innsbruck, Austria, 22nd September 2006

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Outline

1 Introduction
Known Problems
State of the Art
Open MPI
Design Goals

2 Framework Architecture
Software Architecture
Initialization
Runtime Selection

3 Conclusions

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Outline

1 Introduction
Known Problems
State of the Art
Open MPI
Design Goals

2 Framework Architecture
Software Architecture
Initialization
Runtime Selection

3 Conclusions

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Known Problems

huge number of different collective algorithms and
implementations
hardware-dependent collective implementations
no framework that offers run-time selection exists
selection of optimal algorithm not trivial, because

depends on MPI-parameters (size, comm)
decision in critical path
different implementations only work for certain parameters
every process has to chose the same (runtime-decision)

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Predictive Performance Models

Prediction is Possible
LogP-Family (LogGP) predicts accurately

L hardware latency
o host overhead (can be divided into or and os)
g gap between consecutive messages (bw limiting)
G gap between each byte of a message
P number of processes

Collective Operations
All collective operations based on point-to-point messages can
be predicted with Log(G)P!

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Predictive Performance Models

Prediction is Possible
LogP-Family (LogGP) predicts accurately

L hardware latency
o host overhead (can be divided into or and os)
g gap between consecutive messages (bw limiting)
G gap between each byte of a message
P number of processes

Collective Operations
All collective operations based on point-to-point messages can
be predicted with Log(G)P!

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Further Problems

LogP vs. HW optimized implementations
⇒ need common denominator
seconds to assess running time
HW implementations have to offer predictive models
bypassing must be possible (optimized impl.)

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

State of the Art

most impl. use suboptimal hard-coded switching points
(MPICH(2), MVAPICH, LAM/MPI, Open MPI)
”tuned” Open MPI component experiments with dynamic
selection with a fixed set of algorithms (no HW
optimization)
Open MPI allows coarse grained third party coll modules
⇒ no flexible selection framework available yet

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Open MPI

⇒ merged FT-MPI, LA-MPI, LAM/MPI, PACX-MPI
implements MPI-2
support for different networks (TCP, GM, MX, MVAPI,
OpenIB, Portals, SM)
modular framework architecture

some frameworks: PML, BTL, COLL ...
easy addition of new ideas
clearly defined interfaces
binary modules (vendor)

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Known Problems
State of the Art
Open MPI
Design Goals

Goals of our Design

⇒ redesign of collv1 framework in Open MPI 1.0/1.1
enable fine-grained selection
efficient run-time decision
bypassing/fast-pathing
modular approach/third party (binary) modules
automatic usage of best available module

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Outline

1 Introduction
Known Problems
State of the Art
Open MPI
Design Goals

2 Framework Architecture
Software Architecture
Initialization
Runtime Selection

3 Conclusions

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Terms

component functionality without resources provided by
implementer

module communicator specific instance of a
implementation

query request to a component to return comm specific
modules

implementation implementation of a collective operation
opaque functions non-visible functions in coll. modules

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Software Architecture

Broadcast Module
*broadcast_fn_1
*broadcast_fn_2
*broadcast_eval_fn

Barrier Module
*barrier_fn
*barrier_eval_fn

Alltoall Module
*alltoall_fn_1
*alltoall_fn_2
*alltoall_eval_fn

Broadcast Module
*broadcast_fn
*broadcast_eval_fn

Broadcast Module
*broadcast_fn
*broadcast_eval_fn

...

Component A

Gather Module
*gather_fn_1
*gather_fn_2
*gather_eval_fn

...

Component B

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Actions During MPI_INIT

did
the user force

anything?

list
return component

component if it
wants to run

open no

unload it
close it and

yes

no

components
load all available load selected

components

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Actions During Communicator Construction

to the avail_<op> array
add returned modules 

are

left?

yes any components 

no

query component
with comm

left?
no

yes

at the communicator
put the decision function

for each collective operation

is there 
only one module

at the communicator
put it as direct callable 

construct function list
unify module array

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Architecture

all returned modules are attached to the communicator
each module offers an evaluation function
eval. function returns pointer to fastest function and an
estimated time
estimation up to implementer (model, previous benchmark,
...)

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Invocation

MPI
arguments in

cache?
but winner

put fastest to cache

call fastest

cleanup all modules 

estimated running time
query module for 

yes

no

untested
module left?

no

yes

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Decision Overhead

Cache Hit
access in a hash-table

Cache Miss
depends on number of modules

query each module
returns model or benchmark-based prediction

Cache Friendliness
ABINIT/Band: 295/16 (94.6%)
ABINIT/CG: 53887/75 (99.9%)
CPMD: 15428/85 (99.4%)

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Software Architecture
Initialization
Runtime Selection

Decision Overhead

Cache Hit
access in a hash-table

Cache Miss
depends on number of modules

query each module
returns model or benchmark-based prediction

Cache Friendliness
ABINIT/Band: 295/16 (94.6%)
ABINIT/CG: 53887/75 (99.9%)
CPMD: 15428/85 (99.4%)

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Outline

1 Introduction
Known Problems
State of the Art
Open MPI
Design Goals

2 Framework Architecture
Software Architecture
Initialization
Runtime Selection

3 Conclusions

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Conclusions and Future Work

Conclusions
easy, flexible and reliable scheme
optimized for common case
uses ”argument-locality”

Future Work
implement system in Open MPI
analyze more applications

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication



Introduction
Framework Architecture

Conclusions

Conclusions and Future Work

Conclusions
easy, flexible and reliable scheme
optimized for common case
uses ”argument-locality”

Future Work
implement system in Open MPI
analyze more applications

T. Hoefler1,2, J. Sqyures3, G. Fagg4, G. Bosilca4, W. Rehm2, A. Lumsdaine1MPI Collective Communication


